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de g & F soit continue. Soit alors § un prolongement continu de g/F 4 X -

tel que (7]l < llgll. On a:
| [ gdisa— [ 90| < | [ g~ [ 9| +| [ Gt~ [ 2| +| f G~ [ gau].

Le troisidme terme est, par hypothése, plus petit que ellg]|; le premier
plus petit que 2¢|jg|| & partir d’un certain rang d’aprés le lemme 1; quand
au second il tend vers 0 quand » tend vers Pinfini puisque {u,} tend faible-
ment vers u. A

Levve 3. Soient X wn F-espace compact, {u,} une suite de mesures
de Radon positives tendant faiblement vers une meswre de Radon u. L'appli-
oation v de C(X) dans Vespace vectoriel ¢ des suites convergentes & valeurs
dans C définie par p(f) = {[fdu,} n'est pas surjective.

Démonstration. Soit §, la suite convergente définie par S, (p) =0
sip >met S,(p) =1sip< n Silapplication y qui est linéaire et continue
était surjective, d’aprés le théordme de Papplication ouverte, il existerait
une suite {f,} d’éléments de C(X) tels que:

(@) p(fa) = 8y;

(b) |Ifall < % pour tout neN.

Soit alors ¢ une valeur d’adhérence de {f,} dans L(dv) oL

. oo‘ 1
V= .u_}'Z'—zT{:un'
n=1

On vort que [gdu, =1 pour tout neN et f9du =0, ce qui est en
contradiction avec le lemme 2. A
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Hereditarily periodic distributions
by
KRYSTYNA SKORNIK (Katowice)

Abstract. A periodic distribution f of ¢ eal variables €15 o5 &g is called here-
dq
L ' . 08, ... 05,
Among all ¢ satisfying this equality there is always exactly one which is hereditarily
periodic. Hereditarily periodic distributions can be also characterized by their Fourjer
coefficients or by the integrals over their periods. Every periodic distribution is a sum
of hereditarily periodic distributions of some of variables 15 +ves &g An estimation
of Fourier coefficients is given. Also a concept of a smooth integral is introduced as
a substitute for the integral from a fixed to a variable point, which cannot be used

in the cage of distributions.

ditarily periodic, iff there is a periodic distribution g such that f =

Introduction. In this paper we are concerned with distributions in
the g-dimensional Buclidean space, which admit their values in & fixed

_Banach space %. The ¢-dimensional Buclidean space is denoted by R?

and its points by & = (&, ..., £,). Moreover, we shall use the following
notation: T+y = (51+771’ teey £q+77q)7 T—Y = (61"‘7717 ey Eq_”q)’ Az
= (A, .., M)y, @Y = Ept ... &g @y = (ENay ey Eoq)y 1] =
G + &, where y = (ny, ..., 7,), and 1 is a real number.

By hereditarily periodic distributions we understand periodic distri-
butions which are derivatives of periodic distributions.

In this paper we characterize the hereditarily periodic distributions
by a few properties, namely:

A periodic distribution is hereditarily periodic, if for every peB? *
with at least one vanishing coordinate, the corresponding Fourier coeffi-
cient is equal to 0 (v. Theorem 12). 1

A periodic distribution is hereditarily periodie, ift [ f(z)da% =0
for ¢ =1,..., ¢ (v. Theorem 15). ’

The real valued functions of the class Z* (p > 1) form a particular
clags of distributions. They are hereditarily periodic, iff they satisfy
a certain minimality condition (v. Theorem 11).

Tvery periodic distribution f whose values are in & can be expanded
into & Fourier series

f= 2 0y By,

peBY
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where B? denotes the set of all integral points of R? and B, (x)
= exp (2mip-2) (v. [4]).

L. Schwartz (v. [9]) considered Fourier series of real and complex
valued distributions, defined on the thore T9 defined as the set of abstract
classes [#], [#] = {ye R%: y —ze R} For coetficients ¢, of a distribution f
defined on T?L. Schwartz has given the following a symptotical estimation:

lim ———————»- =0
|p|>00 (1+ |10| ’

where % is a number which depends on the expanded distribution. Since
a distribution defined on 77 can be considered, as a matter of fact, as
a periodic distribution, the equality holds also for periodic distributions.
For the Fourier coefficients ¢, of a periodic distribution f defined
in R? which admits its value in %, J. Mikusinski gave, in [4], an estima-
tion of the form .
lepl < M (1+275)",

where M is a number which depends on f and % (the meaning of quanti-
ties P, k will be explained in the sequel).

In the paper [11] an estimation of the number M is given.

The introduction of the notion of hereditarily periodic distributions
enables us to give a further improvement of the estimation. The concept
of a smooth integral of a distribution, which is a particular case of a
primitive distribution, is a basic tool in investigating hereditarily per-
iodie distributions.

This paper consists of the following sections.

1. Terminology and notation,

2. Smooth integral of order % of a distribution f,

.- 3. Hereditarily periodic distributions
4. An extremal condition for hereditarily periodic distributions,
5. An estimation of Fourier coefficients of periodic distributions.

- 1. Terminology and notation. In what follows, we shall use, as far
as poss1ble, the notation from ETD (v. [8]). The set of all non-negative
integral points of R? will be denoted by P?%; ¢, denotes the point, whose
1-th coordinate is 1 and all the remaining ones are 0. If a point & has the
coordinates &y, .., §;,-then the point o e, differs from » only by the
i-th coordinate Whlch is, equal &;4x%;. It will also be convenient to use
the notation: ¢ = (1,...,1) and a" = Mt t¥ where ¢ is a4 number
and & = (3, ..., %)

Let a = (a4, .. ,aq b = ﬂl,. .y B The set of the points ze R
such that o; << &< f; (5 =1,...,¢) will be called a g-dimensional open
interval and denoted by « < a < b or (a, b). Infinite values for a; and f;

icm

©
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are admitted. If o; and f; are finite, then set of points ze RY whose coordi-
nates satisfy inequality o, <& <py (j =1,..., ¢ will be called & g-di-
mensional closed interval aJnd denoted by e <z <b or [a,b].

We say that a function defined in R? is smooth if it is continuous
in R? ag well as its partial derivatives of any order. The class of all smooth
functions with real values and bounded support; will be denoted by 2(R%)
or 9.

If ¢(») is a smooth funetion and % = (x,, .. -y %g) I8 @ system of non-

negative integers, i.e. ke P% then by its derivative of order % we shall
understand the funetion

F i SR Y
(@) = ‘

th(h,---

auq 5 b Eq)

A function f is of elass C™in [a, b] (m = (uy, ..., ) e P9), if all its
derivatives of order < m exist and are continuous funetions in [a, b].

It is known that if a function f is of class C™ and two mixed deriva-
tives of order m differ only by the ordering of differentiation, then the
both derivatives are equal (v. [7]). In other words, in the class O™ there
exists only one derivative of the order m

The symbol

ful@)zf(@) inI

means that the sequence of functions f, converges to f, uniformly in I.

