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Two-norm spaces and decompositions of Banach spaces, I

by
P.K. SUBRAMANIAN (Missouri)

Abstract. The only known applications of fwo-norm spaces, a recent invention
of the Polish school, is to summability theory. The aim of this paper is to apply .
two-norm space theory to Banach spaces with bases and decompositions, To every
such Banach space we associate a two-norm space the study of the properties
of which illustrates. the structure of the Banach space. Corollaries df our results
include those of Ruckle, Sanders, Singer and others.

Introduction. The theory of two-norm spaces'is a relatively new inven-
tion of the Polish school. A: two-norm space X, = (X, | |1, ]| |5) is defined
to be a linear set X (over the real or complex field) with two norms | |1
and | |,. Closely related to the notion of a two-norm space X, is a metric
space (S, @), where 8 is the closed unit ball of the normed linear space
(X, | |,) and d is the metric induced by the norm | |,. Such metric spaces,
when they are complete, have been called Saks spaces by Orlicz, after
8. Saks who first used this ides in [11] and [12].

In [7] Orlicz showed the use of Saks spaces in the theory of summa-
bility. A. K. Snyder has used two-norm spaces to characterise econull FK
spaces (see, for instance, [18], p. 941). Conway [4] gave a simple proof
of Schur’s theorem (sequential weak convergence in ! implies norm
convergence). Although he does not explicitly mention Saks spaces, his
proof makes use of the closed unit ball of the space m with the metric d
being induced by [{a,}|, = Dla,)/2" Using Saks spaces, Rothman [9]

n
has constructed a whole class of Banach spaces with this property.

In [1], [2] and [3] Alexiewicz and Semadeni developed an elegant
theory of two-norm spaces but did not indicate any applications. Our
aim in this paper is to show an application of their theory to Banach
spaces with Schauder bases and decompositions. Sections 1 and 2 contain
the necessary basic definitions and results pertaining to two-norm spaces
and Schauder decompositions respectively. The canonical two-norm space
is introduced in section 3 and the concept of k-duals in section 4. These
two sections contain the main theorems of this Ppaper. In section 5 we
show that theorems of Ruckle [10], Sanders [13] and others can be obtained
as corollaries of our results. We also prove duality theorems between
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. shrinking and boundedly complete Schauder decompositions. In section 6
we use two-norin spaces to extend Singer’s results [15] on basic constants.

1. Two-norm spaces. A two-norm space X, = (X, | |1, ]| [2) is & linr?ar
set X with two homogeneous norms | |;, | |, although the homogeneity
is not necessary in general. We shall also agsume that X is over the reals R,
the extension to the case when the field of scalars is the complex numbers
C being routine. We shall say X, satisfies (n,) if for every sequence {,}
of points in. X, with [#,], — 0 we also have [z, 0. o

A sequence {z,} of points in X, is said to be y-convergent to » in X
if both

lim |z, — ], = 0.
n

sup |w,); < oo and
n

A y-Cauchy sequence i defined in an analogous manner and X, is cffxlled
y-complete if it is sequentially complete for the convergence (;{). A y-linear
© fumctional f on X, is a real valued functional such ’?hat (1) f(ax-+by)
= af (x)+bf(y) for all @, b in R, »,% in X and (ii) @, Ys = f(w,) —~ f@).
The set of all p-linear functionals on X, is denoted by 4 (X,).

The space X, is called quasi-normal if there is a constant C(X,) > 1L
such that for any sequence {x,} of points in X,

3, B © = |o), < O(X,)limint |o,], .
n
The smallest constant C(X,) is called the constant of quasi-normality
of X,. When C(X,) is 1, X, is called normal:

Let (X7, | ) =(X,| ;), i =1,2. It is known (8], p. 57, that
whenever X, satisfies (n,), X3 < 4(X,) and that 4(X,) is a closed sub-
space of X7. If X, is -quasi-normal as well, it is shown in [3],*p. 118, that
(X5, 1) is dense in (4(X,),} |;). The equality 4 (X,) = X; may occur
in non-trivial cases. In this case X, is called saturated. An example is the
SPACe Gy = (g, Sup |{@,}], 30,/ /2", ¢, being the space of null sequences.

Here A{y) = 6 = [ Wherg 1is the space of absolutely sunmable sequen-
ces. ‘ .
Suppose X, is quasi-normal that it satisfies (m,). Then 1;}1(5 canoni-
cal embedding J: X A(X,)*, defined for # in X by J(:{:)]‘ mf(m? for
all fe A(X,), is a linear isomorphism (that is, a topological momorphmm}
[3], p. 119. If X, is normal, J is also an isometry [2], p. 279. When ever X,
is normal and J is onto A (X,)*, X, is called y-reflexive.

