66 i J. Kisyiski

Further, for arbitrarily fixed positive ¢ and b, b > o, by a similar
reasoning as in Section 4, (S;) implies the following statement

(8)) - sup L au <

const- sup [#(w)| for every e P(a, b).
sefa, b] ’

wela, b)

VP[S(_

Now the whole indirect proof is completed by showing that (S;)

. —a .
is not true. Indeed, if ee(O, ) and 2, ¢ %(a, b) is such that

< |#(8)] < 1 for s e {a, b), and that w,(s) =1 for se[a-¢, b=¢], then

b—e

b
2 {u) du b—a
> - = ] —1).
b—u du f b—u og( &
ate
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L4 -
On uniform symmetrization of analytic matrix functions

by
J. KISYNSKI (Warszawa)

Abstract, Let A be real-analytic function of £ on open set M < R% which
values A (&) are m X m matrices with purely diagonal and real canonical Jordan
form. If the characteristic roots of A (£) are restricted to change their multiplicities
only in a suitable, very simple manner, then for every & ¢« M we construct a hermitean
positive m X m matrix H (&), such that H(£)4(£) is hermitean and that |[H (&)]
and |[H~1(&)] are locally bounded functions of &.

1. The result. Let 4 be a function defined on a set M, which values
are m X m complex matrices. We shall sayy that 4 is uniformly symmetrizable
on M if the following condition is satisfied:

(S) there is a constant ¢ > 1, such that for every & e M there is a her-
mitean m X m matrix H (&), such that ¢ '<< H(¢) < ¢ and that
H(&)A(&) is hermitean.

According to Kreiss [2], [3], the uniform symmetrizability of 4 on
M is equivalent to either of the following conditions:

(D) there is a constant d > 1, such that for every £ ¢ M there is an on sin-
gular m X m matrix T(&), such that |T(&)]<d, |T7(&)]<d and
that T~'(&)A(£)T (&) is purely diagonal and real;

(B) sup{]lexp(itd (£))]]: t e (—o0, 00), & e M} < oco;
(R) sup{||(E—isE—itA(£))|: s, te(—o0, 00), £c M} < 0o, where B
denotes the unit m X m matrix.

The theorem, which we state below may be treated as a contribution
to the following problem. Let A be a matrix-valued function on a set
M and suppose that A (&) is symmetrizable for every fixed & ¢ M. Under
which additional conditions 4 is uniformly symmetrizable on. M? Our
additional conditions have the form of restrictions on the behaviour of
characteristic roots of A(&) near the points of branching. We consider
only the simplest case, when two roots come together.

THEOREM. Let M < R™ be open and let A be an analytic function on M,
which values are m X m complex matrices. Suppose that for every & e 3 the
malrie A (&) has purely diagonal and real canownical Jordan form. Moreover,
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suppose that the characteristic polynomial det(lE’—A(E)) has a factorization

m
det(1H—A (&) = (#+2b(&) 2+ (&) [ [(A—2(&)*, 2¢C, e,
k=1

where o, -«-, Gy are positive integers, such that

1° the characteristic roots M(&), k = 1,...,m', have multidplicities g,
independent of £ in whole M and

20 if we put

' N ={& &M, b2(&) = (8},

then
(*) b2(£)—c(&) = hd*(§, V)
for every & e M\N, where k> 0 4s independent of & and d(&, N) denotes
the distance from &1o N.

Under these assumptions A. is uniformly symmetrizable on every compact
subset of M.

2. Remarks.

2.1.
Under assumptions of the theorem from Section 1 the funciions
& b(&) and & — c(&) are analytic on M.

Proof. Because any of the roots 1,(£), & =1,...,m’, has constant

multiplicity, these roots are analytic functions of & in M and therefore
the coefficients a;(£) of the polynomial

m’

W b e (E) IV b 0y (8) A () = H (A= 2 (&)
k=
are also analytic functions of & Because '

det (AH — A (&) = A"+ (@1 (£) +2g,b(£)) A7
F{200(8)+ 4 (20 —1) (&) + 245 (§) 1 (§) +
o A (8) A
it follows that (&) and ¢(£) are analytic functions of & in M.
2.2,

Under the assumptions of the theorem from Section 1 any mawimal
connected part of the set M is or an one-point set or a real analytic
submanifold of M.
This follows immediately by an application to A(£) = b*(£)—c(&)
of the following ‘
Luvma. Let M < RB™ be open and let 4 be non-negative real-analytio

Sfunction on M( or, respectively, a non-negative function on M of the class
O, where & = n, n+1,... or k = co). Let

N={t tcM, A& =0} =0

On uniform symmetrization of Iytic matriz functi 69

and suppose that there is a positive acmst@nt %, such that for every &> M\N
we have ‘

(*)) A(&) = k@&, N),

where d(&, N) denotes the distance from & to N. Then every maximal con-
nedted part of N is or an one-point set or a proper real-analytic submanifold
of M (or, vespectively, a proper submanifold of M of the class crhy.