Let @ be an open get in the g-dimensional Euclidean space. A sequence
on(2) of smooth functions is said to be fundamental in @, iff for every
interval I inside @ there exists ke P? and smooth functions @, (x) such
that
in I.

OB (2) = pu(w) and  @,(@) 3

We say that two sequences ¢,(z) and v, (), fundamental in 0, are
equivalent in @ and we write

(Pn(w) ~ yu(®),
iff the interlaced sequence

P1(®), v1(2), @2 (@), o (@), ...

is fundamental.

Tho class of all sequences equivalent with ¢, (%) is denoted by [¢,(2)]
and called a distribution (defined in @) (v. [8]).

We say that a distribution f is of order k = (%1, ...,
exists a continmous function F such that o — 1.

Remark. L. Schwartz considered the order of a distribution with
respect to a measure, namely, the distribution f is of order ke P, if there
exists a measure y, such that u® =7.

%) e P4, if there
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Denote by A(«p(m), p(2), ...} an operation on a finite number of
smooth functions ¢ (z), v(»), ... Such an operation is called regular, when-
ever it has the following property (v. [2]):

If sequences @, (#), ¥, (), ... are fundamental, so is

A (pa(@); pu(@), ).

TBvery regular operation defined on smooth functions extends automait-
ically onto distributions f(#) = [g.(#)], g(@) = [y.(2)], ... by the formula

A(f((b‘), g(@), -“) = [-A(?’n(‘”); P (@), )]

‘Thig extension is always unique, i.e. independent of the choice of funda-
mental sequences @, (), v, (%), ... Multiplication by a number, addition,
gubtraction, translation, differentation and multiplication of a distribution
by a real valued smooth function are examples of regular operations
{v. [2])- The result of an application of a regular operation on a smooth
function is éither a smooth function or an element of #. An element of
a Banach space can be considered as a smooth function in a zero-dimen-
sional space. This convention simplifies the formulation of many facts.
Thus we can say that the result of a regular operation on a smooth func-
tion is always a smooth function. The construction extending the space
of smooth functions to the distribution space can be also performed in
a zero-dimensional space. In this case the fundamental sequences are
simply sequences of elements of & which are convergent in the usual
sense. The exstension turns out to be trivial because, in the case of the
dimension zero the distributions nothing but elements of %.

By a delta-sequence in R? we understand every sequence of smooth
functions 8, with the following properties:

1° There is a sequence of positive numbers a,, tending to 0, such
that 8,(x) = 0 for |2/ > a,, ne N;

2° f&n Vdx =1 for neN;

3° ¥or every k<P?there is a positive integer My, such that o [0 (w)|dn
< M, for neN. na

2. Smooth integral of order % of a distribution f. Let ¢ = («y, ..., a,),
b = (f1y..-, Bg) and let ¢ = (yy, ..., y,) be a fixed point in the open inter-
val I = (a,b) Let 2 be a smooth function of a single real variable such
that sz/l =1 and let the carrier § of A(z) = a(&,—y,) ... 1(£;—v,) De

inside I, i.e. § = I. We introduce the operation

@ By &

Ly [feas = [ at—y)dn [ fo—et+er)dr

» ay n

©
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In the case when f is a function of a single Varlable (1.1) reduces to the
form

T

B E3
Jrwar = [ at—pan [ fx)ax.

* a

If f is a continuous funetion of & in I, then also integral (1.1) is a con-
tinuous function F of the variable # in I. It is easy to see that F@) — f
in I, thus F is a primitive function of order ¢; of f. If ¢ and « are fixed,
then integral (1.1) determines an operation on f which depends only on j.
Let us denote this operation by Z%. By the Fubini theorem, we evidently
have

B4 Bf = 4 EST

for any positive integers 4, j, Jess than g. For arbitrary & = (yl, ceey %)
¢ P%, we define £* by induction, on letting

E° f f Frtey f = F4, L]c f

Besides F =Z*f we shall also use tae more suggestive notation
x
(1.2) Fz) = ff(t)dt"
Ca

If fis a continuous function, then also integral (1.2) is a continuous func-
tion and, moreover, it is a primitive function of order % of f, i.e. F® = f.
A primitive function which is of form (1.2) will be called o smooth integral
of order k of f (zsee [5]). It can be easily shown that not every primitive
function F of order % is a smooth integral. E.g., if f = 0 in I, then formula
(1.2) gives F' = 0 in I, but this is not the only primitive function of order &.
Another example: if f is a polynomial of degree m = (u;, ..., 4y), then
the function ¥, given by formula (1.2), is a polynomial of degree m k.
Evidently, there are many primitive functions which are not polynomials.
E.g., in the case ¢ = 2, the function F(x) = & &,+expé;+s8iné, is not
a polynomial, but it is a primitive function of order % = (1,1) of the
polynomial f(z) = 1. From this example it follows that the class of primi-
tive functions is larger than the set of the smooth integrals. If f is a function
of the class O™, then the primitive function F, given by formula (1.2),
is of clags C™*%. In order to prove this property it suffices to prove it first
for & = ¢;, which is rather trivial, and then apply the induetion.

We shall show, that integral (1.2) is a regular operation for ever
fixed a. i

In the proof above we make the use of the following
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Leyma 1. For any closed interval I, < I such that § < I, and for every
function @ of class C™ in I,, we have

: (gt [ (m-g)
- — 7
(1.3) fG"‘(t)dte" = (G(m)—m f A — 7’7')6‘(90)035;‘) .
84 aj
Proof. We have

&

[ @™ (@—e; &+ ¢7) dr = 6™ D (@) — @D (@ — ¢, &+ ney).

n

Since f 4 =1, thus we obtain hence

ﬁJ
f G a5 = 6D (@) — [ a(n— ;) G0 — o &+ ne;)dn.
%
Under the sign of integral, we can replace n by &;, and write the integral
in the form
By
J (&= 6" (@) dg;.
%
On integrating then per parts, we obtain eagily (1.3).

. In order to prove the regularity of operation (1.2) it suffices to remark
first that (1.2) is an iteration of a finite number of particular operations
of type (1.1) and then to prove that each of them is regular. In turn,
in order to prove that eperation (L.1) is regular we can use Lemma 1.

Let I, = I, 8§ c I,. If a sequence of smooth funetions f, is funda-
mental in I, then there are smooth functions &, in I, suh that @™ = I
in I, for some order m and @, converges uniformly in I,, as n — oco. Sub-
stituting @, in the place of @ in formula (1.3), we see that the expression
in the parantheses converges uniformly, as # — oo. This proves that the
sequence

(1.4) . [ fattydes

is fundamental in I,. Since I, can be chosen arbitrary close to I, this
implies that the sequence is fundamental in I. Thus operation (L.2) is
regular.

