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p-trivial Banach spaces

by
J. 8. MORRELL* (Hattiesburg, Mi.) and J. R. RETHERFORD** (Baton Rouge, La.)

Abstract. A pair of Banach spaces X and Y is said to be p-trivial if every bounded
linear operator 7: X — ¥ is p-absolutely summing. Continuing a study initiated by
Lindenstrauss and Pelozyhski we study various implieations of the statement “<X, ¥
is p-trivial”. We also study the dual notion of strongly p-trivial.

As a by-product of this study we obtain an apparently new; charactenzahon of
the isomorphs of Hilbert space.

§0. INTRODUCTION

This work is based on the papers [17], [18] of Lindenstrauss, Pel-
czyhski and Rosenthal. In particular we present a detailed study of Pro-
position 8.1 of [17]. We will frequently use results and ideas from the
somewhat neglected paper [12] of Grothendieck. In addition we will
make use of two of the most profound theorems in modern funetional |
analysis: the s-isometry theorem of Dvoretzky [6] and the modification
of the prineiple of local reflexivity [18] found in the remarkable paper
of Johnson, Rosenthal and Zippin [14]. Since many of the concepts used
in this work are fairly recent, we list below the definitions and results
we need. '

Classical concepts. All spaces considered are Banach spaces. The
word operator will mean a bounded linear transformation. We shall denote
by £ (¥, F) the operators from E to F. By an isomorphism, we mean
a one-to-one operator that is open: A projection P is a member of £ (H, H)
such that P2 = P. If A is a subspace ( = closed linear manifold) of F then
A is complemented in B if there is a projection Pe (B, B) with P(E) =

If {s)} < B then by [#,] we denote the closed linear span of {w.}
in B.

* Portions of this work appear in the dissertation of the first named author
written at Florida State University under the direction of Professor C. W. McArthur
** Research supported by NSF-GP-20844


GUEST


2 J.8. Morrell and J. R. Retherford

By a biorthogonal sysiem (m;, f;} in B we mean sequences (@) = B,
(f;) = B* such that
Jil#;) = 0.

The expression ) f;(»)a; is the formal expansion of we B with respect
pe=]

K2
to the biorthogonal system (a;, f;). A (Schauder) basis for F is 4 biortho-
gonal system (z;, f;) such that the formal expansion of each we I conver-
ges to # in the morm topology of E.
A sequence (w;)  F is a basic sequence if (x;) is a basis for [2;]. The
Grinblyum constant, K, of a basic sequence (w;) is defined by

T = sup I ﬁf¢(w>w¢][

where ze [#;] and (f;) is biorthogonal to ().
We will have occasion to use the ﬁo]lowing easily proved fact.
(0.1) If (%) is a basic sequence in B with coefficiens functionals (g2
c [#]" and if f; is @ norm preserving extension of g; to B then

1 2K
wt{ 7l <W7

where K is the Grinblyum constant.
For 1< p < oo we denote by 7, the Banach space of sealar sequences

a = (a;) with
- /
(Zlaﬂp)mif 1<p< oo,

) =1

suple] i p = co.
i
By 17 we denote the space of n-tuples with the above norm. Also
by ¢, we mean the closed subspace of I, consisting of those sequences
which tend to 0.

Let (#;) be a sequence in a Banach space B, 1 <p< oo and p’ given
1 1
by —+ = =1. Then
P p
(i) (m;) is weakly p-summing, written (z;)e l,[B], it for each feB*,
(F@)et, A
With the norm ¢,(z,) = sup ( Y If(@) )", 1,[B] is a Banach space;
<t i1

(i) (@) is p-summing, written (@) € 1, (B), if (||my]) e L,

With the norm o, (z;) = { Z: ), 1,(B) is a Banach space; and
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(i) (w;) is strongly p-summing, written (z)el,{E), if for each
(fi) e o [B*], (ful@y)) T,
With the norm o,((z;)) = sup Yi(=;), 1,{B> is a Banach space.
&5’ (f<1

Moreover, we clearly have the set theoretic inclusions
L<CEy < 1 (B) Zp[E]'

(Of course above for p = oo we understand p’ = 1, for p=1p =
and ey, ay, 0, given by the appropriate supremums.)

