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Generalized invariant subspaces for linear operators*

by
EBERHARD GERLACH (Vancouver, B. C.)

Summary. The Banach space {¥, || {|} is said to be an invariant Banach sub-
space for the bounded linear operator 4 on {X, .|} if ¥ is continuously imbedded in
X and AY < Y. It is shown that every bounded linear operator 4 on X has a non-
trivial invariant Hilbert subspace 5 which is nuclearly imbedded in X and on which
A | is apositive multiple of a simple unilateral shift. If 4 js guasinilpotent then it has
invariant Banach subspaces ¥ on which the restricted operator A |y is compact.
These invariant spaces may in addition be chosen to be Hilbert spaces with nuclear
jmbedding into X. As a consequence, by the theory of interpolation between Hilbert
spaces, every quasinilpotent operator A with a cyelic vector on a Hilbert space 3¢, has
nentrivial invariant Hilbert subspaces #; (0 < a < 1) “arbitrarily close” to 3, which
are compactly imbedded in #, and on which A |x_ is quasinilpotent and compact.

1. The purpose of this note is to introduce the notion of invariant
Banach or Hilbert subspace for a bounded linear operator on a Banach
space. This notion is intermediate to the usual notion of invariant subspace
(closed in the original norm) and that of an invariant linear manifold.
Tts study seems justified in view of the fact that the problém of existence
of (ordinary) invariant subspaces for arbitrary operators is still unsolved.
The present paper contains a general existence theorem for invariant
Hilbert subspaces and some further results for operators of the class @).

DerINrrIoNs. Let {X, ||} be a separable, complex Banach space and
A @ bounded linear operator on X. The Banach space {¥,| [} is said
to be a Banach subspace of X if ¥ c X and the injection of ¥ into X
is continuous. If in addition AY = ¥ then Y is called an invariant Banach
subspace for A. (In that case 4|y is continuous in the norm [.|, by the
closed graph theorem.) If ¥ is not dense in X and is invariant under
A, then the closure of ¥ in X is an ordinary invariant subspace for A.
If the {¥, | ||} above is a Hilbert space &# = ¥, it is called an invariant
Hilbert subspace.

(*) Research supported in part by the National Research Council of Canada,
Operating Grant A 3014. .
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the University of Edinburgh for the generous hospitality extended to him, and to
T. A. Gillespie for valuable criticism and comments.
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2. DerNiTIoNs. The vector @ e X is called eyclic for A « B(X) if
{4*s: n =0,1,2, ...} spans a dense subspace of X. The operator 4 « B(X)
is said to belong to the class (@) if it has a cyclie vector # for which

(1) lim 4% = 0.
N—>00

By a. theorem of C. Apostol [1] and T. A. Gillespie [3], an operator
A of class (@) has non-trivial invariant subspaces if there exists a non-zero
compact operator which is uniform limit of polynomials in 4. Withoﬁt
any additional condition, we have the following result for the class (@).

TEEOREM 1. Let A ¢ B(X) be of class (Q). Then A has an moariant
Banach subspace {Y, || |} which is dense in X. The injection of X into
X is compact, and Aly is compact. If A has no non-zero eigenvalues in X s
then Aly is quasi-nilpotent on Y.

Proof. We adapt a similar construction found in [2]. Let  be a cyclic
vector for A satisfying (1). We may suppose [4] <1 and |2] = 1. Let
By = (max{|4™#]"": n >k}’ Then [d*s| < 8, and

@) ‘ Lim (B..1/8) = 0.
koo

Set @, =f7¥4%s (k =0,1,2,...) and let K be the cloged absolutely
convex hull of the o’s in X. K is contained in the unit ball of X, and thus
Y ={yeX: Jy|< oo} with the norm Iyl =inf{i: i7'y ¢ K} iz an in-
variant Banach subspace for A. (Completeness of {¥, | |} follows from
the closedness of X in X.) Since |a;| <} — 0, the set & is compact in
X, and therefore ¥ is compactly imbedded in X. To see that 4|, is compact,
observe da; = gyt AFFp = (Biot1/Bx) 41, hence || day)| < (Brsr/[Br). By (2),
{da: &k =0,1,2,..} i totally bounded, and its cloged absolutely
convex hull in {¥, || |} contains the image AK of the unit ball K of Y;
hence{A] v is compact. Finally, any eigenvalue of 4|, is also an eigenvalue
o.f 4 in X, and any non-zero Doint in the spectrum of A|, must be an
eigenvalue.' Thus the absence of non-zero eigenvalues of 4 implies that
Aly is quasi-nilpotent.

) .Rema.‘rk. Sinee A|y is compaect, it hag “sufficiently many” non-
trivial (ordinary) invariant subspaces in ¥; unfortunately every one of
these might happen to be dense in X, .

. 3. When one wants to make use of an invariant Banach subspace
: for an operator 4 « B(X), it will be convenient if Y is actually a FHil-
ert space. We e.a,n proyx_a @ general existence theorem for invariant Hilbert
subspsees, a{md dTnbauddﬂ;lo:nl it turns out that the space Y of Theorem 1
may be replaced by a Hilbert space which has the same i i
respect to A as the ¥ above. ' propertios with

I {a,:n=0,1 »2,...} i8 a sequence of vectors in X satisfying

icm
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2 1@n] < o0, then 8{&,} = Y'&,a, defines a nuclear map §: I — X, and
its image SI* = ", endowed with the norm || = inf{|éle : 8& =B,
& e’} is a Hilbert subspace with nuclear imbedding in X.

