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%, is a submultiplicative p-morm on Z(l.,). With these p-norms, the

algebra of continuous linear transformations of 1., is in a natural way

a locally pseudo-convex, locally multiplicatively convex Fréchet algebra. -

The following is an observation of S. Rolewicz. W. Zelazko hasg
proved (unpublished) that F is a normed space if B is locally convex
and if there is a topology on & (E), the algebra of continuous linear opera-
tors on B which makes substitution (u,e) —wu(e), Z(E)XE - E con-
tinuous. Zelazko’s result does not extend to the locally pseudo-convex
case, nor even to the locally p-convex case. The space I,, described
above is a locally pseudo-convex counter-example. And the considerations
above apply clearly to the space l, o = Ny ,l, With its obvious Fréchet
topology. An algebra topology is defined in this way on #(l,,,). Substi-
tution is again a confinuous operation Z(l,.¢) Xl,., 1, oo Bub 7,
is locally p-convex and not locally bounded.

The last result is frivial. We have the inclusion {,, < 1;, the identity
%: Uy —1 is continuous. A linear mapping T': I, ~1,, is continuous
if 40T: 1, —1, is. This i3 clear, the graph of T' is closed in 1,,x I, and
2 fortiori in 1, X1,,.
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Decompositions of non-contractive operator-valued
representations of Banach algebras

by
F. H. SZAFRANIEC (Krakéw)

Abstract. The present paper deals with some decompositions of non-confractive
operator-valued representations of Banach algebras. These decompositions are closely
related to the abstract . and M. Riesz property. An examination of the Boolean char-
acter of this property is basic for our purposes. This, when combined with the
8z.-Nagy-Dixmier theorem concerning similarity of certain Boolean algebras of
projections shows that the representation in question is similar to a suitable ortho-
gonally decomposed representation.

Let T be the Hilbert space representation of a function algebra A.
There are results of Sarason [14] and of Mlak [7], [8] that to every Gleason
part of 4 or intersection of peak sets of A there corresponds a projection
which commutes with 7. This projection is orthogonal for confractive T'. In
this case a full decomposition of 7' with respect to the totality of all
Gleason parts or to the Bishop decomposition of 4 is available.

In both cases an essential role is played by the F. and M. Riesz
property. The point is that this property in an abstract form [13] gives
rise to a homomorphism of a certain Boolean algebra of projections in
the dual space onto a Boolean algebra of projections commuting with 7.
It seems that this is one of the real reasons why such decompositions as
in [7], [8], [14] are available.

~ Althought our theory concerns representations of general non-com-
mutative algebras, the examples of applications we give in the present
paper are commutative. Non-commutative cases will be treated elsewhere.

1. Let B be a (not necessarily commutative) Banach algebra with
the unit 1. The norm of w « B is denoted by [u]. B* is the dual of B. For
weB and ueB* we write (u,u) for p(u). I stands for the identity
operator in B

Let A be a closed subalgebra of B and assume 1 e 4. If (g, u) =0
(for all % ¢ 4) for u <« B* then we write u | A. For v «B and peB* we
define v and wv as the elements of B* given by the formulae: vz, %)

= {u, vu), {uv,uy = {u, uv), %eB.
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Let Q be a bounded projection in B*. We say that @ has the prop-
erty R (with respect to the subalgebra A) if:

(1.1) w1 A implies Qu 1 4,
(1.2) Q(uwv) = (@u)v,  Q(vp) =v(Qu)

for v ¢ B and u ¢ B*. . B
Notice that (1.1) and (1.2) yield the following conditions:

{1.3) w— a0 LA implies Qu;—(Quy)v L 4,
(1.4) p—vuy 1A implies Qu—v(Qu,) 1 4.

In what follows only the eonditions (1.3) and (1.4) will be needed.

The following is easy to verify by a direct caloulation.

ProPOSITION 1.1. Suppose that @, @, and Q, have the property R and
Q,0, is a projection. Then also I — @ and Q,Q, have the property R.