2. Schander decompositions.- A sequence {M;} of non-trivial sub-
spaces of a Banach space X is (weak) decomposition of X if for e:?ch @
in X there exists a unique sequence {w;} such that x;¢ M, for each 4 and

2 =lim > in X (in the weak topology of X respectively). If all sub-
. n i<
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‘spaces M; are closed, then {M;} is called a (weak) Schauder decomposition
of X. When each M is of dimension 1, the decomposition reduces to the
familiar notion of a basis for X. '

Associated with a decomposition { M;} of a Fréchet spa.ce X is a sequence
{P;} of projection operators, P;: X — M; such that P;(x) = m;. It is
known [10], II. 2, that if {3} is & Schauder decomposition of X, each P,
is continuous. We shall denote the Schauder decomposition {M;} of
a Fréchet space X by {M,, P}, {X , P} or {X, M}. We shall sometimes
write X = @3 M; and refer to M; as the i-th component of X.

7

Let (X,] |,) be a Banach space (referred to as B-gpace hereafter) with a
Schauder decomposition {M,}. Then there exists a constant K, >1 such that

IZ%1<K1I 2%"1
i<n i<m

for all #, m with # < m and for all sequences {z;} with x;e M; [6], p. 93.

The smallest constant K, will be called the decomposition constani of {M;}.

‘When K, = 1 we shallsay { M} is a monotone décomposition. For o = Yz,e X
: %

let us write s(n,z) = > @;. For a monotone decomposition then, |u],
= sup [s(n, 2)];. i<
n

Although a given decomposition {M} for a B-space (X,| |,) may
not be monotone, the following theorem is of interest. The proof is similar
to the case of a B-space with a basis and. is, therefore, omitted (see [17],
. 207). v , ,

TeEOREM 2.1. Leéf (X, | |,) be a B-space with a Schauder decomposi-
tion {M,}. Then |z|, = supls(n, )}, is & norm on X equivalent to | |y,

n

and with respect to which {M,} is monotone.

3. The canonical two-norm space. Let (X , 1 lo) be a B-space with

a Schauder decomposition {M;}. For o = Yu,c X, [n]s = Smyl,/2* is
k ko

easily seen to be a norm on X. We shall call | |2 the canonical second

norm of X. The two-norm space X, = (X, | l1, | |2) will be called the
canonical two-norm space of X. The following theorem shows that the
canonical two-norm space has some desirable properties.

TemoREM 3.1. Let (X, | [;) be o B-space with a Schauder decompo-
sition {M,}. Then the canonical two-norm space X, has property (m,) and
s quasi-normal.

Proof. Let |z]; = sup|s(n, z)|,. By Theorem 2.1, there exist positive
n :

numbers k and K such that for any ze X,

klo), < |2 < K|z,
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’ — I !
For & = ;wkE X, |oyy < 2loly, so that |of, = %‘[”kh/z < 2ol < 2K o,

whenece it follows that (n,) is satisfied. To show that X, islquasi—n.ormal,
observe that the canonical second norm | |; induced by | /|1 is equw?,len’t
to | |, so that it suffices to show that the two-norm spac,e X, = (X‘ . H%)
is normal. Let 4, 2> # in X,. We may assume that |#,|, < 1. Let j be arbi-
trary but fixed. Since

(on =i >0 for k=1,2, ...

(where @, = > '@, 1), we have
%

180, 3) =803, D < 3 10,1 = 2ly = 0
k<)
ag %> oo. It follows by the monotonicity of {M,} with respect to | |;
(Theorem 2.1) that

ls(3; @)y = lim|s(j, @)l < liminf jz,|; <1
n n

and hence |s]; <1. This proves the normality of X, and completes the
proof.

Remark 3.2. As an immediate consequence of Theorem 3.1, We
note that A(X,) < X;. Let K, be the decomposition constant of {IM}
and ((X,) the constant of quagi-normality of X,. The proof gf T_heorem 3.1
may be used to show that ((X,) < K,. Recall that the Dixmier chamc-_
teristic r(4 (X)) of A(X,) is the largest posﬂnvg nurilber r s1:fch that
{fe A(X): [ <1}is o(Xy, X) dense in {fe Xy: |[f[f <r}. It follows
from [3], p. 117, that

7(A(X,)) = 1/C(X,) >0.

Since 0 <r(A(X,)<1, it follows that 1<C(X,) <K, From theie
considerations it follows that the canonical map J from X into A(X,),
defined for we X by
J(@)f =flz), [fed(Xy)

is an isomorphism. When K; =1, 0(X,) =1 so that ‘Dhe‘_monotonicity
of {M,} implies the normality of X,. As we shall see later (Re.m_ar]; 6..4-),
the converse is false: X, may be normal without the decomposition being
monotone. We also observe that the normality of X, implies that
7(A(X,)) = 1 and in this cagse J i3 an isometry. .