Let us remark, that if 4 is an arbitrary real function analytic on
open set M = R*, then according to the famous theorem of Yojasiewicz
(see [4] or [5], Chapter 4, § 4) for every compact subset K of M there
are positive constants % and «, such that

[4(£)| > kd®(£, N) for every &<E\N.

Of course, if A is non negative and N + @, then « cannot be less
then 2.

Proof of the lemma. We shall proceed by an induction with respect
to n. For n = 1 the lemma is obvious. Suppose that it is true for any
dimension less then # and consider the n-dimensional case. Of course

grad4(§) =0 for every £eXN.

For any &e M let S(&) be the symmetric nX % matrix, which element

2
(’ia; 6(2 . Let now &,eN. Then, by
(%), 8(&) has positive rank r and if r = n, then clearly &, is an isolated
point of N. Therefore suppose that 1 <r < . Because 8 (£,) is symmetric,
it has a non vanishing principal minor of degree r. We may assume, that

in ¢th row and jth column is

024 )
this non vanishing principal minor is the determinant of (@—é— (Eo))
1065
4§ =1,...,7. Pub

24
(i) N*:{S: EeM,—&(Q:Ofor everyk=1,2,...,7}.
3
Tt follows from the implicit function theorem’that there is an open neigh-
bourhood U of &, such that

(i) UnK* ={g(&),&): &V},

where V = IT(U) is the image of U under the projection s: (Evgeres En)
> (&ppay-ey &) a0d g 18 2 real-analytic mapping of ¥ into R". (or, res-
pectively, a mapping of V into E" of the class C*~1). Because obviously
N < N*, our proof will be complete if we shall show that UnN*cDH,
where U’ is any open bounded subset of U, such that U’ < U, or, which
is the same, that A'(&) = 4(g(£), £) vanishes in M =II(T).
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Put
N ={&: M, 4 (&) =0}.
‘We have to prove that N' = M'. Suppose that this is not true. Then

Ml.’\N’ # @. From the facts, that U’ is compact, N is closed and
N' =II(N n U, by (*) and (ii), it follows that

(i) K@, N)<SEE(9(&), &), N nT)< A{g(&), &) = 4'(&)

for every & « M'\I', where %’ is a positive constant. Therefore, according
to our inductive assumption, any maximal connected part of N' is or
a single point or a proper submanifold of M'. Now we shall obtain a con-
tradiction with (iii), showing that all the second order partial derivatives
of A" vanish at & = n(&,). By (i) and (ii), for every ¢,j =r-+1,...,n
and & ¢« M we have
6 4
E)gE oo £)),

*a
) (sto(e), €10,
;7, of the vector S(g(¢), £)o

The first 7 componeﬁts (&) v=1,...
0 "o

are

T

&4 o 09,(8)
lm(g(f)y)

a;é [M (9(&), ’)]

and, by (i) and (ii), we see that these components vanish in M’. Because

2
the rank of 8(g(&), &) = 8(&) is 7 and det ( g4 (50)) >0,
=L, L1

il |
+

5,(8) = Se T araE 0 €)

0&,0¢,

it follows f:rom the equalities s,(&) = 0, v =1,...,7, that ‘the vector

8g(&) ,E)Oa_g.(g (&), €) vanishes at & = &. Therefore
o4 _ ;
3EE, (&) =0 for every i,j=r+1,...,n

But this is in contradiction to the facts that the maximal connected part
of ¥’ containing & is or {&} or a proper submanifold of M’ and that
(ii) holds. Therefore N' cannot be less then M’ and the proof is complete.

2.3. Consider the homogenous differential operator

i E—_ _ZAh oz’

icm
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where. coefficients 4, are square matrices of degree m with constant
complex elements and E is the unit matrix of degree m. Consider also
non homogenous operators of the form

P(D)—B

where B is a square matrix of degree m with constant complex elements.
The operator P(D)—B is called hyperbolic wiih respect to the vector
(f5 Byy ey By) = (1, 0, ..., 0) if it has a fundamental solution with support
contained in a cone {(t, a;l, ey @) by Byy ey By e RY T3> O(aR 4. ),
where ¢ = const > 0.