The principal work for weakly p-summing and p-summing sequences
is [12]; for strongly p-summing sequences, see [3].

p-absolutely summing operators. It y is one of the norms e,, Gy, Op
above we will abuse the notation and write for finite sets {»; ¥ B, y(®).
This is of course meaningful if we consider the sequence (&), &; = w; for
1< N,# =0 for ¢> N in the appropriate space above. ’

Let Te Z(E, F). Then

(i) T is p-absolutely summing if there is a constant ¢ such that
ap(Tm‘i) < Oap (_ma.)
for all finite sets {;}Y, in B; and
(ii) T is strongly p-summing if there is a constant ¢ such that

op(T2;) < Cay(w;)

for all finite sets {z,}7*, in B.

It is clear from the above definitions that T is p-absolutely summing
if and only if T(1,[E]) = ,(F) and T is strongly p-summing if and
only it T{i,(B) < 1,{F>.

The p-absolutely summing operators have been extensively studied
in [17] and [21]. The strongly p-summing operators were introduced
in [3].

We denote the p-summing operators from E to F by II,(E, F) and

" the strongly p-summing operators from E to F by D, (B, F). & m,(T)

and d,(T) denote, respectively, the infimum of the constants C occuring
in (i) and (ii) above, then with these respective norms II,(¥,F) and
D,(E, F) are Banach spaces ([21] and [3]). )

Finally we say that a pair of Banach space F and F is p-trivial, written
(B, Fy is p-trivial, if I (B, F) = Z (B, F), and strongly p-trivial, written
analogously, it D,(®, F) = Z(E, F).

Motivation for this concept is [17]. Our I1-trivial spaces coincide
with the “unconditionally trivial” spaces of [17].

We need the following facts:


GUEST


4 : J. 8. Morrell and J. R. Retherford

(0.2) If (B, F) is p-trivial (strongly p-trivial) then there is a consiant
M such that ‘
op(T;) < M| T e (@)

(0,(T) < M| T 0y () for every TeZ(H,T) and finite set {x;} < B.
(0.2) is immediate from the above definitions and the open mapping
theorem. ®

(0.3) Let 1< p< oo, Then Tell, (B, F) if and only if the adjoint
T e Dy (F*, B).
Let 1< p< co. Then TeD,(B,F) if and only if T'eIL,(F*, B*).

(0.3) is the main result of [3]. (Here, and for the remainder of the

1 1
paper p’ is determined by; + ra =1).

The %,-spaces. Our main concern in the paper is the Z,-spaces of [17].
If ¥ and F are isomorphic Banach spaces, the distance coefficient
of £ and F, d(E,F), is defined by

(B, F) = inf||T]| | 774

where the infimum iy over all isomorphismg from E onto F.
Let A> 1 and 1< p << co. A Banach space B 18 a %, , space if for
each finite dimensional subspace F < E there is a finite dimensional
" subspace B with #' ¢ B < F such that

-

4(B,1;) <2, where n =dimB,

the dimension of B.

A space F is an Z,-space [17] if B is an £, ;-space for some 1>1.
These spaces include and generalize the classical L, (8, 2, ) spaces and
‘0 (K)-spaces. We frequently use the following results of [17] and [18].

(0.4) The conjugate of an Z,-space is am Fp-space.

(0.5) If E is an Zi-space and F an Zy-space then (B, "> is p-trivial
for all p>=1. ‘

If B is an Lo-space and F an Zyspace 1< <2, then {H,T) is
p-trivial for all p > 2.

(0.6) For L p<< o0 an Zy-space contains o complemented subspace
isomorphic to 1,. ‘

Local reflexivity and the bounded approximation property. One of
the most remarkable results of the past few years is the principle of local
reflexivity of Rosenthal and Lindenstrauss [18] whoge proof rests on
a selection theorem of Klée. We use the version. of [14]:
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(0.7) (TEE PRINCIPLE OF LOCAL REFLEXIVITY) Lét X be a Banach
space (regarded as a subspace of X**) and let U and F be finite dimensional
subspaces of X** and X", respectively, and lot & > 0. Then there is a one-
to-one operator T: U—+X with Toe =x for v XU, f(Te) = e(f) for
¢e U and fe F and |T|| | T < L+e.