PrROPOSITION 1.2. Let 2 be a set of mutually commuting projections
which have the property R. Then every projection in the Boolean algebra
of projections B (2) generated by 2 has the property R.(*)

Proof. According to Proposition 1.1 the projections of the form
Qu Ao A Qo NI =G ) A oo A (I—€p,,) (Qa, ,Qﬂ belong to 2) has the
property R. Every @ sﬂ?(Q) can be represemed as a Boolean join of
projections of this form (see [12], p. 12).

It follows from the de Morgan formulae and Proposition 1.1 that
the Boolean join of projections having the property R also has this pro-
perty.

One verifies easily the following

PrOPOSITION 1.3. Let 2 be a set of projections having the property R.
Then every projection in the strong operator closure of 2 has this property.

2. Let H be a complex Hilbert space with the inner product (z, %)
@,y ¢ H and the norm ‘j»|. L(H) stands for the algebra of all bounded
linear operators in H. |V| is the norm, V* the adjoint of V e L(H). The
identity operator in H is also denoted by I. In context, this notation
will cause no confusion.

Let T: A - L(H) be a bounded llneam map. It is a trivial conseq-
uence of the Hahn-Banach extention theorem that there are functionals
Yoy B @,y « H, called elementary functionals of T, such that

(2.1) (T(w)m,y) = pyy, wyy, @ yeH, uecd,
(2.2) : g, ll < UTY |2l lyl, @, yeH.
() For commutmg pra]ectlons E, By and B, in a Banach space the Boolean

'operatxons the join E;V E,, the meet By A B, and the complement of F are defined
respectively as B+ Hy— E1 By, By B, and I— B.
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If T is an algebra homomorphism of A in L(H), then the following
relations holds true:

(23) Ma:,y’v_":ul’(v)z,y —L A; mi ?/ € H} v EA)
(2.4) Vg y— Pyrpy LA, TyeH, ved.

It follows from the multiplicativity of 7' that T'(1) is a projection,
T(u) = T(1)T(u) = T(u)T(1), and, consequently, the part T (u)(I—T(1))
is trivial. Without any loss of generality we assume in all what follows
that T(1) = I.

A bounded algebra homomorphism 7': A — L{H) is caled a represen-
tation of A in H it T(1) =1.

Suppose that the representation T is a sum of two bounded algebra
homomorphisms 7'; and T,

{2.5) T =T,+T,.

Sinee I = T4(1)+T,(1), the projections T,(1) and T,(1) split the space

H into direct sum of the spaces 7',(1)H and T,(1)H. T, and T, are rep-
resentations in these spaces respectively. Hence, (2.3) may be regarded
a8 a direct sum decomposition.

Sinee T'(1) = I, ||T|| > 1. We call T coniractive if |T| = 1.

Let {u,,} and {u;,} be two systems of elemetary functionals of
the bounded linear map 7. Then g, ,—p,, 1 A and if @ is a projection
which satisties (1.1) (or (1.3) with » = 1) then Qu,,—Qu;, | A. Now
the following definition malkes sense: 4 bounded linear map T(z A - L(H)
is called the @ — part of T if

(Tq(u)m;y) =<Q:uz,y%>’ wed, z,y<H,
where {u,,} stands for an arbitrary system of elementary functionals
of T

Let S ¢ L(H) be an arbitrary operator with 8~'e¢L(H) and let T
be a bounded linear map of A into L(H). Define T" as

(2.6) T'(w) = 8T ()8, uecA.

Let {s,,} and {u;,} be systems of elementary functionals of T and 7",
respectively. Then, by (2.1), we have

oy — v LAy oy — g pgey LA

Sx(S—~ 1)
The following proposition is an immediate consequence of the above
relations:

PROPOSITION 2.1. If T and T’ are velated as in (2.8) and Ty, T, are
their Q-parts Q- satisfies (1. 1)) then To(u) = 8 To(u), 8, u < A.
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3. Suppose that T is a bounded linear map of 4 into L(H) and @ is
a projection ‘which satisfies (1.1). Let {u,,} be a system of elementary
functionals of 7. It is a simple matter to show that (1.1) implies that,
for a fixed u e 4, (Qu,, wy is a bilinear form in # and y. Indeed, the
equality (T(w)z+v,2) = (T(W)a, )+ (T (v)y, 2 implies that g, ,— u,,
Hy,z L A. Hence, by (1.1) Q/"m—{—y,z_Q/"m,z_Q;“y,z LA which meang
that (Qpu,,, wp is additive in ». Using the same arguments, one easily
verifies that these functional are homogeneous in # and anfilinear in .
On the other hand, by (2.2)