Tt is known from papers of Kreiss [2], [3] and Svensson [7] that
following three conditions are equivalent:

(a) for every square matrix B of degree m with constant complex
elements the operator P(D)— B is hyperbolic with respect to the vector
(1,0,...,0),

n
(b) the matrix-valued function £ = (&, &, .-, &) - 3 g A, i
k=1
uniformly symmetrizable on R,

0
(c) the differential operator 5’ A, —— considered on the domain

Oy,
Z’ A,c st(R"; Cm)}, where the derivatives

_D={ weI*(R"; O

i
_7 _are taken in distributional sense, is infinitesimal generator of a strongly

T
continuous one parameter group of bounded linear operators in the space
LZ (Rn Oﬂl)
2.4. We shall show by an example, that the inequality (') plays
an essential role in theorem from Section 1.
For any & = (&, &) « B? let

5 & O
A& =1& 0 &
0o 0 0

and let

={(&, &) b<VE+E<]H &> —1h

The characteristic roots of A (£) are then 4 (&)= 0, 2,(§) = ¥&,— 3V & +4&

and A,(&) = 1§1+31/§1+4£§, 50 that A,(£) has multiplicity 1 in whole
M, while, for £e M, 7,(§) and 4,(£) are equal if & = 0 and distinet if
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& +# 0. From this we see, that A4 (&) always has purely diagonal and real
canonical Jordan form. Furthermore, the factorisation of the type described
in theorem from Section 1 holds in present situation with b(£) = §4,(£)
and ¢(£) = 0, and we have now

N ={é,&): i< §1<§: & = 0}.
The inequality () is not satisfied, because if & = (1, &) e« M, then

52
(&, N and b*(£)—c K& e
’(E, ) = 1] (§)—c(f) =% 3:(1/1+40 ) » Where 0¢(0,1),
50 that B2(£)—c(&) = O(d*(&, N)) as £ = (1, &) and 5,, - 0.

The matrix function 4 in this-example is not uniformly symmetrizable
on the compact set K = {(&, &): £+ £ =1, &> 0} <« M. Indeed, in
the contrary case, by homogeneity, this function would be uniformly
symmetrizable on the whole R?. But then, by equivalence (a) < (b) from
Section 2.3, the differential operator

e 2 ] o
o ow,'  Omy
8 ] a
De=| —— —_— =
oz’ o’ O,
]
0, 1, -

should be hyperbolic with respect to the vector (t, ;) = (1,0, 0).
However this is not true. The operator D is an example, given by Pe-
trovsky [6], of an operator, which is not hyperbolic with respect to the
vef:tor (1,0,0), although its main part is hyperbolic with respect to
th1§ vector. This example of a non hyperbolic operator’ with hyperbolic
main part is presented with details also in [7].

Al] the remainder of this paper is devoted to the proof, unfortunately
long, of the theorem from Section 1. In Sections 3, 4 and 5 we construet

and investigate some matrices, which are used in thig proof, given in
Section 6.

3. Symmetric positive matrices defined by separating pairs of polyno-
miele ot y sep g P polyn

m

PQ) = A"+ Py A" fpdtp, = n(‘l—‘ﬂw);

and k=1

m~1

Q) =g It gt g = [ (- 3)

k=1

On umiform symmeirisation of analyltic malrin functions 3

qe polynomials with real coefficients. If (p, ¢) is a pair of polynomials
of such a form, having all the roots 1, and ; real and satisfying the
inequalities

(3.1) ‘ A< Zlglz }“’z "<}‘m—1<}“;1—1<}'m7

then we shall say that (p, ¢) is a separating pair of polynomials. If all

the inequalities in (3.1) are strong, then we shall say that the pair (p, g}
is strongly separating. For instance, if all the roots 2, of p are real and

02

Separating pairs of polynomials were applied for obtaining “a priori
estimates” of solutioms of hyperbolic partial differental equations by
Leray and Garding. Here we devellop a method of symmetrization of
some special matrices (see Lemma 3.2), which in fact is contained in ¢ priors
estimations by separating polynomials.