DuriNirroNn 3.3. A Schauder decomposition {M,} for a B-space
(X, | |y is called boundedly complete if for any sequence {w;} = X, @,¢ M,

sup ‘ kai1< 00 = Zm/c =
g k<n I
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for some # in X. The decomposition {M:} is called shrinking for fe X3,

if the norm ]f]in of f evaluated on X, = @ > M approaches 0 as n— oo,
that is, E>n

Iiin{sup {if@): 1ol <1, me@sz}} Y

k>n

It is called shrinking for ¥ < X¥ if it is shrinking for each f in X. When
{M;} is shrinking for X}, we shall merely szy that {M,} ds shrinking.
We note that if | |, is a norm equivalent to | |, on X, then {24,}
is boundedly complete for (X, | o) if and only if it is boundedly complete
for (X, | |,). A similar remark applies to the shrinkingness of {3,}.
TeEOREM 3.4. Let {M;} be a Schauder decomposition for a B-space
(X, | [2). Then {My} is shrinking for fe XY if and only if fe A(X)).
Proof. By Theorem 2.1 and our remarks above, we may assume
without loss of generality that {M,} is monotone. Let 8 and X, be the
closed unit ball and the canonical two-norm space respectively of (X, | |,).

To prove the “if’ part, suppose that fe A(X,) and choose £ > 0. There
exists 6 > 0 such that

zel, |ols< = |f(z) <.
Let N be a positive integer such that 3’2 **!< §. Then for # —
= 3 #,¢ Xyn8 we obtain, k>N
k>N

lels = Do/ < Yok <
k>N k>N

since |@yl; <2 by the monotonicity of {M;}. Hence for n > N, we now
get

Il = sup{|f(@)]: e X, 08} <,

so that {M,} is indeed shrinking for f. : .

Conversely let fe X7 such that |f[}, - 0. Let {z,} be a sequence of
points in X which y converges to 0. We may assume that |,[, < 1/2.
Let ¢ >0 and choose a positive integer ¥ such that Iflhx < €/2. Now
[Znlp—> 0 implies that [z,,,~0 for k¥ =1,2,..., where By = D, 4.
Since fe X, there exists a positive integer M such that E

n>M = f(x,;) <e2N, k=1,2,..,N.

By the monotonicity of {M,},

I 2 mn,k

k>N

<2z, <1
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Since 3! @, z¢ Xy, we obtain for # > M,

. If(wn){ < ’f( Emn,lc) + ‘ f(zmn,k)
k<N k>N

< (ef2N)N +¢/2 = ¢
showing that fe 4(X,). This completes the proof. ‘

COROLLARY 3.5. Let {M;} be o Schauder decomposition for a B-space
(X, ). Then {My} is shrinking if ond only if the camonical two-norm
space X, of X is saturated. ‘

Proof. Recall that X, is saturated if A(X,) = X¥. Now apply
Theorem 3.4.

The following theorem shows the close relation between a boundedly
complete decomposition and the canonical two-norm space.

TrrorEM 3.6. A Schauder decomposition {M;} for a B-space (X, | [,)
is boundedly complete if and only if the camonical two-norm space is y-com-
plete. :

Proof. Without logs of generality we assume that {M,} i8 monotone.
Assume that {B;} is boundedly complete and let {x,} be a y-Cauchy
sequence in X,. We write @, = ). #,, . Tnen there exists a positive number

k

K such that [#,), <K and |#,—@,le—> 0 a8 1, m - co. Hence {2} Is
a Cauchy sequence in Mj, for & = 1,2, ... By the completeness of My,
there is a y;, in My, such that |2, ,— 1yl —0 a8 n— oo, kb =1,2, ... For
any fixed m > 1 we have,

m- n H
l;%.l = li;n 1 Zoon’,ﬁt < 11%11‘%‘1 <X.

k=1

By the boundedly completeness of {M}, /Z‘yk = & for some £e¢ X. Tt is

clear that 2, 2> & so that X, is y-complete.
To prove the otherway, let {m;} be a sequence in X such that @,e I,
and sup {| 3 @} = K < oo. Let g, = 3 @, Now for n<m,
n k<n .

Ie<n
m
m »
D) o2

=41

‘/.'/n—/,'/m|2 = 22_76’?/11,15_%11,7(111 =
s

< YoK/9F >0 as n— co.
L
kz=n
Hence {y,} is y-Cauchy in X,. By the y-completeness of X., we have
@ 2 in X, such that y, 2> 2, so that in particular, [y, ,—#2ls—>0 for
k=1,2,..., where y, = Dy, and 2 = D'z Since y,; =, for k< n
& k :

and equal to 0 for & >, it follows that ®, = #; for each %, that ix, ]Zm,l,
o

converges, to z. This completes the proof.
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»

4. Schauder decomposition for 4(X,) and the k-duals. We shall now
show that a Schauder decomposition of a B-space X induces a Schauder
decomposition on A (X,).