Since operation (1.2) is regular, following definition of a smooth in-
tegral of order k of a distribution f follows:

) f e = [ f Falhat],

where f, is fundamental sequence for f, i.e. f = [f,].

©
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For any distributions f and g, the following formulae hold:

z

Jlro+gm)ar - ff dt"+fgt)dt‘

[ifwar <2 f f@yar,  JeRt.

3. Hereditarily periodic distributions. A periodic distribution fin R?
will be called hereditarily periodic, itf it is the derivative of a periodic
distribution, i.e., if there exists a periodie distribution g, such that ¢ = f
(thesign’means that a partial derivative is taken g times, once with respect
t0 each variable).

Not every periodic distribution is hereditarily periodie (see for example
Remark 1, p. 264). The class of .all hereditarily periodic distributions will
be denoted by 2.

TeroREM 1. For every hereditarily periodic distribution h and for
every le PY there exists a wnique hereditarily periodic distribution @ such
that G* = h.

If suffices to prove

THEorREM 1. If h ¢s a hereditarily periodic distribution, then for every
j=1,...,q there ewists a unique hereditarily periodic distribution g such
that g = h.

Proof. Let s be a smooth function of a single real variable such
that s(£) =0 for é< =1, s(£) =1 for £>1. Let h = f’, where f is
a periodic. distribution. Let j be fixed and let f, () = f()-3(&;) and fa(x

= f(2)-[L—s(£)]. Then f = f,+f,, where f; = 0 for §; < 1andf2-0
for >1 Hence there are distributions F, and ¥, such that FE) =f,
and F,ﬁﬁ') =fs, Fy =0 for §< —1 and F, =0 for §>1.

Tf i 5 j, then [F(w+6)—F1(0)] = fi(v+e) —fila) = [fl@+e;)—
—f(x)]s(&;) = 0 for every w, because f is periodic. Thus Fy(z -+ 6;) — Fy(@)
is constant with respect to &;. Since F;(w+¢;) —Fy(2) = 0 for & < —1,
we have Fy(x+e)—F,(z) =0 everywhere. Similarly, Fy(z-+e;)—F,(x)
= { holds everywhere.

Let I = I',+F,. Then F(z+e¢,;)
Moreover, B = fi+f, =f.

Let G(m) =(1+Ej) ( ) 5; (
ig true
(2.1) G(w-+e;)—G(w) =0 for i #j.

We also have
(2.2)  Ga+e)—G@) = (L+&) 2F(2+e)—Flz+2) —F(2)]
—(1+&) [E(z+¢)—E(@)],

—F(x) = 0 for i *j everywhere.

¢;): Then the following equality
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where
(2.8) K(») =F(ox+e¢)—F(v).

The equality K (z) = f(»+¢;)—f(#) = 0 implies that (2.3) does not
depend on &;. Thus G(z+¢;) —G(x) = 0. This means that G(») is periodic.
Since f(z+¢) —f(@) = 0, we have G“)(x) = F ()~ F(z+¢)-f(x). Thus
[69] = B (o) — F' (x4 ¢;)+h(®) = h(w), since F(x)—F(x+e;) does not
depend on §;.

Let g = . Then ge # and ¢’ = k. We shall show that ¢ is the only
distribution with these properties.

In fact, suppose that there are two such distributions ¢, and g,.
Then the distribution g, = g;—g¢, is hereditarily periodic and we have
gl = 0, i.e., g, is constant with respect to &;. Therefore there exists a pe-
riodic distribution f, such that f* = g,. Also f, = f¢~% is a periodic. More-
over, from f{% = g, and from the fact that g, is constant with respect
to & it follows that f, = &;¢,+7, where » does not depend on &;. Thus
Jilz+e)—f1(®) = go(z). Since f, is a periodic distribution, thus gy(z) = 0.

The ploof of the Theorem 1’ is finighed.

It is easy to check that the following Theorems are true:

THEOREM 2. If f s a hereditarily periodic function of class I*, then
1
[ftya@t% =0 for i =1,...,q.

0

THEOREM 3. If f is a hereditarily periodic distribution and ¢e 2, then
the comvolution @xf is also a hereditarily periodic distribution.

We shall still prove

TerorEM 4. If a function f of dass L, is hereditarily periodic,
pe D(RY, Rfl @ =1, 1 is the characteristic fumction of the 1-dimensional

interval [0,1] and a = n*g, then

fﬂ x)dé; = 0.

Proof. We have, by the Fubini Theorem
Jaéf@ag = [fla)ag, f plr)u(&—7)dr,
R

R

—fowdnff (& —7)d

= frp )d, ff}ol—ar VIL(&;) dé,

»l

1
= [olw) s [flo+em)ds,.
Rr! 0
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From the periodicity of f it follows that
' 1 1
[f@+emjag, = [ f)ae
[1] 0
1
But [f(#)dé; =0, because fe # (v. Theorem 2). Hence
0
f a(&)f(2)dg; =0,
which was our assertion.
THBEOREM 5. If o distribution fe # and a1 =m=*p, where 1w is the

characteristic function of the 1-dimensional interval [0,1], pe D(RY) and
jl<p = 1, then the smooth integral
R

- [roa

© 4s a hereditarily periodic distribution in RY which does not depend on the

choice of ¢ and @.

Proof. Let ¢ = (yy,...,7,) be a fixed point in the g¢-dimensional
open interval I, and let ¢ be a smooth funetion of a single real variable,
of bounded carrier, such that f @ =1 and # = m*p. Besides, let the
carrier § of function

A = a(br—y1) ... a(E;—7,)

beingide I. Evidently 2¢ Z(R') and 1% a1 = (L*m)*p = Lxp =1 (see [4]).

Let {f,} be a fundamental sequence of fe 5%, ie., f = [f,]. Then
the smooth functions f,, belong to 5. From the definition of the smooth
integral of order k we get the equality

(2.4) . f fyat =[ f ful0)@],

where, according to the notation introduced in Section 1, the expression
between brackets denotes the distribution defined by the fundamental

sequence ingide.
In order to prove that (2.4) is a hereditarily periodic distribution it
suffices to remark that (2.4) is an iteration of a finite number of particular

operations
(2.5) rwaes = [ fanae]

and then prove that (2.5) is a hereditarily periodic distribution.
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It is known that for every element of the sequence {f,} there exists for some order k = (..., ). We have
exactly one function G,e # such that G =f, (v. Theorem 1'), Thug 5 .
J '
‘e h i 2.7) [oEfumag; = [ (&) 0 (a)az
[fhas = [ atn—p)dn [ ful@—6&+e7)dy & i
¢y o 7 ]
B —_ % (%5 (le—x4e7)
= (=1)9( | ¢"(&) Fy(w)d 9,
= Go(@)— [ a(n—9)Gulo—e;&+e;n)dn. (,,{‘P (&) Fa(a) g
%

