icm

 \mathcal{H}_0 and \mathcal{H}_1 . By general interpolation theory (cf. [4] for instance) it follows from the compactness of the imbedding $J\colon \mathcal{H}_1\subset \mathcal{H}_0$ and from Theorem 3 that, for every $a\in]0,1]$, $1^\circ\,\mathcal{H}_a$ is compactly imbedded in \mathcal{H}_0 , $2^\circ\,T\mathcal{H}_a\subset \mathcal{H}_a$, and $3^\circ\,T|_{\mathcal{H}_a}$ is compact in the norm $|.|_a$. We can formulate the following.

THEOREM 4. Let \mathscr{H} be a Hilbert space and $A \in B(\mathscr{H})$ of class (Q). Then there exist Hilbert subspaces \mathscr{H} for A with compact imbedding into \mathscr{H} , which can be chosen "arbitrarily close" to \mathscr{H} , and so that $A|_{\mathscr{H}}$ is compact.

With regard to ordinary invariant subspaces of A in $\mathscr{H},$ we propose the following.

PROBLEM. Let \mathcal{H} and $A \in B(\mathcal{H})$ be as in Theorem 4. Find some \mathcal{K} as indicated there and a maximal chain of invariant subspaces (or at least one invariant subspace) for the compact $A|_{\mathcal{K}}$, none of which is dense in \mathcal{H} .

Added in proof. Some of the results of this paper have been announced in "Sous-espaces hilbertiens invariants pour un opérateur linéaire", C. R. Acad. Sci. Paris, Sér. A-B 272 (1971), pp. 251-253.

References

- C. Apostol, A theorem on invariant subspaces. Bull. Acad. Sci. Polon. Sci., Sér. sci. math. astr. phys. 16 (1968), pp. 181-183.
- [2] F. F. Bonsall. Operators that act compactly on an algebra of operators, Bull. London Math. Soc. 1 (1969), pp. 163-170.
- [3] T. A. Gillespie. An invariant subspace theorem of J. Feldman, Pacific J. Math. 26 (1968), pp. 67-72.
- [4] С. Г. Крейн; Ю. И. Петунин. Шкалы банаховых пространств. Успехи мат. наук 21 (1966), № 2 (128), pp. 89-168.
- [5] B. Sz.-Nagy, C. Foiaș. Vecteurs cycliques et quasi-affinités, Studia Math. 31 (1968), pp. 35-42.

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF EDINBURGH.

Received January 27, 1971 (290)

STUDIA MATHEMATICA T. XLII. (1972)

On reflexivity and summability

b

ALBERT BAERNSTEIN II (Syracuse, N. Y.)

Abstract. We construct a reflexive Banach space containing a weak null sequence such that no subsequence has strongly convergent (C, 1) means.

Let E be a Banach space. We shall say that E has property (BS) if each bounded sequence in E possesses a subsequence whose (C,1) means converge strongly.

Banach and Saks [1] proved that $L_p(0,1)$ and l_p have (BS) for 1 , while Schreier [7] showed that <math>C[0,1] does not. Kakutani [3] proved that every uniformly convex space has (BS). Nishiura and Waterman proved that every (BS) space is reflexive, and showed, in the other direction, that for each bounded sequence in a reflexive space there is some positive regular summability method T and a subsequence whose T-means converge strongly. This led Sakai [6] to ask if there exist reflexive spaces which are not (BS). Klee [4] exhibited certain non-(BS) spaces, but Waterman, Ito, Barber, and Ratti [8] showed later that these are also non-reflexive.

The following construction provides an affirmative answer to Sakai's question. Denote by γ a finite non-empty set of positive integers such that the cardinality of γ is \leq the smallest element of γ . Let Γ be the set of all such γ . Write $\gamma < \gamma'$ if the largest element of γ is < the smallest of γ' . For $\gamma \in \Gamma$ and $x = \{x_i\}_{i=1}^{\infty}$ a sequence of real numbers, define

$$\sigma(x, \gamma) = \sum_{i \in \gamma} |x_i|.$$

For $\{\gamma_k\}$ a sequence in Γ with $\gamma_k < \gamma_{k+1}(k \ge 1)$ define

(1)
$$\sigma(x, \{\gamma_k\}) = \left(\sum_{k=1}^{\infty} \sigma(x, \gamma_k)^2\right)^{1/2}$$

and define

$$||x|| = \sup \sigma(x, \{\gamma_k\}),$$

where the sup is taken over all such sequences $\{\gamma_k\}$.

