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By Lemma 1, choose g@'EI’Z’ni? finite a.e., such that
eillf1s) = [T9:0u,

for all “elements” f of L, . For every feF we now have

® K K K
() = D alo(f)) = meng = ; Jtgip = [£(D) ) du.

d=al

K
Hence ¢ = ¢, where g = 3'¢;eF'.
1

‘We conclude with a condition, different from. that of Seetion 2, which
is sufficient that I and F'* be in duality under the usual bilinear form
fr 9> = [foap.

THEOREM 3. If there ewisis a sequence which is g,-cxhaustive for oll n,
then F is saturated and (F, 'y, (I, F*) are dual systems under {f, g).

Proof. As in the last proof, ' and each Lnn are saturated. Sincé
every g, has the Fatou null property, L;n is a total subspace of the metric
dual L:n of Lgn ([4], Note V, Theorem 15.2). By Section 2, Lemma 3,
Corollary, we know that for all g<F* (and hence for all geF') with ¢ # 0,
there is some feF with (f, ¢> # 0. But if 0 % feF then ,(f) 0 for
some 7, 50 that there exists geL, such that {f, g) # 0. Moreover, g, is
a function norm ([4], Note IV, Theorem 9.7) so ¢ is finite a.e. and
hence belongs to F' and to ™.
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STUDIA MATHEMATICA, T. XLIII. (1972)

A Cantor-Lebesgue theorem for double trigonomeﬁ*ic series

by
A. ZYGMUND (Chicago)

Abstract. Let £ = (&, y) be points of the plane, » = (m, n)— lattice points, and
{v-&> = ma+mny. It is shown that given any et B of positive measure situated in
the square 0 <@ < 1, 0 < y < 1, there is a constant 4 — Ag such that for any trig-
onometric polynomial 7'(£) of the form I ¢, 620 4 we have

v|=R

o< AEf 1T (&)2d8.

In particular, if an infinite series Ye, e2mi(v4) converges cireularly in a set of positive
meagure, then 3 ¢, =+ 0 a8 B — oo. '
=R

1. Let £ = (2,y)eR? and let p = (m, n) denote lattice points in R2.
Consider a double trigonometric series

(T) 2 6, ¥,

where {v-£)> = mx-+ny, and its circular partial sums

Tr(8)= 2 0, 6%,

) PISE .
We shall also write

Ap(8)= D) 0,8,
[[=R
Recently, R. L. Cooke proved the following result (see [lj).
TEBOREM 1. If Ag(£) >0 almost everywhere as R — oo (and, in

particular, if T comverges almost everywhere), then ¢, — 0 as |v] - co. More
generally, we then have

(1.1 Dlaf—=0 (B o).

Pl=R

In thig note we pro've a somewhat more general result.

THEOREM 2. If A7(£) — 0 ot each point & of a set of positive measure,
we have (1.1).
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2.
TmamA 1. Let B R, 0< |B < oo, and let

fp)= [ meD g,
bof

Then there is a strictly positive & such that
() < |Bl—e for all v #0.

Proof. Since " (») -0 a8 |7| = oo, it is enough to show that each
| ()] is strictly less than |B] if » 5 0.

This is a consequence of the elementary fact that if, for any complex-
valued f, we have Lf fl = z«,f |fl, and f 5 0 on H, then arg f is constant,

mod2rx, almost everywhere on E. Hence, in our case, if we had |3 (»)|
= |B| for some » % 0, {»- &) would have to be constant, modl, almost
everywhere on F, almost all points of E would be situated on a finite
or denumerable famxly of straight lmes, and we would have |I| =0,
contrary to hypothesis.

Lumma 2. For any three distinct lattice points A, w,v situated on
o circumference of radius B we have

(2.1) ) li—pllp—rllp—2] = 2R

This is a corollary of the classical theorem of Elementary Geometry
which - asserts that if a triangle with sides a@,b, ¢ has area §, and if R
is the radius of the circle circumscribed on the triangle, then

(2.2) ' R = abe/4S.

For in our case a, b, ¢ are the factors on the left in (2.1), and if we write
A =1l+ily, p = my+im,, » =n,+in,, then § iz the absolute value of

) 1l 1L
5 1 my myl,
L 7y Ny
and so 8§ > 1/2. This leads to (2.1). Lemma 2, which iy essential for the
proof of Theorem, 2, was first proved (in reply to a question put by the
author) by A. Schinzel, in an elementary and purely analytical way.
That it i3 a corollary of (2.2) was later pointed out by A. Pelezyriski.

3. Passing to the proof of the theorem we may assume (by Egoroff’s
theorem) that T'p converges uniformly in ¥, and that B is contained
in the square 0 <4 <1, 0<<y<1l. Then Ax(&) — 0 uniformly in F.
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We have

(B1)  [ldg(&pras
B

=18 Y lel+ > eny v—u =P+Q,
1u=R lui=r=R
Iaid
say.
Let A = Az e the set of all the differences v—p # 0,for | = |u] =
Let R, be so large that

(3.2) (2 2 IZA(1)12)112< 1
13158,

where ¢ is that of Lemma 1 corresponding to our get B. Write 4 — A uda”

where 4’ consists of the elements of A of modulus < B, and A" is the
remainder of A.

Correspondingly,

(33) Q@ =¢+¢".
Clearly,

G4 Q< Ylesl) (D o - ul = bl = B, lu—s > Ry

< el X 21 @) <te Y e,

=R 12>R, =R

by (3.2). Here we used the fact that a circle can have at most two chords
of prescribed length and direction.