An immediate consequence of (0.7) is

(0.8) Let X and Y be Banach spaces with im Y << +4-co. Let F be a fi-
nite dimensional subspace of X*, let R be an operator from X* to ¥ and
& > 0. Then there is a weak™-continuous operator S from X* to ¥ such that

(i) R and 8 agree on F; and,

(i) 8]l < (1+ &)l Bl

A Banach space X has the bounded approximation property (b.a.p.)
if there is a constant ¢ such that if B is a finite dimensional subspace
of X there is a Te % (X, X) with finite dimensional range such that
T < € and T restricted to B is the identity.

From a series of papers [15], [14], and [20] the relationship between
various approximation properties and other structures (e.g. having a ba-
sis) are becoming clear. )

While there are no known Banach spaces lacking the b.a.p. it is
now known, combining the results above, that a separable F has b.a.p.
if and only if B is a quotient of a space with a basis.

The Dvoretzky Theorem; &, and ,-spaces. Perhaps the most pro-
found result in the isomorphic theory of Banach spaces is the following
result of Dvoretzky [6] concerning spherical sections of convex bodies
in Banach spaces. )

(0.9) For each ¢ > 0 and each positive integer n, there exisis a positive
integer m(e) such that if B is any Banach space and dimE > n(¢), then there
ewists « subspace F of B such that :

dF, ) <1+e.

In particular, in any infinite dimensional Banach space, there are
finite dimensional subspaces of arbitrary large dimension, nearly isometric
to Euclidean spaces.

This result motivates our next two definitions.

We say that a Banach space E is an &, , space if there is a constant
A >0 and sequences of operators {J,}, {P,} such that

J, P,
n 2, n, 7
1 Tn  Br g,

» where P,J, is the identity on I} and ||P,]| |/, < 1.

In [24] the &, spaces were called sufficiently Buclidean.
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Given p> 1 and 1>1, a Banach space I is called a 2, ,-space if
for each positive integer » there is a subspace U in B with d(U, ) < 4.
A space B is a (F,) D,-space if it is a (&, ;) D, ;-Space for some 1> 1.

Some remarks concerning these classes of spaces are in order.

The %,-spaces are a true isomorphic class and a beautiful theory of
these spaces is now emerging. ‘

However, the spaces in class 5” or 9, have little structure placed
on them. Indeed the Dvoretzky alsomem‘y theorem says that every
infinite dimensional Banach space is in class 9,. It is quite probable
that every Banach space F is an &,-space for some p. As a technical
device, however, these spaces appear useful.

(0.10) (i) For L<p< o0 &< Py Dy, and all containments are
proper; : .
(i) &, € P = Dy and the first containment is proper;

(i) Dy = B, for oll p=1;

(iv) 2, < D, for 1< p< co.

Now (iii) is true since for each n and &> 0 there is an m(n) and
B c 1™ such that d(2, B) << 1+e; for (il) ¢,@l, is an &, space but
not an %-space. For the equality if X is a 2, space then for eachn
there is an B, = X and an isomorphism 7' from B, onto I with [T |17~

. < A By the Hahn-Banach theorem T has an extension 7" from X onto
I with |77 = ||T|. Let @ = T-'T". Then @: X — E, is a projection
and Q< 4, ie. Xe &y ;.

Forl<p< oo,l,isa 9, space (by (111)) but not an &,-space and
1,®0, 18 in &, and not Ly Statemen‘u (iv) is immediate from the discus-
stion. on the _preceeding page. Also, statement (i) follows from (0.6).

It follows from the principle of local reflexivity that B is in &, if
and only if B* ¢ #p,. Most of the statements concerning #,-spaces in [24]
are valid for &,-spaces. However, arbitrary Banach spaces need not
have &, -subspaces for p # 2, contrary to [24]:

(0.11) Ewery infinite dimensional Banach space B contains an infinite
dimensional subspace Hye &,.

Acknowledgement. The authors would like to thank Drs. C. Ste-
gall and 'W. Johnson for many helpful suggestions. Also our thanks is
expressed to the referee.

§ 1. p-TRIVIAL SPACES

We first show that p-triviality is implied by seemingly weaker assum-

ptlonsy We denote by K (X, ¥) the space of compact operators from X
into
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1.1. REMARK. Let 1< p << oo, and let X and Y be Banach spaces.
If either X or Y has the b.a.p., then K(X,Y) is contained in I[,(X, ¥)
if and only if <X, X) is p-trivial.