THEOREM 2. Every A « B(X) has an tnwariant Hilbert subspace A
with nuclear imbedding into X. If A has a cyclic vecior, # can be chosen
to be dense in X and so that A|, is a positive multiple of a unilateral shift.

Proof. Without loss of generality assume }d| = g< 1, and take
any @, 0 = 4 ¢« X. Then form the Hilbert subspace ¢ as described above,
with a, = A"z; it is clearly invariant for 4. If « is cyclic for 4, it is also
cyclic for 4|,; we may suppose ||4|,]|< 1. By a result of B. Sz.-Nagy
and C. Foiag [5], 4|, has among its quasi-affine transformations a uni-
lateral shift ¥, but V' may be realized as the restriction of 4 to an ap-
propriate Hilbert subspace # of o which is invariant for 4 and dense
in & (and in X).

THEOREM 3. Let A « B(X) be of class (Q). Then there exists an invariant
Hilbert subspace # of A with nuclear imbedding into X and such that
Al is compact. If A has no non-zero eigenvalues on X, then A|, is quasi-
wilpotent on #.

Proof. We imitate the proof of Theorem 1. Let z be cyclic for A4,
satisfying (1). Suppose |4|<1, || =1 and define £, = (max{|4™z|/":
% >k} as before. Choose any ¢ in 0 < ¢ << 1 and set f;%4% = a;. Then
lag] < 5% and 3'|ay| < oo by (2). Define " as above and take # = .
Clearly A# = #. We show that 4|, is compact. First note that § is
an isometric isomorphism of F O N(S) = ¢ (N(8) the nullspace of 8)
onto . Hence [SEf = Y& for £ = {£}c¥. Let V be the weighted
shift operator in ¥ given by npy1 = (Brer/Be) & i V{&} = {m}. By (2),
V is compact. Now let u; converge to % weakly in 5#; we show that Au;
converges to Aw strongly in . Since Aay = (B../Pr) 0x1, We have
Al = 8VJSTY where 8 denotes the inverse of Sly: ¢ - # and J
‘the injection of ¥ into 2. Let @;, ®y € ¢ so that Sw; = w;, Sz, = u; then
@; — x, weakly. As 89 and J are isometries, we see that [l A u; —Aul|
< |Va;—Vaylz — 0 because V is compact. Thus 4|, is compact. Quasi-
nilpotency of 4], n the absence of non-zero eigenvalues of A holds as
before.

4. If X = s, is a Hilbert space and # = 2, is constructed as
above for 4 e B(o#,) of class (Q), we can strengthen Theorem 3 as follows.
Let J denote the injection of s, into 4, and let H be the unique partial
isometry of s, onto s, which is given by

(u,v)y = (u, HIHv); for all u e, veH,.
Since s, is dense in #,, H is injective. Let {#, = H°#;: 0 < a <1}
with norms |#|, = |(JH) x|, be the Hilbert scale interpolating between
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#, and #,. By general interpolation theory (cf. [4] for instance) it fol-
lows from the compactness of the imbedding J: o) < &, and from
Theorem 3 that, for every « < 10, 1], 1° #, is compactly imbedded in 27,,
2°TH, = #,, and 3° Ty 18 compact in the norm |.|,. We can formulate
the following.

THEOREM 4. Let o be a Hilbert space and A e B{s#) of class (Q). Then
there exist Hilbert subspaces A~ for A with compact imbedding into #,
which can be chosen “arbitrarily close” to H#, and so that A|, is compact.

With regard to ordinary invariant subspaces of 4 in 22, we propose
the following.

ProsieM. Let # and A « B(#) be as in Theorem 4. Find some A
as indicated there and o mazimal chain of invariant subspaces (or ai least
one invariant subspace) for the compact Al , none of which is dense in #°.

Added in proof. Some of the results of this paper have been announced in
“Sous-espaces hilbertiens invariants pour un opérateur linéaire”, C. R. Acad. Seci.
Paris, Sér. A-B 272 (1971), pp. 251-253.
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On reflexivity and summability

by
ALBERT BAERNSTEIN II (Syracuse, N. Y.)

Abstract. We construct a reflexive Banach space containing a weak null
sequence such that no subsequence has strongly convergent (C, 1) means.

Let B be a Banach space. We shall say that E has property (BS)
if each bounded sequence in F possesses a subsequence whose (C,1)
means converge strongly.

Banach and Saks [1] proved that L,(0,1) and I, have (BS) for
1< p < oo, while Schreier [7] showed that C[0,1] does not. Kakutani
[3] proved that every uniformly convex space has (BS). Nishiura and
‘Waterman proved that every (BS) space is reflexive, and showed, in
the other direction, that for each bounded sequence in a reflexive space
there is some positive regular summability method T and a subsequence
whose T-means converge strongly. This led Sakai [6] to ask if there exist
reflexive spaces which are not (BS). Klee [4] exhibited certain non-(BS)
spaces, but Waterman, Ito, Barber, and Ratti [8] showed later that
these are also non-reflexive.

The following construction provides an affirmative answer to Sakai’s
question. Denote by y a finite non-empty set of positive integers such
that the cardinality of y is < the smallest element of y. Let I' be the set
of all such y. Write y < »' if the largest element of y is < the smallest
of y'. For y « I' and @ = {w;}2, a sequence of real numbers, define

a(@,9) = D l@l.
Tey
For {y;} a sequence in I" with y; < ypy,(k>1) define

]

(1) o(@, i) = o, m)"

=1
and define
HWH = supa(m, {Yk}):

where the sup is taken over all such sequences {y}.
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