Let E be the set of all x with norm $||x|| < \infty$. It can be shown in the usual way that E is a Banach space. Let $e_n(n=1,2,\ldots)$ be the sequence with $(e_n)_i=1$ for i=n, $(e_n)_i=0$ for $i\neq n$. Then $||e_n||=1$. We claim that

(2) $\{e_n\}$ is a boundedly complete shrinking basis for E.

If we assume (2) then, by a theorem of James [2, p. 71], E is reflexive. Moreover, $\{e_n\}$ is a weak null sequence, since it is a shrinking basis. Let r be a strictly increasing function from the positive integers into themselves. If the strong limit of

$$s_n = n^{-1} \sum_{i=1}^n e_{r(i)}$$

exists, it must be zero. This is impossible, since the choice $\gamma = \{r(n+1), r(n+2), \ldots, r(2n)\}$ shows that $||s_{2n}|| > 1/2$ for all n. We conclude that E does not have property (BS).

Proof of (2). We first show that $\{e_n\}$ is a (Schauder) basis. For $x \in E$ write $T^n x = x - \sum_{i=1}^n x_i e_i$. If $\{e_n\}$ is not a basis there exists $x \in E$ with $\|T^m x\| > 1$ for all n. In particular, $\|x\| > 1$, so we can find $\gamma_1 < \gamma_2 < \ldots < \gamma_{p(1)}$ in Γ with

$$\sum_{k=1}^{p(1)}\sigma(x,\gamma_k)^2>1.$$

Let m be larger than the largest element of $\gamma_{p(1)}$. Since $||T^mx|| > 1$, we can find $\gamma_{p(1)+1} < \gamma_{p(1)+2} < \ldots < \gamma_{p(2)}$ with $\gamma_{p(1)} < \gamma_{p(1)+1}$ and

$$\sum_{k=p(1)+1}^{p(2)} \sigma(x,\gamma_k)^2 = \sum_{k=p(1)+1}^{p(2)} \sigma(T^m x,\gamma_k)^2 > 1$$
 .

Hence

$$||x||^2 \geqslant \sum_{k=1}^{x(2)} \sigma(x, \gamma_k)^2 > 2.$$

Continuing this procedure, we deduce $||x|| = \infty$.

Assume next that $x = \{x_i\}_{i=1}^{\infty}$ is a real sequence with

$$\sup_{n} \left\| \sum_{i=1}^{n} x_{i} e_{i} \right\| < \infty.$$

An easy argument shows that $x \in E$. Hence

$$\sum_{i=1}^{\infty} x_i e_i = x,$$

since $\{e_n\}$ is a basis. In particular, the series converges. Thus $\{e_n\}$ is boundedly complete.

It remains to be shown that $\{e_n\}$ is a shrinking basis. This means that

(3)
$$\sup_{\|x\| \le 1} \left| u \left(\sum_{i=1}^{\infty} x_i e_i \right) \right| \to 0 \quad (n \to \infty)$$

for each $u \in E^*$. Assume that (3) is false. Then there exists $\delta > 0$, a strictly increasing sequence $\{p(m)\}_{m=1}^{\infty}$ of positive integers with p(1) = 1, and a sequence $\{x^{(m)}\}$ in E such that $||x^{(m)}|| \leq 1$, $u(x^{(m)}) \geq \delta$ and $x_i^{(m)} = 0$ unless $p(m) \leq i < p(m+1)$. Put Q(0) = 1, and then define

$$Q(n) = Q(n-1) + p(Q(n-1))$$
 $(n = 1, 2, ...).$

Define

$$w^{(n)} = \frac{1}{n} \frac{1}{Q(n) - Q(n-1)} \sum_{m=Q(n-1)}^{Q(n)-1} x^{(m)}$$

and let x be the sequence defined by

$$x_i = w_i^{(n)} \quad \left(p \left(Q \left(n - 1 \right) \right) \leqslant i$$

Our proof is complete if we can show that $x \in E$, for then $x = \sum_{n=1}^{\infty} w^{(n)}$, with convergence in E, and this is incompatible with $u(w^{(n)}) \ge n^{-1} \delta$.

Let $\{\gamma_k\}$ be a sequence as in (1). For $n=1,2,\ldots$ let

 $A(n) = \{k : \text{ smallest element of } \gamma_k \text{ is in } [p(Q(n-1)), p(Q(n))]\}$ and let $\mu(n)$ be the largest element of A(n). Since $\sigma(x, \gamma_k) = \sigma(w^{(n)}, \gamma_k)$ for $k \in A(n), k < \mu(n)$, we have

$$(4) \qquad \qquad \sum_{k \in \mathcal{A}(n)} \sigma(x, \gamma_k)^2 \leqslant \|w^{(n)}\|^2 + \sigma(x, \gamma_{\mu(n)})^2.$$