If (p, g) is a separating pair of polynomials and p has degree o, then
there is exactly one square matrix K of degree m--1, such that

/ 1 1 \
CE Nk — pWe(H—pMa()
N il I R /

for every A e C, where {, ) stands for the scalar product in €™, and there
is exactly one square matrix § of degree m such that

<[] s]

As easy to see, K is real and skew-adjoint, so that § is real and symmetric.
Moreover, S is the unique square matrix of degree m, such that

1
(3.2) (12)<S A —pWgB—pR) g
im— Am— /

for every AeC. We shall denote this matrix by §(», ¢)- Let

1
simple, then the pair (p,—@) is strongly separating.

S Sy coo Spmea
s =70 o
Sm—l,o Sm—l,l b Sm—-l,m~1

Then
(33) Sm—l,a- = Sv,m—l = {, for v = 0} 17 RS m_'27 Sm—-l,m—l =1.
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For any real A let

(3.4) o
0 1

be a matrix with m rows and m-+1 columns and let

0 0 0 0
1 0 0 0
U, =12 1 o 0
2o 1 0

im-—l im—2 ;m—s 1
be a matrix with m-+1 rows and m columns:. We then have
(3.5) (1) Un(A) = B,

the unit matrix of degree m.

LemMA 3.1. Let (p, q) be a separating pair of polynomials and m = degree
of p. Let 2y be real and

PR =A=2)p@), G =@A—-h)g(d), ieC.

Then
8,8 = Th{2)8®; )T (%)

and consequently, by (3.5),

S(ﬁ} q) = UTn(ﬂu)S(f?; &) Um”'o)'

Proof. By (3.2), for any A C we have

/ 17 / R \
[N ) A A A

8 S UE = M_Zolz S, @) : A

\ am am ' \ i’nL-l }"‘m -1 /

/ 1 1 \

A A

= S(,p’ Q) Tm(z'ﬁ) : ) -Tm,(]'o) : "

\ 2,7" /:Lm /

On umiform symmeirication of analytic matric functions 75

Levma 3.2. Let (p, q) be a separating pair of polynomials and let
P(A) = APy A"+ AP A D Pl

0 1 o - (0] 0
0 0 1 (13 0

Gp) =] . -«
0 0 0 - 0 1

—Py —P1 —P2 " —Pm-2 —Pm

Then the real mairiz S(p, q)G(p) is symmeiric.
m—1
Proof. By (3.3), > Sp_1.,% = ¢(A) and therefore
=0

0 1 \
swoo| § ||
p(4) zm-‘/'

0 1 \
~ sl = p(a (D).
?(4) e /

Consequently, by (3.2)
1 1 \
2 )
S, G ®)) . |
im~1 Lim—l /

L
/ z ; \
=Im \S : s }'
}'m_l .m—l /
| _pn]

1 [1
/1<S(P: ol* f >pu)q(z)
Am—'l

for every A ¢ C, which proves that S(p, 9)G(p) is symmetrie.

LEMMA 3.3. If (p,q) is a sirongly separating pair of polynomials,
then the real symmetric matriz S(p, q) is positive. In particular, if p(4)
m

=N P AT P A D =[] (A—7) has only real and simple

k=1

Im

(2,0

—Tm =0

sm=t

T00t8 Ayy Agy vevy Ay, then

1 0p _
(3.6) det-S(p,%—a—i) - n Uy — A%
1<i<jsm

<
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Proof. The outline of the following reasoning is taken from [1],
m—1 )

Chapter 2, proof of the Lemma 5.2. Let g(1) = [] (A—4;). Then

k=1

(8.7) <K< < < oo <Ay < Ay < Ay
Let
-1
~ PA)
fk(z)=l_lk=2w’, 1eC, k=1,2,...,m.
1=0

Then, by (3.7), we have

m—1

55 gl (%= 43)
‘ e

for very k =1,...,m and

4 = D yara(A),

=1

50 that

P D —p(R)a(d) = 2—2) X plr, ()P
and consequently -

/ 1 1
2 ! <
Swol |’ = D nlmA)P
Am—l Am—l ' fe=1

for every Ae¢C. It follows that
8(p,q) = R*I'R,

‘where
"o T Tt Tymer Y1 O
R=|T0 T " Ty , I'= Vo
Tmo Tma " Tp,m—1_] O Ym,

from which, by (3.8), we see that th itivi
. N e -t .
if wo shall show that positivity of 8(p, ) will be proved,

m(m—1)
(3.9) detR = (—1) °® [] (A= Ay).