Proof: Assume that X bas the b.a.p: By hypothesis and the closed
graph theorem, there is a ¢ > 0 such that

IL(T)< 0|T) for all Te K(X, Y).
Let Se#(X, Y) and #,,...,%, be in X. Since X has the b.a.p. there
isa T: X+ ¥, T compact, |T||< M and Tz = for j=1,...,m
Here the constant M depends only on X. Thus, «,(S2;) = a,(S8T2;)
< O||8T &y (2;) < OM||8|| ey (27) L. Sell (X, Y).

A similar proof works if ¥ has the b.a.p.

Since the notion of a strongly p-smmming operator involves only
finite sums we have replacing a, by o, and & bY a, in 1.1, the following
corollary.

1.2. COROLLARY. Let 1< p < oo and let X or X have the b.a.p. Then
E(X,Y)<cD,(X,Y) if and only if (X, Y) s sirongly p-trivial.

Since the space of all adjoint operators in #(¥", X*) is closed the
same argument used above together with (0.8) proves the following result.

1.3. TamoREM. If every adjoint operator T': X* > X* is p-absolutely
summing (strongly p-summing) and ¥* has the b.a.p. then (X', X*) is
p-trivial (strongly p-trivial).

For the next corollary we adopt the following notation. For a Banach
space X, X, =X and X, = X, _,.

1.4. COROLLARY. Suppose X, and Y, have the b.a.p. for each integer

> 0. The following are equivalent:

(8) {Xppn, Yony @8 p-trivial (strongly p-trivial) for all n > 0; and,

(D) (Fany1s Xansyy i strongly p'-trivial (p’-trivial) for all n = 0.

The proof is immediate from (0.3), 1.2 and 1.3.

As an application of the above results we give an apparently new
characterization of the #,-spaces (= isomorphs of Hilbert spaces).

Let Te #(X, ¥). We say that T can be factored through a Banach
space Z if there are operators Toe £ (X, Z) and T;¢ £(Z, Y) such that
T = T,T,. An operator T is Hilbertian [17] if it can be factored through
a Hilbert space H.

We recall the following result (Theorem 5.2, p. 293 of [17]).

1.5. THEOREM. Let X be an Z,-space with 2 < p < oo and let Y be an
Z,-space with 1< r < 2. Then every Te £ (X, ¥) is Hilbertian.

In particular Hilbertian operators can have a Zy -domain and a range
totally incomparable [25] to a Hilbert space. For #-ranges the situation
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is different. We first prove a result which is probably known. However,
to our knowledge, the result does not appear in print.

1.6. THEOREM. Suppose every Te £ (H,F) is Hilbertian and I is
an L -space. Then B is an Ly-space. And, of course, conversely.

Proof. If Te Z(E, F) then by hypothesis there is a Hilbert space
H such that

—

;r
P
H
commutes. Thus we have
. ”

T
—_‘“'”’E*
Ny
AN
H

Since F* is an %,;-space [18] it follows from (0.5) that T hence T is abso-
Iutely summing. Thus by 1.3 (F*, B*> is 1-trivial. The proof now proceeds
as in Theorem 4.2 of [17]. By Proposition 7.3 of [17] there is a projection P
from F* onto I,. Let Z be a separable subspace of E* and Q an operator
from 7, onto Z. Since (F*, B*> is 1-trivial, PQ is absolutely summing
and s0°[21] i Hilbertian. This says that Z is a quotient of a Hilbert space.
Thus by Lemma 3 of [16] B* and hence F, is an Z,-space. We remark
that 1.3 applies since an %;-space has the b.a.p.

Wé now show that a considerably stronger result can be proved.

1.7. TemOREM. Suppose every Te L (H, Y) is Hilbertian and Y is
a D-space. Then H is an Z,-space.

Proof. Let H(E, Y) denote the class of Hilbertian operators from E
to Y. Under the norm p(7T) = inf| 4| ||B|, where the infimum is taken
over all factorizations (4, B) of T through & Hilbert space, H (H, Y) is
a Banach space. Thus by. our hypothesm and the closed graph theorem
there is & ¢ > 0 such that

eIy oI  for all Te 2(H, Y).

