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Invariant norms for O(T)
by
STEPHEN SCHEINBERG (*) (Stanford, Ca.)

Abstract. The space of continuous functions with supremum norm has a huge
group of isometries. Given a subgroup of this group ome can ask whether there is
another algebra norm for the continuous functions having isometry group containing
the given subgroup. This paper presents various constructions of algebra norms
designed to accommodate several natural groups of isometries and gives conditions .
under which certain, groups of isometries characterize the sup norm among all algebra
norms.

In many calculations on function algebras an important property
of the sup norm, in addition to completeness and the indispensible ine-
qualities defining “norm?”, is that a particular collection of mappings
of the algebra are isometric, or perhaps norm-decreasing. It is often
evident that the sup norm could be replaced by any other “invariant”
norm. This gives rise to a natural question: are there any other norms
besides || ||, which have a given invariance behavior, and how much
invariance must be imposed in order to characterize || |, among all
norms ? The purpose of this note is to exhibit several distinet norms
which are invariant under large collections of mappings and to give
conditions sufficient to ensure that a norm must be identical with the
sup norm. For simplicity let us consider C(T), where T is the circle.
Generalizations to C(@), @ a compact abelian group, and in some cases
to C(X), X a compact Hausdorff space, will be apparent.

If || || is an algebra norm for O(T), then |[fll = (flw, by & theorem
of Kaplansky ([1], Theorem 6.2). An algebra norm is complete if and
only if || flo<| < K| o, for some K < co. A theorem of Bade and
Ourtis ([2], Theorem 4.1) asserts that |f|| < K ||f|l for all f vanishing on
a neighborhood of a certain finite set, which may be empty. If || [l is
translation-invariant (||f(t+s)|| = [F@I), then it immediately follows

(*) Supported in part by NIF Grant GP-25084.
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that ||fl| < 2K ||f |l for all feC(T). Hence, & translation-invariant algebra
norm for O(T) is complete and satisfies || [o < | [/ << -constant | ||.

Tt is easy to see directly that multiplication by f is an isometry on
(oD, | ) if and only if f never vanishes and | fil = IIL/fll =1. Of course,
multlphcatlon by f is norm decreasing if and only if ||f|| < 1. I thank K.
De Leeuw for suggesting that the norm in Theorem 2 below might be
a norm for convolution product. In fact, the following proposition holds.

ProposITION. If || | is a translation-invariant algebra norm for O(T),
then ||f*gl < |If1l lgll, where % is convolution on T.

Proof. From the Riemann sums for fxg it is evident that

I *gl < ([ 171) gl < 1l g1l < 171 i

TeEoREM 1. If || || 48 any algebra morm on C(T), then {n: |[6™] = 1}
is a semigroup containing 0. Conversely, if 8 = Z is a sem@'group containing
0, there is a translation invariant Banach algebra norm on O(T) such that

= {n: 6" = 1}.

Proof. By definition |1 =1. 1 = [f™™| < [l < 6™

e, provmg the first statement. For any subset S < Z, define

As—{feC(T ff e~dt = 0 for all n¢S)

= the clogure of those trigonometric polynomials whose exponents lie
in 8."4¢1s a closed translation-invariant subspace of C(T). If § is a semi-
group containing 0, then Ag ig a subalgebra containing 1.

Define pg(f) = inf{|f—allo: aecdg}; Py is a semi-norm which
vanishes exactly on Ag. The desired norm will be ||f|| = [|flle-+2s(f)
To prove that |fg| < |f|l llgll, it is sufficient to show that pg(fy)
< flooPs(9) + 195 (f). Lot |If —anlle —p5(f) and [lg—bille — Ps(g);
we may assume  [byfle < [[fllo. Then fg—a,b, = f(g—b,)+ b1L(f"fan)!
imp]-ying pS(fg) < ”fg - a’nbn”oo < ”f”oo”g - bn“oo + “g“oc”f—a'n“oo - ”f”oo

9)+119lloPs(f). The other properties of || | are immediate. ‘

Remark 1. Every closed translation-invariant subspace of C(T)
has the form Ag for some set 8. It is a subalgebra exactly when § is
a semi-group.

Remark 2. If §,; are semigroups and o> 0 with Y'a; < oo then
I |w—l—2c17ps defmesanorm I8y = {0}, 8, = {n=0},and 8_ = {n < 0},
then pg ps  tos_ However, they agree on all exponentials.

Remark 3. The set of norms is closed under convex combinations
and under the taking of the sup of a bounded collection.

THEOREM 2. There is a Banach algebra norm for € (T) which is unequal
to || |l but for which these mappings are isometric:

1) £ - ™1 (1) (all n),
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(2) F(t) ~F(E+1,)
() f(&) > F(~1),
(4) F@) > f(nt) (all m),
(6) f—~F.
 Furthermore ||f* gl <

(all 1),

171 gl

Proof. Let U = {feC(T): |ffl<1} and V ={f = 2’ a,e™

1}. V is a closed subset of U, since f = f = ¢! — a, It is well
known that V ig a proper subset of U. This means that for some & > 0,
V+2¢ U does ‘not contain U. Put W =the convex hull of V UgU
Then V, e, Us W= W< T.