1<i<g<sm

On uniform symmetrization of lytic matriz functions 77

The formula (3.6) also follows from (3.9), because if ¢(4) = -}—?%%i)— s
e

1
then y, = for every k =1,2,..., m.

In order to prove (3.9) put

To=1, o= ey, E=1,2,..,m,

I<ry<..vp<m

i __ i __
w=1, = > k.4
1Py <. <y <M
Piperes VpFEE

= ATt

I
ri,m—l—lc = ("—1) T;c

for i =1,...,m, k =0,1,...,m—1. Consequently

k k-1 k-1 :
DMy = (= 2+ 3 (A= D) (A e
i=0 =0

F=0

k E
=D —2V = D (=2 Ty =7
=i

=0
and so
. m—1—k
o = (=1 R g = 2 (=2 gy gy
=0
Therefore
L 7 e apr ][ OV e G e e
2 m—1 H M
R 12 2 ... 4 . o
......... = . 1 )
1 Ay A, ... Amt 11 O

and (3.9) follows from well known formula for Vandermonde’s determinant.

LEMMA 3.4. For every separating pair (p, q) of polynomials the real
symmetric matric S(p, q) is non negative.

Proof. Let m = degree of p. Let A, As, ..., 4, be all the roots of
p(2) and let A, 4, ..., An_sbe all the roots of g(4), labelled in such manner
that

M X< << eee < Ay < ey < A
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and
‘ ’

Aoy = }'m’—l-ll }*;In'-H = Z‘m’+27 HRS) }*;n—l = Ay
For any £k =1,...,m let

p(4) =
75(4) == = ""k,zﬂl
A—2 =
and
m’'—1 ,
]_71 (;"k_}‘v)
Vi =
T (74— 1)
by
Then
(3.10) Ye>0 for k=1,...,m
and

so that, by (3.2),

/ 1 1 A
A A u
Swooly |7 = D nlm(n)?
\ /:Lm—l j’m—l =1

for every 1< C and therefore

(3.11) 8(p,q) = R'I'R,
where
LETUNE T 71 m—1 71 O
Ro=|T0 T ... To,m—1 = Y2
L T T ’ - .
o Ty « + v s "m/m—1 O - Y

It follows from (3.10) and (3.11) that 8(p, q) is non negative.

Lemma 3.5, Let (p,ﬂq) be a strongly separating pair of polynomidls.
If p(A) =(l——lo)p(l)., q(}:) ?(_A——Zo)q(l), where Ay s real, then the
(m—+1)x (m+1) matriz 8(p, q) has rank m.

Prooi. By Lemma 3.1, the rank of §(p, ) is equal to the rank of

8(p, q), which, by Lemma 3.3, is real gymmetric positive matrix of
degree m. ‘ '

wnd zi;tThe matrices B,(4,p). Let A4 be a complex m Xm matrix

P = AVt VT Ly A g

On uniform symmetrization of analytic malrix funciions 9

Pe a polynomial divisible by the minimal polynomial of 4%, i.e. let p be
such that B

p(4*) =0.

Then there is unique square matrix B(4, p, 1) of degree m, which elements
are polynomials in A of degree m’—1, such that

(AE—A"B(4,p,) =B(4,p, )(IE—47) =p() B,

where F is the unit matrix of degree m. We define the matrices B, (4, p),
k=1,...,m, with constant complex elements by the condition that

1 1 1

A A i
B(4,p, )= | B.(4,p)| . » Ba(4, p)] . y-e-s Bu (4, p)
;lm'—l im’~1 im’—l
1

for every 1e¢C. In other words, Bi(4,p) A is the k-th column of
. im’—l
B(A,p, ). Bach of the matrices B,(4, p) has m rows and m’ columns.
LEwyA 4.1. If A is a square matriz of degreem,p (A) = A™ 4 @y A% 71+
+...dad+ta, is a polynomial divisible by the minimal polynomial of
A* and D (L) = (A—2g)p(A), then

Bi(4, ) = By(4, 1) T (%)

for every & =1, ..., m, where T,.(;) is defined by (3.4).
Proof. We have B(4,p,1) = (A—4)B(4, p, 4), so that

1 1 1
-2 A i
B(4,p)|, | =0G—2)B(4,p)] . = By(4, p) Ty (%)
im’ }lm'—l im’

for every AeC.
LEaniA 4.2, If A is a square matriz of degree m, p(1) = A e AT
+ oo+ 4y A+ a, 18 @ polynomial divisible by the minimal polynomial of A* and

0 1 0 0 0
0 0 1 0 0
AP) = o i e
0 0 0 1) 0
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then, for every k =1,...,m,
A*By(4, p) = By(4, p)G().