Now, the sequence in the big parantheses is a sequence of smooth functions

By Theorem 4 it is easy to see that (constant in &) which converges in I,. This proves thab the sequence

5 . on the left-hand side of (2.7) is fundamental. Since I, is arbitrary, this
f a(n—y)G(@—e; & +em)dn = 0. sequence is fundamental in the whole interval I. Thus operation (2.6)
‘ o is regular.
The sequence @, is fundamental, because it is equal to the sequence of LemMA 3. For any distribution g and every me P? the equality
x .
integrals [f,(¢)di%. Since the sequence G, is a fundamental sequence @ B
Ch ) 8y dlts = (=g (#5-1) )
of hereditarily periodic smooth functions, it defines a hereditarily periodic (2.8) g = \gla) — (u;— 1)1 f AHE = pi)g (@) s
distribution, i.e., o . ' Kl
; g @ ¢ holds for § =1,...,¢.
Cﬂff() 7 = [Gu(@)] = G(a), Proof. Formula (2.8) .was proved for functions g from class C™
) . € . ) (v. Lemma 1). However, it is correct for any distribution @. In order
where G, G ) = J: . T].lus Fhe ?TOOf 18 complete.. o to see it, it suffices to show that the integral
Every periodic distribution is a tempered distribution, i.e., there
are ke P? and a continuous function F of polynomial growth such that . b L :
F® — f (v. [4]). By Theorem 1, for ke PY, there exists a unique distri- f A& — ) g (@) aty
bution Ge 2, such that G = f. Tt is necessary to prove that it is a con- %
tinuous funetion. In other words we have to prove the following is a regular operation on g (v. Lemma 2).
THEOREM 6'. If fe o# is the derivative of some order T of continuous Proof of Theorem 6. It follows from Theorem 5 that the smooth
fumction F, then there ewists a Ge o, such that G® = f, which is also integral
a continuous fumction. z "
‘We shall show a more general theorem, namely: (2:9) Fiw) = c,,f Fo,

THEOREM 6. If fe o is a derivative of some order & of a function Fe (7,
then the distribution Ge o such that G = f, is of class O

Before giving the proof of Theorem 6 we shall prove two Lemmas. By Theorem 1, there exists a unique distribution Ge # which, given any

Levua 2. For every fived pe @ the integral fixed keP9, satisties condition 6% —f. This means, that F =@ and
that the integral is defined. uniquely in the class #. We shall show that

2.6) f P (&) g(w)dé; integral (2.9) is a function of class 0* whenever the distribution f is a deriv-
L ative of order & of a function Fe CP. It suffices to show that, ifhe d1st:.r1—
i @ regular operation on g. ~ bution f is the derivative of some order m = (us, ..., pg) Of 2 function

o
Proof. Let f, be any fundamental sequence of smooth functions g« 07, then the distribution .

in I. Then, for any given interval I, inside I, there is a sequence of o (z) = f f@)dt

smooth functions F,, uniformly convergent in I,, such that FU = f, Ca

where 1 = 1*p, pe Zand [ g = 1 is a hereditarily periodic distribution.
: R
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is a derivative of order (m —e¢;) of another function of class C”. Applying
formula (2.8) in the.case, when the distribution f is a derivative of order
of function ¢ of class C”, we obtain

fm fyd = f g™ () dts = (T(w))™,

where
(__‘ fj)llr-l Bj .
(o) = ol0)= T f A5 (8= )9 0) 8y
and 7'(x) is a function of class C”.

We get the assertion by induction.

TEROREM 7. If fest is a derivative of some order I of a fumction
Fe Lty (p > 1), then the distribution Ge # such that @ = f is a function
of class Lf, y-

The proof of this Theorem is similar to the proof of Theorem 6. We
only need to apply the Minkowski inequality (to see that the difference
of functions of class L” is again a function of class L) and the following

Leya 4. If a function g defined in R" is of dass Lf,, (p > 1), and,
for a fized i, ¢ is a smooth function of a single real variable whose carmer
s inside 1-dimensional interval [a;, 8], then the function

Joledgioag,
Rl

18 of class Lf, ,; (this fumction is constant with respect to ;).
Proof. By the Holder inequ&lity, we have

(fl«p (£)g |ozs)
[(f pearas* (f papas.

Since ¢« 2, there exists a number M, such that |p| < M. Therefore

|f¢ (£)g(@)at;|”

Py
(2.10) | [oteag@ag’< av-x- Jwaras.
Rl

Let @ = (ay, ..., 0;_y, Qipry -o ey Og)y b= (Buy ooy By Biray -y By)- By the
assumption and by the Fubini Theorem, the function on the right-hand
side of inequaliby (2.10) is integrable in the (g—1)-dimensional interval
[@, ]; this means that

| [oe)g(@)asf”
Rl

©
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is an integrable function in [@, b]. Henece it is eagy to see that the integral

| ez pan

. e Rl
exists. The proof of Lemma 4 is finished.
In what follows we shall use the notation o = g1 .. . E4, where
k = (#1,..., %,). Let T? = P* denote the set of all vectors whose coordi-
nates are 0 or 1. Let T7 denote the set of all permutations consisting of 1
s and ¢—14 0’s. It is easy to see that 7% = |J T?. Elements of 79 will

I<ig<g
be used to denote exponents at powers of x or indexes as well. For example,

ifk=(0,1,1,0)eTiand 2 = (&,..., &), then o* = &£ 2.2 — ¢,.£,.
We say ﬁhm'. a distribution f is constant with respect to x* (ke T9), it f is
constant with respect to the coordinates &; for which »; = 1. In partic-
ular, a function which is constant with respect to #° is constant in the
usual sense. For symmetry, we also can speake of a function which is
constant with respect to °; this does not impose any condition at all,
i.e., the function can be not constant with respect to any coordinate.

A periodic distribution. f is said to be hereditarily periodic with respect
to a® (ke T9), iff there exists a periodic distribution F' such that F® = f.

Let 2 be a smooth funetion of a single real variable such that nfl a =1,

‘and let the carrier § of function a(») = a(&,—v,) ... a(&,—v,) be inside
1. Finally, let ¢ = (yy, ..., y,) be an arbitrary fixed point in the interval I.

‘We introduce the operation
(2.11) flo—ta+ke) = [(Alr—o)ff (v — kot kn)dr?,

RY

where Te T% ko = (4,1, .oy #gEy * = (R, -+ -y #gny) and (A(n— o))
= (a(m =y ... (alng~ o).

In the case, when &k = ¢,

(2.12) fle—ex+6;0,) = fﬂ(ﬂ«;'—%:)f(m“eiw+6i"1)d?7i-
Rl

Operation (2.11) is a substitute of fixing variables. It is always feasible
for any distribution f, because the right-hand side of (2.11) is & composition
of a finite number of regular operations of form (2.6) (v. Lemma 6), thus
it is itself regular. This operation gives us a possibility to transfer onto
digtributions many classieal proofs in which a fixation of variables occurs.