(3.1) Q> wy < NRNILY 1y -

: -
Thus {Quzy %> is & bounded bilinear form. It follows that there exists
the unique Ty(u) ¢ L(H) such that

(TQ(“)wh'y) =Qugy, uy;, Ued, myecH.

The mapping Ty: u — Ty(u) is thus linear and, by (3.1), bounded. Thus.
we conclude that for every @ satisfying (1.1) there exists a @-part T of T.
The following lemma concerning @-parts of a representation will
be of a basic use for our purposes.
Levma 3.1. Let I': A — L(H) be a representation. Let Q, and Q, be
projections having the property R and let Q,Q, be a projection. Then

3.2y Ty(u)To(v) = Tya(uwv), w,ved

where Ty, Ty, Ty, are the Qq, Q,, Q:Q1-parts of T, respectively.

. Proof. Note first that by Proposition 1.1 @,Q, has the property E.
Sinee pppy— thny v L A, (1.3) yields Q1 by — (Q1ptey)v L A. Bub
<Ql:u1'(1:)z,y u> = (Tl(u)T(v)w, ?j) = <:u’au,T1(u)‘m /D>' We thus get Fooz, Ty (uayy —
~%(Q1tr,) | A. Keeping now u e A fixed we get, by (1.4), Q, /.ax’Tl(u).,,—
—4(Qu@1145,,) | A Which simply means that (T, (4)T, () 7,y) = (Ts, (40) y],
z,y «c H. QE.D.

We now can state the following

']_THETJREM 32 Let T: A~ L(H) be a representation and let @ be
a projection having the property R. Then: k

1° there ewisis a Q-part Toof T and
(3.3) To(w) = ToM)T(w) = T(w)To(1), ueA;
2 To=I-Tgis a (I—Q)part of T and

To(u) = To(W)T (u) = T(w)Tod), wed;

3° . both ..TQ cmd.T'Q are bounded algebra homomorphisms and the vepresen-
tation T is o unique direct sum of its Q and (I —Q)-parts.

icm®
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Proof. Applying (3.2) with @ and I in place of @, and @, we obtain
(3.3). The projection I —@ has the property R and by the same arguments
as above we infer that the assertion 2° holds true. If we put in (3.2)
@, =@, = @, we obtain the multiplicitivity of Ty and Tp. This completes
the proof (?).

Notice that if 7 is a representation and T, its @-part then, by (3.3),
To(wyw = T{w)z it 2 = To(1)m. Itfollows that |To(u)a] < 1T ()] 2] < T
] |#]. Consequently |Tq(u)ll < |T]| |jull. Hence
(3.4) 1Tl <HITN and  [T@)I< TN .

4. We say that a bounded linear map 7: 4 - L(H) is Q-supported
if there is a system of elementary functionals {u,,} of T such that
(4.1) boy = Qlny T Y cH.
It is clear that if 7 is Q-supported then it is identical with its @-parb.
On the other hand, if 7 = 7T, then for every elementary functional s,
the functional Qu,, satisties (2.1) and (4.1). But Qu,, need nob be an
elementary functional of 7' because the condition (2.2) can fail unless
[Qll = 1. However, if T is a representation and I' = T then 1@l < 1Tl
|z| |y| and, by (3.4), Qu,,, is an elementary functional of 7. Thus T is
Q-supported.

We remark that it follows from (1.2) that the set
(4.2) Iq ={ueB|{Qu,uy =0, peB%}
is a two-sided closed ideal in B. -

Indeed, suppose u eI, and veB. Then, by (1.2), {Qu,uwv) =
= {(Qu)v, wy =0, since puv e B* and w e I,. Hence uv eIy

Similarly we infer that ou belongs to I,.