TeEOREM 4.1. Let (X, | |;) be a B-space with Schauder decomposition
{My, P} and canowical two-norm space X,. Then {PH(X)} is a Schauder
decomposition for A(X,) and a weak-* Schauder decomposition for X7.

Proof. Clearly P}, the adjoint of Py, is both-norm and weak-* con-
tinuous. For any fe X7, Pi(f) =f on M, and vanishes on M; for j = k.
Thus Py (f) is unique. It is easy to see that {PL(XT)} is a weak-* decom-

position of X7. It remains, therefore, to verify that it is a decomposition
of A(X,).

) To.show that PISX]" ) € A(X,) for each £, let {z,} be a sequence of
points in X, =, ==%mn,,~., which is y-convergent to 0. Sinee [,], — 0,

fm:,k|1—> 0 so that Pi(f)m, = f(#,,) =0 for any f in X, showing that
Pr(f)e A(X,).

Let fe A(X,). We shall show that
if~ ZPZ(f)if»O as % -> co.
k=1 '

By Theorem 2.1, the norm | |, on X defined by |zl = sup |s(n, z)|, is
) n
equivalent to | |;. Thus there exist positive numbers % and K such that
kimh < |zfo < Ko,

By T%lejoren.a 3.4, {M,} is shrinking for f Thus given = >0 we can find
2 positive integer N such that for #» > N, we have |f 1. < £/C, where
0 =(1+K). For any © = Y, in X with |z, <1, Wwe have

. ) %

| Do, = lo—s(m, 0)l1 < [oh + lal,
k>n

<A+EK)l,<C.
Since ©—s(n, z)e X,,, we have for n >N,
n

[f= S PHPf = sup{fa) - Zan(fm}: ol < 1}
k=1

k=1
= sup{| 3 f(@)|: ol <1}
k>n
= sup{|flo—s(n, 2))|: lol, <1}
< Csup{|f(y)l: Iyl <1,ye X}
=C- lfrlk,n <e.
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Tt follows that f = D Pi(f) in A(X,), that is, A(X,) = (—B%'PZ(XT) con-

ing t of. *
Gludlzg ;2;5% case of the above theorem we note that the biorthogonal
functionals associated with a basis in B-space X form a basis for 4 (X,),
in particular they form a basic sequence.

Theorem 4.1 suggests the following definition.

DERNITION 4.2. Let (X, | |;) be a B-space with Schauder decompo-
sition {M,} and canonical two-norm space X,. Then the chdual of X, is
defined to be the canonical two-norm space of A (X,) and is denoted by

% — X,. Higher k-duals are defined recursively and are denoted by %*—X,, .

%3 —-X, and so on.

NoTATION 4.3. We shall denote the canonical second norm of 4 (X,)
by | . As a subspace of X7, d(X,) inherits the norm [ IF 80 E‘hat e
may write k— X, = (4(Xy), | I, | [2)- Let (A(X,), | )" = (4 (X" | II").
Since 4 (k—X,) is a subspace of A(X,)*, we have k*— X, = (A_(k—Xs),
| 1¥*,1 3% the second norm being the canonical secog& norm. Finally we
write k*—X, = (A(k2—X,),| I™, | **), where | ™ is the norm in
A(k—X)* and | [;** its canonical second norm. Thus

Xs = (Xa l ‘1’ I i2)} ‘k"“-Xa = (A'(Xa); } IT: | I;):
and

X, = (A(b=X), | %] 5, B—X,=A®E-X), [ ] ™).

For # > 1 we shall sometimes write A (k" —X,); for the j-th com-
ponent of the Schauder decomposition of A (k" —X,). Althoth the se-
quence of continuous projections associated with A (X,) is {Py}, to a:rm.d
cumbersome notation, we ghall sometimes write pj, for P;. Thus, {py} is
the sequence associated with A4 (k— X,). ‘ .

We are now ready to prove that the k-duals have the characteristic
property of dual spaces, namely that J maps X, into k*—X,.

THEOREM 4.4. Let {M,} be o Schauder decomposition for a B-space
(X, ] 12). If {M,} is monotone, J maps X isomeirically into A(%—X,);.
If {M,} is non-monotone, J reduces to an isomorphism.