The smooth mtegmt f f(t)dt can be defined as the composition of the
regular operation f () dt and of an operation of type (2.11). Since this

definition is equlvalent to the previous one, we get a new proof of the
regularity of the smooth integral.
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LuEMMA b. If f(z) is a periodic distribution (or a fmction c?f c_lass. O".‘,
or a fundtion of dass L, 1, p > 1), then f (m~m7o + ke,) :s a periodic distri-
bution (or a function of class O™, or a function of class Lf, 1, » > 1) constant
with respect to " .

Proof. It can be easily seen, that the left-hand side of equality (2.11)
is an composition of a finite number of integrals of the form

fﬂ(’hmw)f(““f’im +e:n)dn,.

Rl
This implies, that if f is a periodic distribution (or a function of class ™),
then f(z—kz+ ke,) is a periodic distribution (or a function of class ¢™)
constant with respect to z*. o ‘

If fe Lf, ;, then applying Lemma 4 a suitable number of times,
we easily see that fle—kx+%ke,)e If, o This completes the proof of
Lemma 5. o

Using the definition of the smooth integral and definition (2.11),
it is easy to see that for any distribution f the equality

(2.13) fzf("")(t)df”" = fl@) —fl@— ;5 +¢;0,)

& X
holds. Denoting the right-hand side of (2.13) by a%‘ flx) we can write
A

z 5
(e5) € — .
(2.14) Cﬂff D (1) di yﬂutf(w)
Evidently, gy & &
i Aif(@) = A, A (@)
Via Vs Ha i

\

. .
- The operation Ai f(®) is, of course, regular.

Yia n .
Remark. In the classical case the symbol A,f(#) is called a differ-

i
ence operator (v. [10]) and it means simply f(w— e, -+ o,h;) —f(% —e,m--
+ €5%)- . -
LemMA 6. For any distribution f in RY the equalily

& & . X
(2.15) (A @) = AfP (@) for i+
A 23
holds.

& s )
Proof. The operation A; and the differentintion are regular opera-
i .
tions, thus their composition is also a regular operation. This means that
it suffices to show that equality (2.15) holds for smooth functions, which
is simple verification. Thus the proof of Lemma 6 is finished.
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By Lemma 6 and definition of the smooth integral of a distribution i
it follows that

x

& Z
(2.16) [r®a = ... A f@).
(94 71a Yaa

x
Denoting the right-hand side of equality (2.16) by A f(z), we can write
€a
T

Jraa= A

a

Tt is known that if fe (m — (#1515 1)), f™ = 0, then the f can
be represented in the form

#~1 ﬂq'—l

@18) - f@) = ) Sfu@+ . + Y Eifale) (@ = (&, ..., &),
i=0 i=0

where fj;e 0 and f;; are constant in &. (If 43 = 0 for some j, then the
corresponding sum in (2.18) is to be replaced by 0.) The proof (2.18) can
be found, e.g., in the book by J. MikusiAski and R. Sikorski, The
elementary theory of distributions, p. 45. In that book, there is an analogous
theorem for the case, when J is a distribution and the derivative Fm s
understood in the general sense. A similar theorem for locally integrable
functions can be found in paper [12].

If f is a periodic distribution, representation (2.18) holds also with
periodic distributions on the right-hand side. However, this fact does
not follow directly from the general theorem. An analogous remark is
also actual, when f is a function of clags ¢™ or a Tunetion of class IP. (In
what follows, the class L, will be denoted by I2.)

We are going to give a direct proof for these classes, but on restricting
ourselves to the case m = (1, ..., 1). Then, instead of f we shall write f".

It is easy to prove that

(@—0)° = 3'(—1fFa*~*e,
keTd

where, according to the adopted notation, we have (z—¢)° = (E1—1) ...

(&= )y 8PP = ETM L Erand oF =y yia.
Similarly,

Ag = D(=1)g(e—h)z+kd),
¢ keTd
or more generally

(2.19) Ag = 2(—1)"g((e——k)w+7ccﬂ).
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Both the formulae holds, in particular, if g is a smooth function. Since
in (2.19) there are only regular operations, the formula extends automas-

ically onto arbitrary digtributions.
Using formula (2.19) we can now eagily prove

TemorEM 8. If f is a distribution defined in R and if f'(») = 0, then

f@) = — D (—1ffle—Ta+ke,),

k:s'."f)Z

(2.20)

where T = TIN{(0, ..., 0)}.

Moreover, 5 f is @ periodic distribution (or a fumclion of class O™, or
o function of class L), then the members of the sum (2.20) are periodic distri-
butions (or functions of class O™, or functions of class LP).

x

Proof. If f/ = 0, then cAf =0 and, in view of formula (2.19), we

have *
S (—Vfla—ko+he,) =0,
keTd

since (¢e—k)& = »—ke. But this is equivalent to equality (2.20). The
fact that the functions on the right-hand side are in required clags follows
from Lemma 5.

Applying Theorem 8 (and Minkowski inequality for functions of
class IP), we obtain the following

CorOLTARY 1. If f is a distribution defined in R* and if f'(2) =0,
then
(2.21)

1<I<g

where f; are distributions constant with respect to &;.

Moreover, if f is o periodic distribution (or a function of class o, or
o function of class I?, p = 1), then the members of the sum (2.21) can be
chosen so as to be periodic distributions (or functions of class O™, or functions
of class L),

TuEoREM 9. Hvery periodic distribution f in R* is of the form

(2.22) floy = Y fulo),

Toe?
where T is the set of all vectors whose each coordinaie is equal O or 1, fy, are
periodic distributions, constant with respect to o, and hereditarily periodic
with respect to a®".
Proof. Let f be a periodic distribution of ¢-variables. Then g = f'
is a hereditarily periodic distribution. By Theorem 5, the distribution of

©
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the form :
F(z) =cfg(t)dt, where s = m*g, pe Z(RY), f«p =1
4 RI

is hereditarily periodic. Since ' = ', th —f) =
g f'; thus (F—f)" = 0. By Corollary 1,

f—F = Zfi;
1<i<g

where f; are periodic distributi i i
b , utions, constant with respeet to &;, & = 1,..,q

f=F+ }'f,
1<i<g
V\?here Fes# in R“_ (i.fa., F is a hereditarily periodic distribution of g-va-
riables), f; are {peno(he distributions, constant with respect to &;
__ fle—e - )
Let g, = fl=% (1 =1, .-y ¢). Then g; are hereditarily periodic distri-

-~

butions with respect to #°~% and, by Theorem b, the distributions
z
@) = [at)d=  (i=1,..,q a=1%p, geDRY, [¢=1)
Cs ’ 33

are en.lso ?Jereditarily periodic with respect to 2°~%, i.e., there are periodic
distributions F;, constant with respect to &;, such that FE— = @,.
Moreover, (f;—G;)* % =0 for ¢ =1,..., 4 Henee

f e G+ 2 fij ’

1<isg

e
where f;; are periodic distributions, constant with respect to a%+%. Thus

F=F+ ) G+ 3 iy
150 1550 1%
%

This is equivalent to the expression

F=F+ D &+ >t

keTg ksTg

where Fes in RY% G are periodic distributions, constant with respect
to 2%, and hereditarily periodic with respect to #*~%, ke T%, f; are periodic
distributions, constant with respect to %, ke T%.