Moreover, if T is Q-supported then T'(u) =0 for u e Iy. This estab-
lishes the following

PROPOSITION 4.1. Suppose that @ has the property R. IfT: A — L(H)
is @ Q-supported linear map, then there exisls a linear map T (with the same
norm as that of T) of the quotient algebra A [I, into L(H) such that T (%)
= T'(w), where 4 is the canonical image of uin A,

We will now consider a stronger condition in place of (1.1), namely
the following ome

(4.3) If u | A then Qu =0
or, in the equivalent but more convenient form,

© (4.4) pa—pe L A impies Qui = Qps.

(%) The arguments of this section work well if H is replaced by a reflexive
Banach space like in [13]. We take here the opportunity to point out {fha.t the last
part of the proof of Theorem 1 of [13] needs some rather trivial correctiofi.
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THEOREM 4.2. Suppose that the projection Q satisfies (4.3) and (1.2).
If T: 4 — L(H) is a Q-supported represeniation then there ewisis a unique
Q-supported representation T°: B — L(H) such that T°(u) = T(u),ued.
Moreover, T°=* has the same norm as that of T.

Proof. Let {u,,} be a system of elementary functionals of T satisfying
(4.1). The condition (4.4) proves that such u,, are uniquely determined.
Moreover, the condition (4.4) shows that {u,,, u) for every fixed u R
is a bilinear form in & and y. This bilinear form is bounded by || 7] [lu.
Consequently there exists a unique 7°%*(u) ¢ L(H) such that

{4.5) Sty wy = (T (u)z, y)

for #,y ¢« H and u ¢ B. T° ig linear in u. The mapping T°%t: g — Tob(y;)
is a unique @-supported extention of 7' and |7 = ||T}.

The proof that 7° is multiplicative goes as follows. Let us fix « ¢ 4.
Sinee T is multiplicative, Moy ™ U,y 1 A. By (4.4), (4.1) and (1.4),
Hox, Tpupy = Ulig,- This means,” by (4.5), that the equality T'(w) T°%(p)
= T**(yp) holds true for u ¢ A and v < B. Keeping v ¢ B fixed we infer
by the last _eaqua]ity that Poextiyyg , — Hoy® L A. Applying (4.4), (1.3)
and (4.1) we infer that Bextpyy, = Hay? which simply means, by (4.5)
that T%(u) T°% (v) = T*%(u) for u, v ¢ B. Q.B.D.

Note that by Proposition 4.1 T°% is in fact a representation of the
quotient algebra B/I, where I, o 18 defined by (4.2). Theorem 4.2 generalizes
the results of [6] and [12].

?

5. Let 2 be a set of mutually commuting projections in B which
hav.e the property R. Recall that #(2) denotes the Boolean algebra. of
proqeo’ﬁionﬂ generated by 2. Since ¢ ¢« #(2) share the property B (Pro-
position 1.2), the @-part of the represention 7 is well defined for every
Q in #(2). Let us define !

(5.1) Po=1Ty{(1), QecH(2)

The reformulation of Lemma 8.1 reads now as follows:

(*) the mapping Q - Py(@ eﬂ(.@)) s & Boolean dlgebra homomorphism
of #(2) onto the Boolean algebra P(2) = {Py|Q < #(2)} of projections.
No?ice that #(2) is generated by the set {Py|Q € 2}.

This is a result of Sz.-Nagy [10] as later developed by Dixmier in
[2] that for every bounded Boolean algebra Z of projections in the Hilbert
space H there exists an & ¢ L(H) such that:

() 87" exists and belongs to L(H)
(b) 8'PSis an orthogonal projection for every P « 2.