Let C(0, R) be the circumference of center 0 and radius R. The
meaning of Lemma 2 is that if two lattice points. on €(0, R) are ‘close’

_to each other, then any other lattice point on C(0, R), should it exist,

is necessarily ‘distant’ from those two. s
Having fixed R, we take R so large that any pair (u,») on G0, R)
with |u—v| < R, is distant by more than B, from any other lattice point
on C(0, B). Hence the lattice points on €(0, R) can be split into ‘distant’
pairs (u, ») with |u—»| < R,. For each such pair (u, ), writing v —pu = 2
we have, by Lemma 1,

lo,8,%" (A +6,8,1" (—2)| .
< HUe L+ (Bl —e)-2 = (e, +16 1) (1Bl —e).
It follows that )
(3.5) Q1< D) leaP(1B1 ).

lAl=R
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Collecting the results (see (3 1), (3.3), (3.4), (3.5)) we obtain
[14x(8)PdE = P+Q'+Q"

A

> D ol {Bl—te—(1Bl—e)} = }e D |o2.

1A=R Al=R
Thus
(3.6) Dl <267 [1Ap(8)Rd,

" Al=R 5

and if Ap(&) tends uniformly to 0 on E, 2 |c,1[2 — 0. This completes
the proof of Theorem 2.

4. We conclude with a few observations.

a) The proof of Theorem 2 is essentially two-dimensional. Whether
an analogue of Theorem 2 (or even only of Theorem 1) holds in higher
dimensions remains an open problem.

b) Strietly speaking, the proof of Theorem 2 hag little. to do with
the relation Ap(£) =0 (é<H, |[E| > 0). Analyzing the proof (see, in par-
ticular, (3.6)) we see that it gives the following resuls.

TuEOREM 3. Given any set H of positive measure situated in the wunit
square 0 < w<< 1, 0 <y <1, we can find o positive number Ay such that

(4.1) Dl < dg fl Z‘ 0,64 fwf

4=R 14]=

That. (4.1) holds for R sufficiently large, R > Ry, is implicit in the
proof of Theorem 2, and for B < Ry, follows from the equivalence of norms
in spaces of the same finite dimension.

¢) One may ask for an estimate analogous to (4.1) for sums 3 ¢, 6™
extended over lattice points situated on some plane curve I'.

The argument of Section 3, where I" = C(0, R), utilizes two proper-
ties of the eircle: ) it has at most two chords of prescribed length and
dlirection; B) given R,, for any lattice point A¢(C(0, R) there iy at most
one neighbor xe0(0, R) with |A—u| < Ry, provided R is large enough
(there may actually be such neighbors; take e.g. the points (m,n--1)
and (n+1,n) on C(0, R) with R* = 2n%4-2n--1).

Property «) was needed to estimate the term Q" in (3.3) (see (3.4)),
property 8) — for @'. As to «), it is certainly satistied for any strictly
convex curve I, but it is easily seen to be unnecessarily restrictive: if I’
has at most % chords of prescribed length and direction, the factor 2
in the mext to last term of (3.4) can be replaced by % and the argument
still works.

icm®

cand Au’
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Property B) is a little more subtle and we do mot propose. to
study it. The special case of an ellipse is both of independent interest
and sufficient simplicity to be considered here and we limit ourselves to it.
(Even simpler, though less interesting, is the case when I' is a convex
polygone whose sides make with the z-axis angles ineommensurable
with z; it is obvious that each side of I' can contain at most one lattice
point.)

Let H, denote an ellipse with semi-axes a, b, a > b, and center 0
(it is obvious that the latter condition is no restriction of generality);
the direction of the axes is not specified. Let C(0, a) be the circle circum-
scribed on B,. Let A, u,» be three distinet lattice points on E,, and
A, @'y v' their projections parallel fo the minor axis out to the circumseribed
circle (A, #’,» need not be lattice points).

Let § and 8 denote respectively the areas of the triangles A ny
»'; thus 8> }. In view of (2.2) we have the relation

, 1] a?
(4.2) W =2l = |V =] = 480 =4 §ra> 2

Since the passage from § to §' increases the sides by factors < a/b,

(4.2) leads to the following analogue of (2.1):

2

b
(4.3) _ = Alu—2 A= >2—

If the distance of pu from both 1 and » does not exceed R,, we deduce
from (4.3) that
b2
R,. Ry. 2R, >

that is, b <R§’2a.”2.
It follows that if b > R$*a'?, then for any lattice point uecH,, there can
exist at most one lattice point AeH, with 0 < |A—pu| < R,. Hence, as
in the case of a circle, the lattice points on F, of distance < R, can be
split into ‘distant’ pairs, the estimate for @ holds and we arrive at the
following generalization of Theorem 3.

TerOREM 4. Let By, be an ellipse with cenler 0, semi-azes a,b, a> b,
their divection arbitrary. Then for any set B of positive measure situated
in the square 0 < 5<< 1, 0 <y < 1 we can find constants A = Ay, K = Ky
such that if

(4.4) b > Ka'?,
then

(4.5) Z o< d fl Z o, ETH]*

veEqp veHgy

dg.
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Observe that initially we obtain (4.5) under the additional condition
that @ is large, a > Ly, which later, as in the case of the circle, may be
dropped. , )

Of course, under (4.4) the eccentricity of B, may tend to 1 as @ — oo.

I am indebted to Dr. M. Jodeit for some clarifying observations.
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