Proof. First consider the case when {M,;} is monotone. By Theorem
3.1, X, is normal whence, by Remark 3.2, J is an isometry from X into
A(X,)*. To show that J(X)c A(k—X,), it suffices to show that
J(M;) € A(k—X,); for each j and then consider the closed linear span
of U M; and (J J(M,) in X and A (k—X,) respectively.

i

Y *
Let wj¢ M;. For any f = %:Pk(f)e A(X),

23 (T (@)f) = J (@) P (f) = f(Pilay)) = T (w))f

icm
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so that p;(J(x)) = J(z;), that is, p} leaves J (X;) fixed. This proves
that J (M;)s A(k—X,), j =1,2,..., and completes the proof in this case.
If {M;} is not monotone, we may equip X with the norm | 1o equi-

* valent to | |;, and with respeet to which {M,} is monotone. From what

was just proved it is immediate that J is an isomorphism mapping X
into A (k—X,);. This completes the proof.

Remark 4.5. We may point out here that in Theorem 4.4 the
monotonicity of {M,}, while sufficient, is not necessary for J to be an
isometry. It is enough that X, be normal (see Section 2 and Remark 6.4).

This suggests the following definition.

DEFINITION 4.6. Let {M,} be a Schauder decomposition for a B-space
(X, | |1)- The canonical two-norm space X, of X is called E-reflexive if the
canonical map J from X into 4 (k—X,) is onto.

“A characterisation of k-reflexivity of X, is given by

TaworeM 4.7. Let X, be the canonical two-norm space of B-space
(X, | 1) with Schauder decomposition {My}. Then X, is k-reflemive if and
only if each M, is reflexive.

We shall find the following Lemma useful in the proof of Theorem 4.7.

Lmvwa 4.8. Let (X, | |,) be a B-space with Schauder. decomposition
{M;} and suppose that {A(X,);} and {A(k—X,);} demote the Schauder
decompositions of A(X,) and A(k— X,) respectively. Then A(X,); 18 linearly
isomorphic o M; and A(k—X,); to A(X,)}. Let g, denote the linear dso-
morphism between A(k— X,); and M*. Then the restriction of ¢; to J (M)
18 the identity map.

Proof of Lemma. Clearly Pj: X; — A(X,); with kernel M}, the
annihilator of M;in X7. Since P] is continuous and X} /M;- is isometrically
isomorphic to M, the isomorphism between 4 (X, sy and M follows.
(This fact has also been observed in [10], p. 552). The isomorphism between
A(k—X,); and (4 (X,);)* follows likewise.

Let ¢;: Mj*— A(k—X,); = p;[A(X,)*]. Suppose =; is the isometry
between M; and Xi/Mj, where for fye My, m(f,) =f+M} and f(z)
= fo(x) for ze¢ M;. We then have the following diagram:

E7 P".(
1) ~ M7 > X7 MF 5 PF(XY).

It follows that (Pjo 7;)* i3 a linear isomorphism and

Plom;)*
(2) LP ) L))
Let o;e M;. Then J(x;)e M;* and the equations

J (@) P} (f) = P} (f)z; = f(a),
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where fe XT, show that J(w;) belongs to the left-hand side of (2) as well.
We next observe that (Pjom)* leaves J (z;) fixed. For if fye My, w,(f)
= f+Mj, we have

(P}‘o nj) J(mj)f]- = J (%) (P}‘onj)f,-
= J(x;) (P} (f+M5")) = J (@) (P} (f))
=P} (f)w; = fla)) = fi(ay) = T (a)f;

and this proves our assertion.
Similarly considering the natural isometry =; between [4(X,)]*
= [P} (X])]* and A(X)"/[A(X),]*, we are led to the sequence of maps

- %

(3) [PHENT 2 AL A (X1 D A(k—X,),.

From Theorem 4.4 and what was just seen above, J(w;) belongs to the
extreme gides of (3) for every w;¢ M;. A proof similar to the one in the last
paragraph may be used to show Thmt (v} Onj) also leaves J(x;) fixed for
every w;e M;.

It follows from the above considerations that each of the maps in
the sequence

M S (A D A(h-X,),

where a is the inverse of (Pjom,)* and § = (pjom;) leaves J(»;) fixed
for each m;¢ M;. Clearly ¢; = foa and this completes the proof of the
Lemma.

Proof of Theorem 4.7. Suppose X, is k-reflexive. Then J maps X
onto A (k—X,) and M; onto A (k—X,);. Hence the map ¢; of the Lemma
maps M;* identically onto J(M,), that is M; is reflexive for every j.
Oonversely when every M is reflexive, we may retrace our steps to see
that J maps M; onto A(k—X,); for each j. By Remark 4.5 this means
that X, is k-reflexive and we are done.

COROLLARY 4.8. With the hypotheses of Theorem 4.7, X, is k-reflewive
if and only if k"— X, is k-reflexive for m =1,2,...

CorauLARY 4.9. The canonical two-norm space of a B-space with ¢ basis
is k-reflewive.