It ff)]lo'ws from (3.4) that [Pol < IT)) for Q « #(2). Applying the
above mentioned 8z.-Nagy-Dixmier theorem we get the following
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THEOREM 5.1. Let T' be a representation of A in H and let 2 be a set
of mutually commuting projection with the property R. Then there is an
invertible operator S in H such that 87'Py8 is an orthogonal projection for
overy Q <« B(2) (Py'is defined by (5.1)). :

CORROLARY B5.2. Assume that the assumptions of Theorem 5.1 hold
true. Define now a representation T' by T'(u) = ST (u)8, u ¢ 4, where
& ds given by Theorem 5.1. Then, by Proposition 2.1, Ty{u) = 81Ty (uw) 8,
ued and, in particular, Py = Ty(1) = 8Py 8. Moreover, Py is an or-
thogonal projection. :

Suppose {@,} is an indexed set of projections in #(2) such that

(5.2) Q.0 =0 if o #p.
‘We define

(5.8) T, =1Tq, T, = Tba, P, =Py, P, =P'Qn.
The condition (5.2) implies, by (%),

(5.4) ' PP,=0 ifaszp.

Thus

(5.5) P,=1-QP,

is an orthogonal projection and

(5.6) PP, =0 for every a.

A trivial verification shows that 7" (u)P, = PyT' (u), u ¢ A. Thus Ty = T'P,
‘is a bounded algebra homomorphism. By (5.4) and (5.5) we have
T'(u) = (OT,(w) BTy(x), wed.

Coming back to the representation T we get

THEOREM 5.3. Let 2 and 8 be as in Theorem 5.1. Let {Q.} be an indexed
set of projections belonging to #(2) which sotisfy (5.2). Then

8778 = (8 T,8)@T,,

where T, is the Q, — part of T and T, is some representation.

Notiee that if 7' is contractive then § = I.

6. The purpose of this section is the description of the representation
T, of Theorem 5.3 in terms of its elementary functionals. Suppose {Q,}

" is contained in some complete Boolean algebra of projections having

the property R.(®) Denote by @, the projection A (I—Q,) =I—VQ,.

(3) The Boolean algebra & of projections in the Banach space X is called com-
plete (ef. [1]) if for every subset {Q,} = # there exists a projection (denoted by E)
with range A (Q.X) and null space n (I—@,)X, and if this projection belongs to B.
Then I— A(I—=Qu)(=AQs) is In 2, (AQJ)X =nQ.X and (I— AQ)X
=V (I—Qa) X). ,
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We shall show that 7, is a @, — part of 7", Denote this part by T, and
set 'PQo = TQO(I). Since @,0, = 0 for all a, we have, by (*) and (5.6),

(6.1) Po, Py = Po,(I-@P,) = Py .

Our asser‘nic;n will follow if we show that
(6.2) Py, Py = P;.
To this end we prove the following

(6.3) If Qup | A for all a then V Quu | A.

Note that if @, u | A for a finite set of indices then (VQ.)u | A.
Let u e B* be such that @,z | 4 for all a. Since Q) =\/ Q. it a pro-
jection on V/ (@, B*), for every &> 0 there is u = 2'Q,;p; such that
|@os—ull < e. Sinee (5.2) holds true, then (Y Qo) = u and (V .,)
Q=V Q.. Keeping all the above in mind we can write for w e A

Qs wy = [<Qupts 1) =<V Quypt, w)|
< KQots ) — iy wp| + [ty ) =V Q) tr, )]
= KQop =15 W]+ V Qu (Qon—)y w)| < elful|(b+1),

where K is a bound for the complete Boolean algebra in question (this
bound is finite by Theorem 2.1 of [1])- Bo Qou | A which proves (6.3).

Sinee P, P, =0 for all g, we have 0= Qapip gy wy = (T —Q,)
Hpgzg B = ((.’Z’ () — T, ()P, @, y). This implies (6.2) and together with
(6.1) proves our assumption that 7} is the @, — part of 7',

) If B* is weakly sequentially complete and the Boolean algebra £(2)
is bounded, i.e. sup{|Q||Q € #(2)} < +o0, then according to Corrolary
2.10 of [1], the strong operator closure #(2), of #(2) is a complete Boolean
algeb’ral of projections which have the Property R (cf, Proposition 1.3)

Using Proposition 2.1 we obtain the following:

T?HEOR,EM 6.1. Let 2, 8, {Q,} and T, be as in Theorem 5.3. Suppose
%(2) 1'8, a bounded Boolean algebra of projections and B* is weakly complete.
Then Ty = 87T, 8, where T, is the A (I—Q,) — part of the representation T.