Let B, be a subspace of B, dim B, < + co. Then there is an % and a sub-
space F of Iy such that d(B,, F)< 2. Since Y is a 9, , space there is
a subspace ¢ in ¥ such that d(G, %) <A (for each #). Thus we may
choose @ and F < @G in Y and T: E,— F such that 7 is an 1somorphlsm
and {1 =1, ]|T—1{| <22

icm
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Since 4(G,1%) < i and I, has the extension property, there is
an operator T : B - @ such that |T7||<A|Tll =4 and T |B, =T
By hypothesis there is a factorization

B———F
X /;
(T
such that ||4] = 1 and B < C|T” <

Let T = A(B,). Since BA = T~ B]Z is onto F. Let D Z - H, be
defined by D = T-'B|Z. Then D 1s an isomorphism of Z onto E, and
D™ = A|B,. Thus d(Z, By) < |D] | D7Y| < 2042 Let K = dimF,. Since
Z c1,(I') and dimZ = K we have d(F,, I¥) < 20A% Since B, was an
arbitrary finite dimensional subspace of E, K is an .Z,-space.

Of course 1.6 is subsummed by 1.7. However, the confrast in the
vastly different proofs seemns, to us, to.give a- clearer picture of the situa-
tion. *A further comment iz ‘made concerfiing the constants appearing
in 1.6 and 1.7 at the end of the paper.

§ 2. THE GENERALIZATION OF THE LINDENSTRAUSS-PELCZYNSKI THEOREM

We first recall Proposition 8.1 of [17] which motivated this paper.

2.1. THEOREM. Let E and F be infinite dimensional Banach spaces
such that <B, F) is 1-trivial. Then,

(a) <B, 1,y is 1-trivial;

(b) For amy unconditionally convergent series Yuyin B, 3o f* < +oo3
and,

(c) For any ZL-space G, (G, B is 2-lrivial.

Our aim is to obtain the p-trivial and strongly p-trivial versions
of 2.1.

The proof of 2.1 (a) depends on the fact that every infinite dimen-
sional Banach space is a Z,-space and that the notion of an absolutely
summing operator depends only on the domain. Of course this latter
statement is valid for p- absolutely summing operators. Thus the following
is true.

2.9. TaEorEM. If (B, F)y is p-trivial then (B, 1) is p-trivial.

Our next result is the analogue for strongly p-summing operators..
More work is needed since the notion of @ strongly p-summing operator
depends on both the domain and range.

In the proof we denote the canonical operators from B—E" and
E* - E™* by J and J. respectively. .
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9.3. TERoREM. Let 1 < p < -+ 0. If (E, F) is strongly p-irivial and F*
has the b.a.p. then (L, Fy is strongly p-trivial.

Proof. If <H, F) is strongly p-trivial then by (0.3) and 1.3 (F*, B
is p'-trivial and so by 2.2 (F*, 1, is p’-trivial. Again by (0.3) and 1.3
(L, F**y is strongly p-trivial. Tet (f)elu[F'l1(@)el(l) and T
e ZL(ly, F).

We want to show that > {T'z;, f;> converges.
i=1

Since <Tx;, fiy = (JTwm;, Jof;> and JT is strongly p-summing, it
suffices to show thab (Fuf}) € by [F™*]. But if pe I, o(Jufy) = Jelp)(f))
and Ji(p)e F** and so Ylp(Jufi)[?' <-+oo.: Thus <y, ¥> is strongly
p-summing. :

Sinee (I, 1,y is 2-trivial (indeed I1-trivial) Iy, ley 18, by 1.4,
strongly 2-trivial. Since the identity i: I, — I, is not strongly 2-summing
(since its’ adjoint is not 2-absolutely summing) {15, &> is not strongly
2-trivial. However, ¢ &,. Indeed the following is true.

2.4. TrroreM. If (B, F) is strongly p-trivial and Fe &, then (H, 1)
is strongly p-trivial.

Proof. Suppose F is an &, ,space. Then there are operators Iy
o, Puyn such that |7, [P < A and P,J, is the identity. If ()Y,
< Eand TeZ(B,1,), let By = [Tw;: i< N] and P: 1, H, the cano-
nieal projection. Since ¥ is an &, ,-space there is a g £ (B,, ') such that
ol lo~ I < 4. I£ Fy = (B,) let pe £ (Fo, ") be such that [ly] v~ < B
where m = dimF,, and 4 and B are absolute constants. Then

i=1,...,N.