Repeating this procedure ¢—2 times we obtain

F=F+ D6+ DG+ ... + DG,

ke keT? kcfl’g
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where Fe #, @, are periodic distributions, constant with respect to ",
and hereditarily periodic with respect to 2°~%. In particular, the functions
@, in the last sum are constant with respect to all coordinates. The above
expression is equivalent to (2.22).
Using the above method, with proper modifications, we get
TaeorEM 10. Bvery periodic function of class LF, p = 1 (or of class C™)

is of the form

(2.23) f=2 fu
fee?

where f, are periodic fumctions of class L¥ (or of class ™) constant with

respect to o amd hereditarily periodic with respect to 2" % More emactly,

there are periodic functions Fy of class L (or of class O™ constamt with

respect to «® such that F™ = f;.

4. An extremal condition for hereditarily periodic distributions. Given
a keP? let K be a subclass of L? such that f,ge K = O = g™ and
(feK,g¢ E)=f® 5 ¢®, where the derivative is understood in the

€
distributional sense. Our actual problem is to minimize the integral [f?
0
for fe K. It turns out that in K there is a function f that minimizes the
[
integral [ f2. Such a function is hereditarily periodic.
0

TrEOREM 11.(3) If o function fe K is hereditarily periodic, then for
every function he K holds the following inequality
e e
[r<[he
L] 0
(b)) If k=1 and & function fe K satisfies inequality (2.24) for every
he K, then f is hereditarily periodic.
Proof. (a) Let f be a hereditarily periodic function of clags X, and
let h be a periodic function of the same class. Thus f® = h®. Let & = (xy,
..y %;). Evidently % can be represented in the form: k = 1--k —k,
where ky, kye P9 Tyky = 0, by = (%11, ... %), Too = (g1, .0y Hag)y #1322 0
and 0 < #y <1 for i =1,...,q Obviously, (f@) = (A& and this
means that .

(2.25) .

(2.24)

(F) = ().

Since f', h'e # as derivatives of periodic functions, we have f' =/, by
Theorem 1 and by equality (2.25). Thus (f—hk)’ = 0. Hence, by Corollary 1,

we obtain
h"‘f = Z )
1<i<g
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w-rhere g; are periodic functions of class L? constant with respect to &;
(i =1,..., q). Applying Theorem 10 for g; and then applying Minkowski’s
inequality, we get

b=+ D fu
Kerd

wpere T§ = 1°\{(0, ..., 0)}, £, are periodie functions of class L2 constant
with respect to «* and hereditarily periodic with respect to ° .
e

Without loss of generality we can assume that [fi#0 for keT?.
The function °

. .
o =[{f+ Y et
0 kerd
is a non-negative polynomial of variables ¢z, thus evidently
Oy : ,
B = 2f (f-rZkak)'fn
1 0
kerd
where le T{. Since fe o in RY, f; are hereditarily periodic functions with
respect to #°7%, ke T¢, we have, by Theorem 2,

1 e
[f@)ag, =0for i =1,...,¢, [ful@)@at=Pe = ¢ for ke T,
(] 0

4 =1,...,¢—1. Applying these equalities it is easy to see that dgp/de, = 0
€

 when ¢ [fi(z)dx = 0, i.e., when ¢, = 0 for ke T9.
[}

The function ¢ can reach its extremes values in those points only,
where all partial derivatives vanish. There is only one such point and
all its coordinates ¢, are 0. Since the value of the ¢ tends to co when
¢, — o0, the function reaches its minimum when all ¢, are zero. In partic-
ular, the value of ¢ at ¢, = 0 is not greater than the value of g at ¢, = 1,

L3 €
and this fact can be written as [f2< [h% The inequality holds for all
0

[
periodic functions of the class L? such that h® = f® ke P2

(b) Let k> 1 and let a periodic function f satisfy the following ine-
quality

(2.26) ff2<fh2

for every periodic function he K. We shall show that fe #, i.e., f is a he-
reditarily periodic function of g-variables. If it is not the case, then, by
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Theorem 10, the function f is of the form

f=G+ka:

q
keTy

where f;, are periodic functions of clags L? constant with respect to #* and
hereditarily periodic with respect to a°%; G'e # and is a function of clasg
L of g-variables such that f® = G® for %> 1. Applying the first part
of this theorem we obtain the inequality

szgffz,
0 0

which is contradictory with the assumption (v. inequality (2.26)).

Remark 1. If 0 <% <1, it may happen that, in the class K there
is no hereditarily periodic function f, even if inequality (2.24) is fulfilled.
In fact, let & = ¢, and let K be the class of the functions containing

F(z,y) = exp2nip(z+y)-cosy.
All the functions of this class are of the form
G(@,y) = exp2mip(w+y)+cosy +f(w),
where f(z) is an arbitrary periodic function. It can be easily seen that
in the class K there is no hereditarily periodic function, Clearly B¢ = Gt
and since F(z,y) is a hereditarily periodic with respect to y we get, by
Theorem 11 (a),

bid

27
[Pr@,9)dy < [ @2, y)dy
0

0

for every fixed w. Hence

}ﬂ}nﬁ’”(w, y)dyde < }" }NGZ(w, y)dyde.
00 00

Thus inequality (2.24) is satisfied and but the class K does not contain
any hereditarily periodic funetion. ‘ .
Remark 2. For any fixed k< P? we consider the equivalence relation
hy ~ Iy defined by h{ = h{%. Let ¥ be an equivalence class consisting
of functions of L2 (V can contain non-periodic functions as well). We give
here an example of a class V which contains the hereditarily periodic
function but inequality (2.24) is not fulfilled. Let ¥ be the equivalence
class of the hereditarily periodic function f() = sing with k = 2. It can
be .easily seen that this function does not fulfil (2.24) for every function
of the class V. It suffices to take g(#) = sinz 372z — 37" which belongs

icm°
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to V (k =2) and to note that the following inequality

an 2r

[ (sine4-3n—20 — 3n24p < [ sin*ads

0 0

holds.

5. An Estimation of Fourier coefficients of periodic distributions.
In this section we shall estimate the Fourier coefficients of hereditarity
periodie distributions, determine Fourier coefficients of arbitrary periodic
distributions and characterize the hereditarily periodic distributions by
their Fourier coefficients.