W is convex, circled, and translation invariant. Furthermore,
WW = {wyw,;: w;e W} W. Indeed, VV <V, VeUc UgU =¢,U,
and & Us, U = £ U < ¢, U since g < 1. And the product of convex com-
binations is a convex combination of products. A direct proof that
W+W < W is similar. The Minkowski functional p(f) = inf{r: ferW}
= 1/sup{r: rfe W} is then a franslation-invariant algebra norm for C(T)
and p(f*g) <p(f)p(g). Since £, U = W< U, p is equivalent to || [ .
and is complete. Since 1 = [|6™||, < p(6™) < 1, (1) follows. It is evident
that f(f)e W <> f(—%)e W and the same for f and f.

" It remains to show that f(f)e W < f(nt)e W. The direction “=7’

n
is clear. For the converse define g(t) =1/n-Y g(i--2xj/n) for any .g.
j=1

Observe that U & U and ¥ < ¥, hence Wew. Further, if g(t) = f(xi),
then §=g. So if f(nt) =)+ (1 —Neu(l), then f(nt) = () +
F(1—A) i (). Now it is clear that 9(f) = vy (nt) and @) = u,(nf)
for some v,V and w,eU. Thus, f=Av,+(1—A)gu,e W. This
completes the proof. )

THEOREM 3. If || | is an algebra norm on O (T), then these are equivalent:

@) Il = Iflle for all f.

@) Il = IfIF for all f.

3) IIfll =1 for all f such that |f] = 1.

Proof. The equivalence 1 < 2 is well known. The equivalence 1 <3
follows from the known fact (easily established for T) that convex combi-
nations of such functions are dense in U.

Theorem 3 shows that the collection of isometries of Theorem 2
cannot be enlarged to include the mapping f — |f].

Let ¢ be the group of all geC(T) such that |g| = 1. Given an algebra,
norm || || for C(T), define G = the subset of C(T) consisting of all g for
which f — gf is an isometry of (C(T),| |[). & is a uniformly closed sub-
group of ¢ containing the constants, if || | isequivalentto || |l..Theorem 3

7 — Studia Mathematica XLII.3
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says that GS @ unless | | = Jo. The next theorem shows that this ig

the ondy restriction to enlarging the isometry group of Theorem 2, part (1). -

THROREM 4. If @ is amy proper uwiformly closed. subgroup of @
= {ge0(T): |g| = 1} containing the constants, then there is an algebra norm
I Il for C(T) suck’ that f—gf is an isometry of (C(T), | |} < ge6.
(Since G is proper, || || # [ llo-)

" Proof. We must produce & norm such that for ge @, |4l =1 < ge@. .

Choose &, 0 < &, << 1. Let W = the uniform, closure of the circled convex
hull of & U U, where U is the sup-norm unit ball of O(T). Since & U
€ WecU and WWe W, it follows that the Minkowski functional p
of W is an algebra norm equivalent to the sup-norm. Since W is uniformly
closed, it is identical with the unit ball of the new norm p. W < U implies
2(f) = Iflo, hence p(g) = 1 for g« ¥. However, geG implies g¢ W; hence
2(g9)<1for ge@. Thus p(g) = 1 for all ge@. Finally we show that ge ¥
and p(g) =1 imply g<G. .

Since: W is closed, p(g) =1 =-ge W. Thus, A,g,+(L—41,)e, —g,
where |6,/ < & and g,<@. Since |g] = |g,| =1 we see that 1, -1 and
hence g, —g. Therefore g<G = G. '

' We can generalize Theorem 2 in a different direction ag follows.

THEOREM 5. Let 8 be a proper closed conves subset of {|2| < 1} which
s a semigroup under multiplication and which comtains 1. Then there is
an algebra morm || || for C(T), distinct from || |, such that

W) 171l = Ufleo 4f the range of f < 8. .
(2) }f 9: T — T' is convinuous, then ||fo ¢ < ||f| for oll f. In particular,
NIfopll =171l ¥ ¢ is a homeomorphism. Hence ||f*g| < |If] ligll-

Exameres. () I § contains [—1,1], then |f|| = IIfllo for any real
valued f.

(ii) The convex hull of any proper closed sub-semigroup containing 1
will be appropriate for §. For example, the regular N-gon is the convex
hull of the N¥th roots of 1. Using this for & we have IF1F = ||fllc for any f
with range contained in a regular N-gon centered at 0 and having radins
1 llo- ; :

Proof. Without loss of gemerality we may assume [0, 1] < 8, for
the set {rs: se8,0 <r<<1} will be a proper closed subset containing
8§ U[0,1]. Put U =the convex circled hull of the set of continuous
functions having range < 8. Because § is a convex semigroup, it is clear
that U'0' < U, UsU' < U, and Uogc U'. Since & 2 [0, 1], ife U’
if,|| fllo < 1. The support functional p" of U’ i the. desired norm. Since
U' < U we have p’ (f) = Ifll for all f. The reverse inequality holds if
the range of f = 8. This proves (1). All other properties of p* are evident
and we have only see that p' = | ' :

llso-
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Let a, b be any two distinet points of the circle and o any complex
number such that |af =1 and a¢S. Define Lf = f(a)+af(b). Evidently,
f can be chosen in C(T) so that [|f|, = 1 and L(f) = 2. However, if range
of f< 8, it is clear that [f(a)+of(b)] <2 and indeed |f(a)-Faf(b)]
< 2-6< 2 by compactness of §x 8. The inequality [Lf] < 2 — 6 persists
to U’ and this shows that p’ # | [e.