If we write k°—X, for X,, we note that in the case of a. B-gpace
with a basis, all the spaces &**— X, are linearly isomorphic (with respect to
both norms) for n» =0,1,2,... A gimilar result holds for the spaces
PP X, =0,1,2,... As we shall see later (Remark 6.4) all k-duals
are always normal so that, in the second case, this isomolphihm (J) is
actually an isometry. This is true in the first case also for n = 1, aynd if X°
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is normal, for all n. As an illustration, consider the space (e, sup{an[)

for which the unit vectors e, = (0,0,...,1,0,...), with the 1 1n the
n-th position, form a monotone basis. In this cage k" — X, is isometric
t0 (6, sup}anl, 2|an]/ ") for » =0,1,... and "' — X, is isometric to

{, 2|an], El%l /2" forn = 0,1, ... Here ¢, is the space of null sequences

and [ is the space of absolutely summable sequences.

COROLLARY 4.10. Let S denote the set of all B-spaces with o Schauder
decomposition, K the subset of those spaces X for which the canonical two-
norm space X is k-reflewive and G the subset of those spaces X for which X,
s y-reflexive. Then G = K < 8.

Proof. The y-reflexivity of X, means J(X)= (X,)*. Since
J(X) s A(k—X,) = A(X,)" in general, it follows that J X = 4 (k—X,),
thatis, X, is k-reflexive. The classical example B of James [5] shows that @
is properly contained in K. The other proper containment is obvious.

Remark 4.11. Let {M,} be the Schauder decomposition of X and
suppose that X, is normal. There exists a closed subspace O(X) of 4(X,)*
for which {J (M) } is a decomposition and with the properties that O(X),

={0(X),| % | ¥} is y-complete and normal (see [16] for details).
There is a natural imbedding of X, into C(X), such that X, is y-dense in _
it. In this sense ('(X), is called a ‘p-completion’ of X,. It is shown in [16]
that 0(X) = A(X,)* and J(X) = C(X) if and only if X, is k-reflexive
and y-complete respectively.

In the aforementioned example B of James, although B, is k-reflexive
it is not y-reflexive. This is so since a y-reflexive gpace is clearly y-com-
plete while B; is not y-complete (the basis for B is not boundedly com-
plete). The following result, observed in [16], shows that in the presence

of normality and y-completeness, k-reflexivity implies y-reflexivity.

THEOREM 4.12. Let (X, | |;) be a B-space with Schauder decomposition
{M}. Then X, is y-reflemive if amd only if it is normal, y-complete and
k-reflexive.

Proof. X, is y-reflexive <~ J is an isometry of X onto 4(X,)"< X,
is normal, J(X) = C(X) and 0(X) = A(X,)* from our Remark 4.11 < X,
is normal, y-complete and k-reflexive.

Since each M, is reflexive in the case of a B-space with a basm, we
have the following

COROLLARY 4.13. The canonical two-norm space of B-space with a basis
is y-reflexive if and only if it is both normal and y-complete.

5. Applications. In this section we shall derive the theorems of San-
ders, Ruckle and others as corollaries of our results proved in the previous

sections.
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TamorEM 5.1 ([10], p. 851). Let X be a reflewive B-space. Then
{M,, P;} is a Schauder decomposition of X <> {Py(X7), Py} is a Schauder
decomposition of X7 .

Proof. X is reflexive if and only if X, is normal, y-reflexive and
saturated [2], p. 281, so that 4 (X,) = X7 =@ZP;’; X7) and the ‘only

if* part is follows. For the converse replace X by Xy, X by X%, P
by Pi* in the part just proved and note that X reflexive = X7 is reflexive
and Py = Py.

THEOREM 5.2 ([10], p. B5L). Let {M)} be a Schauder decomposition
for a B-space X. Then {P,C(X}‘)} is @ Schauder decomposition of X7 if and
only if {M} is shrinking.

Proof. By Theorem 4.1, 4 (X,

ZPk(X* = X} if and only if X,

is saturated and this, by Corollary 3. 5 is possible if and only if {M,}
is shrinking.

TurorEM 5.3 ([10, p. 552). Let {M} be a Schauder decomposition for
a B-space (X, | |y). If each My is reflexive and {M,} is boundedly com-
plete, thenX is topologically isomorphic to the dual space of ;P}';(.XT).

Proof. First af all it is clear by Theorem 4.1 and ([8], p. b7 that
S Pi(X,) is closed in X}. We replace | |, by an equivalent norm | |,
i

with respect to which {M)} is monotone and this does not affect the
hypotheses on {M;}. By Theorems 3.6, 4.7 and 412 X, is yp-reflexive,
that is, J is an isometry from (X, | |,) onto 4 (X,)* (ZP* (X)) and
the theorem follows.