1. It is known that every periodic distribution f whose values are
in & can be expanded into a Fourier series (see p. 245)

f =p§qapE,,.

The expansion is unique and its coefficients are given by the convolution

(3.1) 6y =fE_p*m,

where n is the characteristic function of the g-dimensional interval
[0,¢].

However, some comments are needed. The left-hand gide of the equal-
ity represents an element of a Banach space. The right-hand side of
this equality as a convolution represents a constant function, whose values,
at every point, are ¢,. Thus, this equality implies in fact an identification
of constant functions with elements of the space. This identification does
not lead to a contradiction, because the subspace of constant functions
is isomorphic with the given space.

The expression fH_,*m may be considered as a regular operation
on f, because multiplication by smooth function E_, i3 a regular operation,
convolution by a distribution of a bounded carrier is a regular operation
and a composition of two regular operations is again a regular operation.

Thus, if f, is a fundamental sequence for f, we have

6 =lim f, B_,*m.
N—+00

X fes#,ie, ' =f, where F is periodic, then the sequence f,, = f* 4,
is composed of hereditarily periodic smooth functions, because f, = (F*4,)’
and F+4, are periodic. By Theorem 6, it follows that f is a derivative
of order % of a hereditarily continuous function @, thus f, = @® x5,
= (G*4,)® = @®, where @, are hereditarily smooth functions and
G, = 6. We may write

e
an—P* o= ff"‘E—Z”
0
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since f,, are smooth functions and the integral is meaning full. Thus
[
JoBop* W= ngc)E—zz' !
F .

Integrating by parts % times, we obtain
e
fuBp*u = (—2mip) [ G, B_,,
0
where (—2mip)* = (—2mip,)" ... (—2mip,)"s, because all derivatives Gim

belongs to # (are hereditarily periodic). Since @, ==&, we obtain the
formula

€
(3.2) 0p = (—2mip) [ GH_,.
. [
By (3.2), we get the following estimation for Fourier coefficients of fe s#:
e
(3.3) log| < (2=7)* [ 161,
0

where @ is a primitive hereditarily periodic continuous function of order &
for given distribution f, P = (|4, ..., |p,]) for p = (94, ..., p,).

‘When k is fixed our estimation is the best one amongst all estimations
of the form (2np)®4, where 4 is constant. In fact, let f = #,, then
G = (2mip)~* B, (keP?) is a function such that G® = E,. Evidently

€
¢y = (—2mip)* [ (Imip) B, H_, = (—1)%,
0

and hence |¢,| = 1. By inequality (3.3) we obtain
€ .
leo| < (2B)* [ (27P)*B_, B, =1,
FE
this means that the estimation cannot be improved.

13
Remark 1. The operation [f is an irregular operation. Namely,
[ 0
the sequences of integrals [ f, may converge to different limits depending
0

on fundamental sequence f, (for a given distribution) or they may be
divergent. However, if f is a periodic distribution, then all sequences

[
[ fa ave always convergent to the same limit, independent of the choice
0

of the regular sequence f,,. In fact, we see that
e 4
[fu@de = [ fu@+im@de = [ fu@-+1)n()d
[ 0 ne
= qun(r~t)n(t)dt = (fu*m) (v),
R
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where E(m) is the characteristic funection of the ¢-dimensional interval
[0, e], i‘[iw) =n(—a). It is easy to prove that if fa 18 a regular sequence,
then f, I is a fundamental sequence. Hence it follows already that the

e
limit of the sequence [ f, exists and does not depend on the choice of
0

the regular sequence f,.

3
Hence it follows that the integral [ f is always defined (as an irre-
0
gular operation) for any periodic distribution f

-3
We shall show that ¢, = [ fE_,. In fact:
0

e

e
¢ =lim f,B_,*m =lim f B, = f fB_,.
N0 0

N—>00 °

2. Using the method of determining of the Fourier coefficients of
a hereditarily periodic distribution and the Theorem 9 we can now express
the Fourier coefficients of an arbitrary periodic distribution by the coeffi-
cients of hereditarily periodic distributions.

The following theorem is erucial in this section.

THEOREM 12. A periodic distribution is hereditarily periodic, iff for
every pe B with at least one vanishing coordinate, we have ¢, = 0.

Proof. Let fes#. Then exists a periodic distribution F = 3 9
. ! peBY
such that F' = f. Hence f = 2 6B, , where ¢, = (2wip)°-T,. If at least
peBY

one of the coordinates of p is 0, then p® = 0 and hence 6, = 0.

Let U be a set of all integral points of R?, whose each coordinate are
different from 0, and let f = 3 ¢,E,. Since p* % 0 for pe U, we may
write peU

F=>MN_% g

- Py
& (amip)

where F is evidently a periodic distribution. It is easy to see that B = f.
Thus the proof of the Theorem 12 is finished.

Let f be a periodic distribution of g-variables. By Theorem 9 f is of
the form

(3.4) f = D fus

keTd

where 7 < P denotes a set of all vectors whose each coordinate is equal
0 or 1, f, are periodic distributions constant with respect to 2% and he-
reditarily periodic with respect to «*~* for ke T%
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According to formula (3.1), the Fourier coefficients of a periodic
digtribution f are of the form
tp =fH _p* 1

In the case when f is of the form (3.4), the Fourier coefficients of thig

distribution can be expressed by the coefficients of f;. Namely, we have

TEEOREM 13. For any fiwed pe B and every periodic distribution f,
we have

fE—m* I =flc-E—p* o

when k is the element of T such that »; = 0 iff p; 0.

Proof. By (3.4) we have
(3.5) fB_pru = 3 [ By

keTq

Since £, is hereditarily periodic with respect to a°"%, it follows, by Theo-
rem 12, that its Fourier coefficient f, B_,* m vanishes, whenever a coordi-
nate p; of p such that »;, = 0 vanishes. Since f, is constant with respect
to o*, it follows that f,B_,* o vanishes, whenever »; = 1 and p; 5 0.
In fact

e
fuB_p*m =lim [(fy*$,) (2)B_,(2)do
. Mmooy
e
=lim e % On) (@) da®~% | B_,(x)du® =0,
Mof(fl f

1
because f E_,(@)dz% = 0 and f,* 0, is constant with respect to &;. Sub-
0
sequently, all terms on the right-hand side of (3.5) vanish except for
a single one in which % satisfies the hypothesis of Theorem.