Proof. For every A eC we have

[+ ]
A
[A* B (4, p)—By(4, p)G()]]
_Zm’—lj
(1 ] A
2 :
:A*Bk(-A;p) . _‘Blc(,-/l!p) ﬂ-’m‘-—l
K A —p(3)
0 1
: i
=By(4,p)], —(E—~A")B,(4, p)
() At
0
= p(A) B4, p) 0 —(the %-th column of p(1)E).
_ L ' '
o

Because B,(4, p) 0 iy the column of the coefficients close to A™~! in

1
the k-th column of the matrix B(4, p, 1) = ™~ E+..., we have

0
B,(4, ) 0 = the %-th column of 1.
1
It follows that for every 1¢C we have
1
[4” By(4, )~ B,(4, p)G(p)]| *

Z'm’— 1

=0,

5. The.matrices H,(4) and H(4). Let A be a square matrix of
degree m with complex elements, having purely diagonal and real canon-

ical Jordan form. Let p(4) = A™ + a,,_, 7" ~'+...a,A--a, be the minimal
. ‘ 1 op(a
polynomial of A and let g(2) =7n7——%)—. Becauge the canonical

Jordan form of A4 is purely diagonal, p(A) has only simple roots and

icm
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therefore, according to Lemma 3.3, the real symetric matrix 8(p,q)
is positive and hence inversible. For every &k =1, ..., m we put

Hy(4) = By(4,p)87(p, ) BL(4, p).

Then Hy(4), k=1,...,m, are hermitean non negative matrices of
degree m.
We put

H(A) =H (A)+H,(A)+...+H, (4).

LmvvA 5.1 inf H(4)> 1. '

q P 0
Proof. Let ¢ = 0 e =101,y = 0 be columns with m ele-
0 0 1
0
ments and let e, = 0 be column with ' elements. Then, by
1

(3.3) we have
B(P, Q) bw> =1
and, moreover, for any k =1,..., m we have
By(A, p)ew = e,

because each of two sides of this equality is the column of the cqetﬁieients
cloge to 4™~ in the kth column of the matrix B(4,p,2) = A" 1H+...
Forany &k =1, ..., m put
Oy = 87\ (0, ) Bi(4, D).
&y
Then, for any o =| :

:| «C™ by Schwartz’s inequality we have
wm

k=1

(H(A)s, a5 |of* = (5‘:‘ S, 00, G0))- (Y 5@, Dubo 316
k=1

>| 380, 00, st =] S (@, Byl A, D)o

k=1
= }f: (=, mkek>|2 = |al
=1

which proves the lemma.
LEMMA 5.2, The matriv H(A)A is hermitean.
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Proof. By Lemma 4.2 we have
Hy(A)A = B,(A4,p)87 (p, q)By(4,p)4
= By(4,p)87(p, )¢ () By (4, p)

and, because, by Lemma 3.2, the matrix 8~}(p, ¢)&*(p) is real and sym-
metrie, it folows that Hy(4)4 is hermitean for every & =1,..., m.

6. Proof of the theorem from Section 1. Under assumptions of theorem
from Section 1, for any &e M put

H(8) = H(4(8),

. where the hermitean positive matrix H (A (&) is defined as in Section
5. Then it follows from Lemmas 5.1 and 5.2, that |[H~* (&) = (in;EH (,5))“1 <1
and that H(£) A (&) is hermitean for every £« M. Therefore our theorem
will be proved, if we shall show that the function

_ m(§) = [|H (&)l = sup H (&), £eM,
is locally bounded on M. For any AeC and £« M put

m’

P2, &) = (A2+2b(6) 2+ (&) [ | (2~ 4(8),
lo=al

Py &) = (A+0(8) [ ] (2 —2.(8).
k=1
Then p(1, £) and p’(1, £) are polynomials in 4, the coefficients of which,
by 1.?,ema,1'k 1 from Section 2, are real functions of £, analytic in M. The
minimal polynomial of the matrix 4 (&) is

p(a, &) it
p'(4,8) if

From the construction presented in Sections 3-5 it is clear, that H (&) is
an analytic function of £ on the set . ,» Which, as we know from Remark
1 from Section 2, is a sum of disjoint analytic submanifolds of M. Similary,
H (¢) is an analytic function of on the set M\N, which is an open subset
of M. Therefore m (&)is locally bounded on ¥, and it is also locally bounded

on MN\N. It remains to prove that m(&) is locally bounded in & neigh-
bourhood of N.