Now $||w^{(n)}|| \leq n^{-1}$. To estimate the other term on the right, write $\gamma_{\mu(n)} = \gamma' \cup \gamma''$, where $\gamma' = \gamma \cap (0, p(Q(n))), \gamma = \gamma'' - \gamma'$. Then $\sigma(x, \gamma') = \sigma(w^{(n)}, \gamma') \leq n^{-1}$. Moreover, $\gamma_{\mu(n)} \in \Gamma$, so $\sigma(x, \gamma'')$ is the sum of less than p(Q(n)) terms, each of which has the form $aN^{-1}[Q(N) - Q(N-1)]^{-1}$, where $0 \leq a \leq 1$ and $N \geq n+1$. Since Q(N) - Q(N-1) = p(Q(N-1)), and p is increasing, each term must be less than $n^{-1}[p(Q(n))]^{-1}$, hence $\sigma(x, \gamma'') < n^{-1}$, hence

$$\sigma(x, \gamma_{\mu(n)})^2 = [\sigma(x, \gamma') + \sigma(x, \gamma'')]^2 < 4n^{-2}$$

hence the sum in (4) is $< 5n^{-2}$. Thus

$$\sigma(x, \{\gamma_k\})^2 = \sum_{n=1}^{\infty} \sum_{k \in \mathcal{A}(n)} \sigma(x, \gamma_k)^2$$

has a bound independent of $\{\gamma_k\}$, and thus $x \in E$.

References

- [1] S, Banach et S. Saks, Sur convergence forte dans les champs L^p , Studia Math. 2 (1930), pp. 51-57.
- [2] M. M. Day, Normed Linear Spaces, Berlin 1958.
- [3] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), pp. 188-193.
- [4] V. Klee, Summability in l(p₁, p₂,...) spaces, Studia Math. 25 (1965), pp. 277-280.
- [5] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), pp. 53-57.
- 6] S. Sakai, Review of [5], Math. Reviews 27 (1964), p. 974.
- J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), pp. 58-62.
- [8] D. Waterman, T. Ito, F. Barber, and J. Ratti, Reflexivity and summability: the Nakano l(v_i) spaces, Studia Math. 33 (1969), pp. 141-146.

SYRACUSE UNIVERSITY

Received February 5, 1971

(306)

About the space $\cap l_p$, p > 0.

by

L. WAELBROECK (Brussels)

Abstract. We give a few properties of the space of sequences (a_n) such that $\sum |a_n|^p$ converges for all p>0. The fact that the algebra of continuous linear transformations of this space has a natural, locally psudo-convex, locally multiplicatively convex, Fréchet topology is rather unexpected. This space also provides a negative answer to a question of W. Zelazko.

 l_{+0} is the space of sequences $(a_n)_{n\in\mathbb{N}}$ such that $\sum |a_n|^p = \nu_p(a)$ is finite for all positive p, with the Fréchet locally pseudo-convex topology determined by the pseudo norms ν_p . The reader may find the following observations about this space amusing.

The elements of l_{+0} are the sequences whose decreasing rearrangements belong to the space s of rapidly decreasing sequence. If we equip s with the usual topology determined by the norms $\sup n^k |a_n|$, the identity mapping $s \to l_{+0}$ is continuous. Permutations of N induce on l_{+0} an equicontinuous family of linear transformations. A translation invariant topology \mathcal{T} , on l_{+0} is weaker than the given one if it induces on s a weaker topology than its usual one, and if permutations of N induce on l_{+0} a \mathcal{T}_1 -equicontinuous system of transformations at the origin.

These facts are either trivial, well known, or follow from the observation that $|a'_n| < \varepsilon n^{-1/p}$ if (a'_n) is the decreasing rearrangement of (a_n) and $\sum |a_n|^p < \varepsilon^p$.

Let $T: l_{+0} \to l_{+0}$ be a continuous linear transformation. Let B_p be the set of sequences $(a_n) \in l_{+0}$ such that $r_p((a_n)) \leq 1$. Then B_p is closed, absolutely p-convex, and a neighbourhood of the origin. $T(B_p)$ is then also a closed, absolutely p-convex neighbourhood of the origin in l_{+0} . Being a neighbourhood of the origin, it contains εB_p for some $\varepsilon > 0$, p' > 0. Further, the closed, absolutely p-convex hull of B_p is B_p when p' < p, so that $TB_p \supseteq \varepsilon B_p$.

In other words, T extends to a continuous linear transformation of l_p , for all p, $0 . We can define <math>\tilde{r}_p(T)$ by

$$\tilde{\nu}_p(T) = \sup \{ \nu_p(Tx) \mid \nu_p(x) \leqslant 1 \}.$$