Let f be a smooth function of ¢-variables and let g be a smooth func-
tion of a single variable having a bounded support. We adopt the nota-
tion

i .
(3.6) T*g = [Jo—em)g()ds.
R
For a convolution defined by equality (3.6) the following lemma
holds:

Lemma 7. If f is a smooth function of g-variables, g is o smooth Sfunction
of a single variable &; having a bounded support, then

(3.7) (Frg)¥ =fWdg,  (Frga) — fhgoued,
The proof of this Lemma is quite easy, and will be omitted here.
DervrzioN 8. Let f be a distribution of g- variables, g o distribution

of a gingle variable & and let f, = f*4,, g, = g#3, be their regular
sequences. We say that the i-th partlal convolution of f and g exists,

©

Hereditarily periodic distributions 269

iff, for every regular sequences fn,g,,, the corresponding convolutions

fn*gn represent a fundamental sequence and the integral
f 7 (@0~ eim) g9 (£)) g

exists for every k, I« P% The distribution. determined by that fundamental
sequence is, by definition, the i-th partial convolution of f and ¢, and is
denoted by f *g,

TEEOREM 14. If f is a distribution of g-variables and g is a distribution
of a single variable having a bounded support, then

(frg)® = flrxg,

where both convolutions are umderstood in the semse of Definition S.

Remark. It is easy to see that the convolution appearing in this
theorem is not defined by regular operations.

Proof. The proof of Theorem 14 will be based, among others, on
Lemma 7.

Let f, be an arbitrary fundamental sequence for f and 9, let be an
arbitrary fundamental sequence for g such that the supports of g, are
commonly bounded, i.e., g, = 0 for |£;| > a >0, for all n.

Let I be an arbitrary interval in R? and I' = [a, b] let be such an
interval in R that I = I_,, where I, =[a—e¢;a, b—e¢;8]. Since f, is
a fundamental sequence, there are an order ke P? and smooth functions
I, F such that F = f,, #® = fin I' and F, = Fin I'. The sequence g,
is a fundamental sequence of & smooth functions having their supports
commonly bounded, thus there are an order ue¢ P! and smooth functions
@y, @ such that G¥%) = g, @#) = g and G, = ¢ Hence we obtain

| B Gy — T @] < |(F — F) 2@, | + (7 (6, — @)
< [ B0 F) (@— o)) 1@u(dl drit [ 1P (02— e,5)] [(Ga—6) (v:)ld;
R»' Rr!

<on [ 10w drct f \F (0 — e, | s
R

i
this means that F,*@, = F *G in I. By Lemma -7 we have f,,* In

= Fﬁf):GL’“’“ (7, *G‘ )+e) in T, This means that the sequence f,*g, is
fundamental in I. IL is easy to see that the integral

Ji0ea )l (z) d,

exists for every I, me P“.
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Since, in particular, the sequences f, = f+*4d, and g, = g* 5,, satisty
conditions which have been assumed at the beginning of this proof, thus
the convolution f ;g exists in the sense of Definitioxi 8. It is easy to verify
that also the convolutions f(”)* g and (fxg *¢)® exist in the sense of Defi-

nition . Since f"‘)* 9o = (fo*gn) ("), this proves Theorem 14.

Remark 1. In the proof of Theorem 14 we have obtained a little
more than the theorem asserts, because the fundamental sequences f,
and ¢, need not be regular.

Remark 2. If f iy a periodic distribution of g-variables, f, its funda-
mental sequence consisting of periodic smooth functions, then the sequence

of integrals f fa(t)dt; is always convergent to the same limit, independent

of the chome of f,. In fact

where m is the characteristic function of the 1-dimensional interval
[0,1], m(&;) = (—§&;). By Theorem 14 it is easy to verity that if f, is

a fundamental sequence, then fn: mis also a fundamental sequence. Hernce
it already follows that the limit of the sequence f fu(t)dt; exists and does
not depend on the choice of the fundamental se?quence fu- Therefore the
integral [ f(t)dt, is always defined (as an irregular operation) for periodic
dlstnbutlons and is equal to the distributional limit of a sequence of
integrals f Tn(®)

Moreover, the 1ntegral f f(t)dt is an iteration of & finite number of

integrals f fde, i =1,. ,q, thug
0

e 1 1
(3.8) [fwa = [ar, ... [,
0 0 ]

when f is a periodic distribution. :
By Theorem 12 and Remark 2 we obtain the following criterion for
being a hereditarily periodic distribution:
TueorEM 15. A periodic distribution f is hereditarily periodic, iff
1

(3.9) [fl@yda® =0 for i=1,..,4

0
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Proof. Let f be a periodic distribution and let equality (3.9) hold.
Because the Fourier coefficients of a periodic distribution are of the form

e
6p =fE _p*n = ffE—m
0

we get 6, = 0, provided at least one of coordinates of the vector p is
zero, in view of equality (3.8). Thus, by Theorem 12, the penodlc distri-
bution f must be hereditarily periodic.

Let fe# and f, be its fundamental sequence. By Theorem 1, for
every function f,, there is a hereditarily periodic function G, such that
@@ = f,, and hence

1

[r)as, =1lim [f, @t
0

n->00 §

= lim [@,(t—e;t+6,1)— G (t—e;t-¢,0)] = 0.

It is easy to see that the above equality is true for s = 1,..., q.
Remark 3. It may be noted that, if f, ge #, then also the convo-
Tution
e

(3.10) [e@f—r)ax

belongs to . This is another type of convolution, different from that
given in Deﬁnition 8. The integral in (3.10) is defined by the fundamental

sequence f @n(T) 9y (t— 7)d7, Where ¢, and v, are fundamental sequences

of penodlc smooth functions corresponding to ¢ and f. (It is true that,
if ¢, and y, are fundamental sequence of smooth periodic functions in

RY, then also the sequence [p,(v)-y,(f—7)dr is fundamental in RZ)
[

It is easy to verify that the set # constitute a ring with ordinary addition
and convolution (3.10), as multiplication.
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Correction to the paper
“Random functionals on K{M,} spaces”
(Studia Math., 39 (1971), pp. 233-240)

by
C. SWARTZ (Las Cruces, N. M.) and D. E. MYE RS (Tucson, Arizona)

In the paper in question, the proof of Lemma 4 is incomplete. More
specifically when f(w, -) is approximated by continuous functions f,(w, -}
it was tacitly assumed t. at f,(-,t) is measurable for all » and ¢. This,
however, is not a consequence of the approximation theorem.

Lemma 4 is uged in the proof of Theorem 2 to establish the measuor-
ability of the functions h,(-,?). However, we can construct a separate
proof of the measurability using Theorem 1.

Let I" be as in the proof of Theorem 1 and ze I', where & = (0, ...
oy MyuOpos -+, 0), O,y being the characteristic function of [0,1].
From part (b) of the proof of Theorem. 1

t
LMo, 2) = [ My(s)fu(@, 8)ds = hy (,1)

but L*(-, ©) is measurable and hence 8o is A, (-, t).

Although we have not remedied the defect in the proof of Lemma 4,
Urbanik [1], pp. 569, seems to use the result so it may be known.

‘We also note that line 23, page 237 should read

o

2=U N 4y(9)-

N=1 peK
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