For any £e M, 2¢C and & =1,...,m put

EeM\N,
EelN.

1 a
A =
q( ’E) m’+2 al?(%ﬂ?

SO =8(p(, 8,9, 8),  Bul&) = By(4(8),p(-, 8).

icm
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Then, by Lemmas 3.3 and 3.4, §(£) is a real symmetric square matrix
of degree m’+2, which is non negative if £ ¢ ¥ and positive if £e M\N.
For any &< M let S*(£) be the symmetric non negative square root of
8(&). I &e M\N, then the matrices S(£) and S*(&) are positive, and
then we denote its inverse matrices by 87!(&) and S7*(£). For any
Ee MNN and k =1, ..., m put

Dy (&) = 87H(&) BE(8),

which is a matrix which m' 42 rows and m columns. We then have
m
H(g) = D Di(&)D(8)
]

and therefore the theorem from Section 1 will be proved, if we shall
show that, for any k¥ =1, ..., m, D,(&) is locally bounded in a neigh-
bourhood of N. In that order consider some aunxiliary matrix-valued
functions defined on N. Namely, for any 5 ¢ N and 1¢C put

’ A?
g, = 92, 7)

‘m) So(’?)=S(P ('777)74('777))7

B(n) = B[4 (n), p'(-, )}

Then, by Lemma 3.3, for any 5 e N, S,(n) is a real symmetric positive
matrix of degree m’ +1, so that, for any neN and k¥ =1, ..., m we may
define

Dylm) = 8Hm) U a (— b () 857 () BE ().
According to Lemmas 3.1 and 4.1, for 5 « N and ¥ =1, ..., m, we have
8(n) = T::.’+1("b("l))so(n)Tm’+1(_b(n))
and
: By(n) = Bi(n) Trrsa(— b (1),
so that, by (3.5),
8t Dy(n) = 8(0) U1 (—b(m) 857 () BY (m)
= Ty (— b)) 8o (1) T2 — B(0)) U sa [ — 0 () 857 () BE ()
= Tresa(— () BY () = Bi(n).
It follows that
(6.1)  Dy(&) = Dyln)+ 878 [Br(&) — By (n) +(8* () — 8(£)) Da(m)]

for every k =1,...,m, £ M\N and 5 <N. This equality is basic for
our proof of local boundedness of Dy (&) in a neighbourhood of ¥. Namely,
from analicity of A4 (&) and from analicity of the coefficients of polyno-
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mials p(1, &) and g(4, &) it follows that the matrix-valued functions
£ 8(&) and & — By(&) are analytic in M. Similary, the matrix-valued
functions 5 — Dy, (n) are analytic on N. Let £, « N_&nd let T/‘E0 be an open
bounded neighbourhood of & in M, such that Ve = M. Then there is
a constant .# such that

1Dl <4 and  |B(&)—By(n)| < Ad(¢, n)

for every ne N N Veaa e 1750 and ¥ =1,...,m, || | being the norm of
corresponding matrix as operator of C™ into C™*? and d(£,7) is the
distance from & to 7. Therefore, by (6. 1), for £¢ V; \N and 5 ¢ Veo NN
we have ' .

(6.2) IDL(EN < A+ i (&) H(A(E, m)+ 184(8) — SH)),

where g,(£) >0 is the smaller characteric root of the real symmetric
positive matrix S(£), [|D;(£)|| is the norm of D, (&) as operator of €™ into
O™+ and ||S¥(£) — 8% (7)] is the norm of 8*(&)— 8%(#) as operator of C™*2
into itself.