.Rema._rk 6.2. In the case when B* ig weakly complete, one can
consider in Section 5 just the Boolean algebra _@)8 in place of #(2).

In particular, one may assume that @, e #(2),.

7. In this section we will consider the cage when B — ¢ (X) = the
SUp norm algebra of all continuoug complex functions on the compact
Hausdorff space X. Then (via the Riesz representation theorem) B*
= M (Z) = the space of all regular Borel measures on X with total
Variation as the norm, The space M(X) is weakly sequentialy complete
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(see [3], Chapter 4). Let 4 be a closed subalgebra of C(X) containing
constants and separating the points of X.

Let @ be a Gleason part of 4. Denote by ug(for u « B*) the G-con-
tinuous part of u (for definition and related matters see [4]). Let {@.}
be an indexed set of all Gleason parts of A(@, Gy it o # ). Then [4]:
1° for every u e M(X) there exists a unique p, ¢ M(X) called the com-
pletely singular part of u, and a sequence {a,} such that x = Z,’p%-{-yu
in the norm of M (X);
2° the projections @, and @, defined by Q.u = Moy Qop = po sat-
isfy (1.1);
3° Q,0; =0if a # B, and, Q,0, = 0 for all a.

There is no trouble in checking that (1.2) holds true. Thus @, and
@, have the property R.

By a direct caleulation we show that, by 3°, every @ in #(2) is of
the form QB +...+@Qp; or I—(QB;+...+@B). One may deduce from
1° and 3° thab [lull= [@B1+... + @B+l X Qu s+ pl. This implies that

an By
195+ @yl T and 1= @yt +G)l = 1| 3 0t-Q4l < 1. Conseg-

uently #(2) is bounded.
‘We are now in a position to apply Theorems 5.3 and 6.1 and just

get the following

THEOREM 7.1. Let T: A — L(H) be a representation. Then there exists
am invertible S € L(H) such that

8T8 = (@ (81T, 8) (ST, 8),

wheve T, is the G, — continuous part of T (ie. the Q, part of T) and T,
8 the completely singular part of T (i.e. the Qy-part of T).

Notice that, by 1°, Theorem 7.1 may be deduced immediately from
Theorem 5.3 only. In particular, the fact that M (X) is weakly complete
is needless. In case when 7' is contractive Theorem 7.1 reduces to Theorem
2.4 of [7].

‘We define the projection @, (a« is a Borel subset of X) by the for-
mulae: Q. u = u,, p,(c) = ule N o)(c a Borel set), u e M(X). Let o/ be
the totality of all intersections of peak sets of A. Set 2 = {Q,|a ¢ &},
Since ||@,|| = 1, m is & complete Boolean algebra of projections. More-
over, it is known (see, for instance, [5]) that x | A implies p, | A
if ¢ e . Thus @, ¢ M (Proposition 1.3) has the property R.

Let the family ./, of subsets of X be the Bishop decomposition
of X relative to A. Then &/, « #/[5]. Since a N = O for a # f a, f € &,
we have Q,Q; = 0.

Using Theorem 5.3 and 6.1 we get the following
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THEOREM 7.2. Let T: A - L(H) be a representation and let o, beb
the Bishop decomposition of X relative to A. Then there exists an invertible
8 e L(H) such that

578 = ( @ (§7T.8) (871, 8),

aesty
where T, is the a-part of T (i.e. Qu-part of T) and Ty is the A (I —Q,)-part
aely

of T.

Notice that Ty has & system of elementary measures vanishing on
every a e &,

Theorem 7.2 for T contractive was proved by Mlak in [8].

It is evident that the mapping a: ¢« - @, is a Boolean homomopr-
phism. The mapping ¢ is also injective. Indeed, Q,u, = u, # 0 where
Hg 18 the point mass at @  a. Hence, if @, = 0, then o = @. Let 7, (a7)
denote the o-algebra of sets generated by 7. Since « is a Boolean isomor-
phism between 4, (s7) anc_l_a_(ﬁ,,(azi)) =%, % is a o-complete Boolean
?,lgeb_ra., and #(2) c #.c #(2), By Propositions 1.2 and 1.3, every @
in & satisties (1.1) and, consequently, every « in B, () satisfies ‘

(7.1) . ul A implies u, 1 A.