The following theorem shows that if an algebra morm is invariant
under homeomorphism, then it cannot also be invariant under multi-
plication by unimodular functions (unless it is the sup norm). This fact
justifies the restrictions of Theorem 5.

TEEOREM 6. Suppose || || is an algebra norm for O(T) which is invariant
under oll homeomorphisms (as in Theorem 5, part (2)). Suppose there is
foeC(T) such that |f)| =1 and the range of f, comtains A, A, with |i]
= |4 =1 and A /%, not a root of unity. Then || | =] |-

Proof. Put B = {f: ||f|<1}. We know that B is a closed convex
circled subset of U = {f: ||fll, <1}. We need to see that B = U. By
Theorem 3 if BS U, then ue U exists with |u| =1 and ¢ B. Then
& linear functional exists separating u and B; that is, there exist 6 > 0
and a finite complex Borel measure x such that |[ddu| <1—0<1 = fuda
for all be B. This inequality persists to all be B = the smallest class of
functions containing B and closed under the taking of everywhere point-
wise sequential limits. Since B is convex, circled, multiplicatively closed,
and closed under composition with homeomorphisms of 7T, the same
is true for B. The proof will be completed by showing that f,e B < B
= ue B, which will be a contradiction.

Multiplying f by a scalar and composing with a homeomorphism
we may assume f(0) = 1, f(z) = 4, with 1 not a root of wunity, where
[ is defined and continuous on [0,2xr) with f(277) = f(0). Let @, (f)
= n(t/n)" for 0<t<w and =(—1+¢/n)"+ = for ®<t< 2n. Then ¢,
is a homeomorphism of [0, 2x) and tends pointwise to 0 for 0 <t < =
and n for =< t< 2n. Hence fog, tends to 1 for 0<<t< = and 1 for
n <1< 2n. By moving the ares and multiplying the functions weé can
get this function in B: g(t) = A" on <t <<t;,,, where n; are integers
> 0 and

0 =f<i<...<t =2m
Now 1™, ..., A" can simultaneously approximate any % numbers of modu-
lug 1, since 4 is not a root of unity. Hence the members of B approximate
any given u, |u| = 1. Thus, ue f?, and this contradiction establishes the
theorem.

In regard to the two kinds of isometries f — gf and f — f o ¢, Theorem 2
shows that one can have some of each kind with a norm unequal to the
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sup norm. Theorem 4 shows that one can greatly enlarge the class f — gf
subject to restrictions imposed by Theorem 3. On the other hand, the
second class may be greatly enlarged (Theorem 5); however, this will
enormously restrict the first class (Theorem 6).

I thank D. Lind for seveml helpful comments regarding the presen-

tation of the results.
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An example of infinite dimensional reflexive Banach space
non-isomorphic to its Cartesian square(*)

by
T. FIGIEL (Warszawa)

Abstract. The paper gives the first example of an infinite dimensional reflexive
Banach space X non-isomorphic to X2. The sense of this non-isomorphism depends
on a difference between the structure of finite dimensional subspaces of X and those

of X2. The proof involves certain properties of subspaees of ZI,, some of them seeming
to be new.

Introduction. The problem whether every infinite dimensional Banach
space X is isomorphic to its square X* was.raised in Banach’s monograph
and remained unsolved until 1959. The first counterexamples were the
space J of R. C. James and some related spaces (cf. [2]) and the space
O(T,,) (ef. [12]).

The proofs of these non-isomorphisms were based on certain additive,
isomorphic invariants d(X) characterizing the natural embedding
x: X — X™ (additive in the sense that (X, B X,) = 6(X,)+ 6(X,) for any
Banach spaces X, X,).

Putting e.g. 8(X) = dim (X**/x(X)) we obtain such an invariant
and since d(J) =1 # 248(J) = 6(J*) we get the non-isomorphism J & J%.

The question stated nowadays by several authors (ef. [1], [2]),
whether X can, in addition, be reflexive required other methods and
remained unsolved until today.

Below we show that spaces with such properties can be constructed
from familiar spaces I3, i.e. spaces of all n-tuples a = (ay,...,a,) of

<p< oo and [a] = max |a,

k3
numbers with [lo] = (3 |a7)® if 1
=1 I<i<n

p = oo. (Letters 4,4, k, m, n will always denote in the sequel positive
integers.)

(*) The paper is a part of the author’s Ph. D. thesis written at the Warsaw
University under the supervision of Professor A. Pelezyhski.
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