Let p,(£), k=1, ..., m' 1, be the other characteristic roots of §(&).
Then, for &e¢V,\N, by Lemma 3.3,

det §(£) det S ()
1 (8) o (£) e g1 (8) 7 (sup S (£)+

= (supS(g))—M’—l(m' +g)m=2

Ii<jsm’ -2

fol8) =

(2:(&) = 4D,

where lk(.f), k=1,...,m, are roots of det(AH— A (£)), distinquished in
factorisation (1. 1) apd A1 (€) and 4,,.,(€) are roots of 1>+ 2b(&)A+c(£).
Thus, from assumptions 1° and 2° it follows that there is a constant ¢ > 0 ,
such that

Cu(8) > & (&, )

for every £« Veo\N: 8o that, by (6.2),

IDx(EM| < A +MC(L+d71(E, N) inf [8%(&)— S ()])

neVEOAN

%)r every 551750\.1\7 . Therefore in order to prove the boundedness of
k(f)im Ve W It remains to show that the matrix-valued function
& — BY(£) is lipachitzian in Ve, i.e. that there is a constant %, such that

184(&) — 8 ()| < Za (&, )

icm
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for every & and 5 in V. Since, by Lemma 3.5, the rank of real symmetrio
non negative matrix S(£) is equal m’'+-2, when & e M\N and is equal
m'+1, when & ¢, it follows that if the characteristic roots of §(&) are
1ol E) < py (6) <ot < ey (), then there is a positive constant r, such
that

wm(Ey=6r for k=1,...,m+1 and £eV,
while
=0 if eV, NN
#o(8) L
>0 if feV \N.
Let

Vlfo = {&: e V§07 Bo(£) > 213,
V’E:J = {&: Ee Ve, m(8) <31},
R = sup s (8): €€ V-

Let, for any g ¢ (0, R], ¥, be the rectangular contour in complex plane
with edges p—14, R+1—4, R4+1-+14,0-+4¢ Then we have

1
23 — i _ -1
S(f)«~——2m,qu (eB— 8 (&) de,
when £e V;o and T
1 1
3 gt - — - R — —
SHE) = (8 5 .!glu(zE 8(&) 1dz+27ti?fz*(z]f}' 8(&) " de

when £ ¢ 7, where ;}(£) is non negative square roob of po(£) and larg2?)
< g under the integrals. From the first of these formulas we see that

S%(£) depends analytically on £ in 7}0. In the second formula the integrals
represent matrix-valued funections of ¢, amalytic in V. Moreover, for
e V’g’o , o(£) is a simple characteristic root of the matrix S(§), which
depends analytically on & Therefore u,(£) is an analytic function of
£ inﬁ, $0 that u}(£) is a lipschitzian function of £ in ¥y and consequently
the matrix-valued function & §%(#) is lipschitzian in V. Because
Ve, = Vi U Vi, it follows that & — 8*(¢) is a lipschitzian function in

0

Veu , which completes the proof.
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Generalized invariant subspaces for linear operators*

by
EBERHARD GERLACH (Vancouver, B. C.)

Summary. The Banach space {¥, || {|} is said to be an invariant Banach sub-
space for the bounded linear operator 4 on {X, .|} if ¥ is continuously imbedded in
X and AY < Y. It is shown that every bounded linear operator 4 on X has a non-
trivial invariant Hilbert subspace 5 which is nuclearly imbedded in X and on which
A | is apositive multiple of a simple unilateral shift. If 4 js guasinilpotent then it has
invariant Banach subspaces ¥ on which the restricted operator A |y is compact.
These invariant spaces may in addition be chosen to be Hilbert spaces with nuclear
jmbedding into X. As a consequence, by the theory of interpolation between Hilbert
spaces, every quasinilpotent operator A with a cyelic vector on a Hilbert space 3¢, has
nentrivial invariant Hilbert subspaces #; (0 < a < 1) “arbitrarily close” to 3, which
are compactly imbedded in #, and on which A |x_ is quasinilpotent and compact.

1. The purpose of this note is to introduce the notion of invariant
Banach or Hilbert subspace for a bounded linear operator on a Banach
space. This notion is intermediate to the usual notion of invariant subspace
(closed in the original norm) and that of an invariant linear manifold.
Tts study seems justified in view of the fact that the problém of existence
of (ordinary) invariant subspaces for arbitrary operators is still unsolved.
The present paper contains a general existence theorem for invariant
Hilbert subspaces and some further results for operators of the class @).

DerINrrIoNs. Let {X, ||} be a separable, complex Banach space and
A @ bounded linear operator on X. The Banach space {¥,| [} is said
to be a Banach subspace of X if ¥ c X and the injection of ¥ into X
is continuous. If in addition AY = ¥ then Y is called an invariant Banach
subspace for A. (In that case 4|y is continuous in the norm [.|, by the
closed graph theorem.) If ¥ is not dense in X and is invariant under
A, then the closure of ¥ in X is an ordinary invariant subspace for A.
If the {¥, | ||} above is a Hilbert space &# = ¥, it is called an invariant
Hilbert subspace.
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