It is fa,re_sult of Gliksberg ([5], Theorem 4.8) which says that every closed
o satisfying (7.1) belongs to /. Denoting by # the familly of all closed
subsets of X we get finally

THEOREM 7.3. # N F,(H) = .

This statement includes that of [5], p. 435.

L(_a’q X c C (the complex plane). E(X) denotes the closure in C/(X)
of restrictions to.X of the algebra of all rational functions with poles
off X. The set X is called a K-spectral set of V « L(H) it

[ (V)| < Ksup [u]

for every mtioga:l function « with poles off X. Let u, be the function
Uy (2) = 2. I’f X is a K-spectral set of V L(H), then there exists a unique
Eeg)gssentlamqrfl TT : 1?((X) - L(H) such that T(u) =V and |7 <K.
ersely, it I': BE(X)—~ L(H) is a representation. then X is a Tl —
spectral p of T ) ep ion then X is a |7
) Using the arguments of [9]; in a much similar way as in Theorems
-1 and 7.2 we may obtain the following results.

TEEOREM 7.4. Suppose that X < C i
L 7.4. is & K-spectral set .
Then there exists an snvertible S L(H) such that pechal set o] e 20D

S7VS = @871 7,8,

e ©
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where {G.};~, s the sequence of all non-peak point Gleason parts of R(X):
(i) V; has G; as a K-spectral set for i >0,
(ii) the representation of R(6,) generated by T,(i > 0) is G;-continuous.
(i) V, is normal with spectrum carried by 0X and V, = Vi+ Vy, where
Vo is mormal with completely singular spectral measure and V, = DrI;
(I; — the identity in suitable Hj) with 2; ranging over the totality of all peak
points of R(X).
00
Let X = | @, be the Bishop decomposition of X relative to R(X)
k=0
such that a,(% > 0) are peak sets with positive planar measure and «, is
the union of all peak point maximal sets of antisymetry (for details we
refer [5])
THEOREM 7.5. Suppose that X = C is a K-spectral set of V e« L(H).
Then there exists an invertible S e L(H) such that

8778 = @87 7,8),

where V, has a;, as its K-spectral set for k> 0 and V, is normal with speciral
measure carried by 9X. .

These results for 1-spectral sets are due to Mlak [9].

Our last result is based on the fact the if 4 = B then every pro-
jection in B* satisfies (1.1). In this way we obtain almost gratuidously
a theorem on decomposition of a spectral measure.

Recall that the mapping F: #(X) — L(H) (#(X) — the algebra of
all Borel subsets of X) is a spectral measure if (i) the mapping F,:
:o-—>(F(a)a:,y) (z,y) e H is a complex regular measure on X; (i)
Flo 0 o) = Fo)F(o) o, o « B(X); (iii) |F(0)| < K for every ¢ and some K.
It is well known that:

. (8) to every spectral measure F there corresponds a unique represen-

tation of C(X) on H which is. given by,
(7.2) T(w) = [wdF, weC(X).

and, conversely, to every representation T': C(X)->L(H) there
corresponds a unique spectral measure such that (7.2) holds true.

If T and F are related as in (7.2) then ||T|| < K. Moreover, the pro-
jection P commutes with 7 if and only if it commutes with every F (o).
We say that the spectral measure F is absolutely continuous (sin-
gular) with respect to the positive measure m, in symbols F < m(F | m),
it F,,<m(F,, | m)for all w, y « H. ]
Applying Theorems 5.3 and 6.1 and using (S) we get the following
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THEOREM 7.6. Let F be a spectral measure and {m,} a fomilly of mu-
tually singular positive Borel measures on X. Then there exists an invertible

8 ¢ L(H) such that
S7IFS = (ST E.8) D(STF,8),

where F, L m,, Ty | m, for all ¢ and the speciral measures S F 8 and
871F,8 are self-adjoint.
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