In connection with Theorem 5.3 let us mention. a question of Sanders
[13], p. 205: “Is every B-space with a boundedly complete Schauder de-
composition isometric to a dual space?” The answer is in the mnegative
and many counter-examples are known. To this list we wish to add the
following particularly simple example. :

Let (X, || lx); ®=1,2,..., be a sequence of B-spaces and let X
denote the I-sum of Y X, that is, the space

k

z(%_jx,,)

= {w: @ = {wg}, Brpe Xy, 2 el < °°}
. I

with the norm || = 3 |, If we choose X = ¢,, the space of null.
k

sequences, k =1, 2,..., it is easily seen that Z(Z ao) is a B-space with
! Ie

a boundedly complete Schauder decomposition. It is not isometric to:

a dual space since the unit ball has no extreme points. *
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It we choose X, =1 for each k, we get the space I(3'l) which has
%

2 boundedly complete Schauder decomposition and is isometric to
a dual space (since it is isometric with 7 under a natural isometry). This
example shows that the reflexivity of the spaces M is not necessary,
in general, for X to be isomorphic to a dual space. Nevertheless, when X,
is normal, the converse of the second part of Theorem 5.3 is true and is easily
derived from Theorem 4.12.

THEOREM 5.4 ([13], p. 208). A B-space X with Schauder decomposition
{ M} is reflemive if and only if (1) each M, is reflewive, (2) {M,} is boundedly
complete and (3) {M,} is shrinking.

Proof. Without loss of generality we may assume that {M,} is mono-
tone. Then the canonical two-norm space X, is normal and by [2], p. 281,
X is reflexive if and only if X, is saturated and y-reflexive. By Corollary
3.5, Theorem 4.12, Theorem 3.6 and Theorem 4.7 this is possible if and
only if (1), (2) and (3) are satisfied.

Next we prove a duality theorem consisting of two parts which form
the analogues in the theory of Schauder decompositions to theorems
known for B-spaces with bages. The basis analogue of the first part was
proved by Singer [14], Proposition 5, that of the second part by Wilangky
[18], Theorem 2. ‘

THEOREM 5.5. Let (X, | |,) be a B-space with Schauder decomposition
{M,} and suppose that each M, is reflexitve.

(1) {M;} is boundedly complete if and only if {P5(X7)} is shrinking and

(2) {BL.} is shrinking if and only if {Pr(X7)} is boundedly complete,
where {P,} is the associated sequemce of projections.

Proof. There is no loss of generality in assuming that {M,} is mono-
tone. We prove (1) and obtain (2) as a Corollary. By Theorem 4.7, X is k-ref-
lexive.

" Now {M,} is boundedly complete < X, is y-complete (Theorem 3.8)
< X, is y-reflexive (Theorem 4.12)< J(X) = A(k—X,) = A(X,)*. The
last equality shows that k— X, is saturated which, by Corollary 3.5, is
equivalent to the shrinkingness of {P}(X7)}. This proves (1).

To prove (2), observe that X, is k-reflexive if and only if ¥ —X, is
k-reflexive. Thus each Pj(X}) is reflexive. By the k-reflexivity of X,,
J(X) = A(k—X,) so that {J(M,)} is the Schauder decomposition for

A(k—X,). We use (1) replacing X by A4 (X,) and M, by P;(X7). This
gives that {P}(X})} is boundedly complete < {J (M)} is shrinking, that
is, {My} is shrinking. .

THEOREM 5.6. Let X be a B-space with Schauder decomposition { My, P}
Then { My} is shrinking if and only if o bounded sequence {y.} in X converges
weakly to 0 whenever imP;(y,) =0, j =1,2,...

k
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Proof. A bounded sequence {y,} satisfying the hypothesis of the
Theorer is clearly y-convergent to 0. Hence 'Zk -0 v{eakly <« every fe X}
is a y-linear functional on X, <« A(X,) = X+ X, is saturated < {M;}
is shrinking by Corollary 3.5. .

The special case of the above Theorem when {M,} reduces to a basis
may be found in [6], p. 36. ° .

6. Decomposition constants. We conclude this paper with some
remarks on decomposition constants. Let (X, | |) be a B-space with
Schauder decomposition {M;}. Suppose that the decoxgposibion congtant
of {M;} is K,, that of {P(X})} is K, and that 0(X,) is the constant of
quasi-normality of X,. We observed in our Remark 3.2 that 1 < C(X,)
< K,. We shall now show that K, > K,.

TusoREM 6.1. For o B-space (X, | |,) with Schauder decomposition
{M,}, B, = K,.

Proof. Let £ >0 be any number such that

| Sst] o
ke<n LS

for all sequences @, &y, ..., &y, Where x;e M; and n < m. Let fl',fa, ..,',fm
be ahy sequence in 4 (X,) such that f;e 4(X,);, where A(X',,), is the j-th
component of the Schauder decomposition of 4 (X), Denoting the closed
unit sphere of (X, | |;) by 8, we have for n < m,

| Dt =supf| Dh@)]: 0 = Yo s
<n ii<n %
. =sup {t Zf,,(wk)l: % = 2 @€ S}
k<n k

n

< sup {I kgnfk(g wk)f lémk\l < 5}

1
3 :Zn‘wkelS}<§\2fk
k=1 ksm

= §sup ” me,c (Z m,c)

k=1 Ie=1

1

4
1

whence it follows that K, < K,.

COROLLARY 6.2. If the Schauder decomposition for the B-space X is
monotone, so is the Schauder decomposition for A (Xj).

Let K, , denote the decomposition constant of {4 (k"—2X)} (the
Schauder decomposition for 4 (k" — X)) for # > 1. The following Theorem
gives a relation between K, K, and C(X,).

THEOREM 6.3. Let {M;, P.} be a Schauder decomposition for a B-space
(X, 1a) Then

(i) Ky = K, , for n=1 and

1) 1< r(A(X)) K, < K, < K.
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Proof. Sinee J maps X, into B—X,, J(X) < A(k—X,) c A(X)*
and it is easy to verify that »(J(X)} =1 = 7(4(k—X,). Hence k—X,
is normal and the map J from k— X, into k2—X, is an isometry with
respect to both norms. To prove (i), we have by definition,

E, = sup{fzn’qsk
k=1

™| Y ol de A — 3, < m}
k=1

)

= oup{| 3 i | BTG gy 35 im B and m<m} =

so that by Theorem 6.1,
K >E;> K, > K,

and the normality of %™ — X, for » > 1 shows that K, = K, ., for all n.

To prove (ii) we note that since X, is quasi-normal, we have from [3],
p. 117,

I (@) < [ol< O(X )T ()]
for all ¢ X. Hence,

K, = sup {‘,‘Z’:’Fk
=]

i

ijk(;‘*; Fye 4 (l— XY, n < m}

k=1 .

> sup {| kZ T@ttl| 3 7wl aye i,y n < m)
=1 k=1 M

. n m :
> sup {(2 mk'I/C!(Xsy IZ'ka: wie My, n < m}
k=1 k=1
= 1/0 (Xs) .
It follows from our Remark 3.2 that
I<rA(X)) K, < E; = K, <K,

completing the proof of the Theorem.

Remark 6.4 In the special case when the decomposition {BM}
reduces to a basis, that is each M, is of dimension 1, conclusion (ii) of
Theorem 6.3 has been proved by Singer [15], p. 126, although our proof
is somewhat simpler. Singer also observes that 7(4(X,)) >0 and that
(in our notation) K, >1/r (A (Xs)). He gives an example which shows that
inequalities (ii) of Theorem 6.3 are best possible. In this example
K, >1 so that the decomposition for 4 (X,) is non-monotone. This shows
that the canonical two-norm space may be normal (indeed k*—X, is
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normal for each n) without the decomposition being monotone (cf. Re-
mark 3.2). We also note that if the decomposition for X is monotone,
then the decomposition for A (k"—X,) is also monotonc.
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The domain of attraction of a mormal distribution
in a Hilbert space
by
M. KLOSOWSKA (£6d7)

Abstracl.; Let H be a separable real Hilbert space. Denote by II"® the domain
of attraction of normal non-degenerate probability distributions in H. If peIrind),
then

Hfuxnﬁ’p(dx) < 4o for << 2.

Assign to a distribution p in H the family of S-operators S defined by the bilinear
form .

(Sxg,h) = f (=, 9) (@, W)p*—p(ds) for every g,heH.
Jlell<X

In terms of operators Sx we give necessary and sufficient conditions in order that
pelIlnd),

Introduction. The paper is an attempt to extent the known results
of A. J. Khinchin and P. Lévy concerning the domain of attraction of
2 normal distribution on a straight line to Hilbert spaces (see [6] and [8]).

Section 1 of the paper contains the basic definitions and theorems
of the theory of probability distributions in a Hilbert space.

Section 2 includes the them;cems concerning the shift-convergence of

a sequence of distributions u, = [] 4, , with iy, uniformly asymptotically
k=1

negligible to a normal distribution. These theorems follow from the re-
sults formulated in the papers by Varadhan [11] and Jajte [3]. In Section 3
we give theorems which are the basic aim of the paper, viz. we formulate
some properties of distributions bélonging to the domain of attraction
of a normal distribution in a Hilbert space and also the necessary and
sufficient conditions in order that & distribution belong to the domain
of attraction of a normal distribution in a Hilber space.

1. Let H be a separable real Hilbert space with the inner product
(y *) and the norm (|-||. Let M denote the set of all probability distribu-
tions in H, i.e. the set of normed regular measures defined in a o-field &
of Borelian subsets of H. 9t is a complete space with the Lévy—Prochorov

2 — Studia Mathematica XLIII
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