By hypothesis J,,ppPT < D, (B, F) and so by (0.2) there is a constant M
. (independent of the ;) such that

0o (T mpppTa) < Ml 19l llell 171] 0 () -

Te; = ¢y PpdpePTw, for

Thus
0p (L) < Nl | ™ | Pl o0 (T yp P L)
and so
op(T;) < ABAM ||T'| oy ()

ie. T is strongly p-summing.

Ag a corollary to 2.4 we obtain a generalization of one of the main
results of [24].

2.5. COROLLARY. Let Ee¢ S, amd F be infinite dimensional. Then
{E, Fy is not p-trivial for any p > 1.
) Proof. I (B, F) is p-trivial then (&, I,)is p-trivial and so {ly, B*>
iy strongly p'-trivial. But F*e< ¥, and so by 2.4 (b, is strongly
p’-trivial, which is a contradiction.
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2.6. COROLLARY. Let B and F be infinite dimensional spaces. Then
there is an infinite dimensional subspace By in B (F,in F) and a T< £ (E,, F)
{SeZ (B, F)] such that T¢IL,(B,, ¥) [S¢D,(E,F)]. (In particular,
8'¢ IT,(Fy , B*) for any p>1).

Proof. By 2.5 we need only choose B, and F, to be &,-spaces. This
is possible by '(0.11).

Before giving our next result we recall the following fact: If Y is
2 finite dimensional subspace of I, and &> 0 then there is a subspace Z
of I, dimZ =n< 400, Y Z dZ,))<1+e and a projection P
of 1, onto Z with [Pf<1+e (If one replaces 1+¢ by some suitable
constant A the same is true for any &, -space.)

2.7. TeEoREM. Let B be a Banach space and F a D, ,-space for some
g>1. If <B, F) is p-trivial (L < p < o) then (B, is p-trivial.

Proof. Since {E, F) is p-trivial there is a € >0 such that II,(T)
< C|T) for all Te Z (B, F). Let Se & (E,1) and ,...,2y be in E.
Let Z be a subspace of 1, such that dim Z = n, d(Z, 1) <2, Z = [Tu;:
4 < N7and such that there is a projection P: I,—Z with |[P[| < 2. Let G
be a subspace of ¥ such that d(@, I2) < A. Then there is an isomorphism T
from Z onto & with [|T =1, [T~} < 24 Let Re (¥, F) be defined by

= TPS. Then |[R]| < 2|8ll, IT,(R) < 2C||S|. Thus if Re(S,) denotes the

restriction of R(S) to [;: 1< N then IT,(S,) = IL,(T™'R,) < |71, (R)
< 402||8|. Since (2,)Y, was arbitrary IZ,(8) < 4Ci||8| and hence <¥, 1,
iy p-trivial. Of course, 2.7 is a generalization of 2.1 (a).

2.8. COROLLARY. Let E be a &, -space and F a Banach space with
F, F* having the b.a.p. If (B, Fy is strongly p-trivial 1<<p< o) then
lyy By is strongly p-trivial.

Proof. If (&, F) is strongly p-trivial then by 1.3 (F*, B* is p'-tri-
vial. Clearly B* is a &, ,-space. Thus by 2.7 <F", I, is p’-trivial and so
I, ) is strongly p-trivial.

The results of this section sheds some new light on a conjecture of
Grothendieck. Recall that an operator T'e £ (H, F) is nuclear if it can

De represented in the form Tx = Yf;(@)y; with (f) = E* (y;) « F and
i=1
Dfdl < +oo and sup|y,| < oo [10]. Grothendieck [10] page 47, has
n

conjectured that if every T'e % (¥, F) is nuclear then min(dim F, dim F')
< +oo.

Tt is known ([17] page 319), that to answer this problem of Grothen-
dieck it is enough to show that under the above hypothesis F is an Z-
space. With the following observation it follows from 2.4 that to answer
this problem it is enough to show that ¥ is an #»-space, a much weaker
condition than the above.
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2.9. REMARK. Lat Te % (B, F) be nuclear. Then Tell,(E,F) and
TeD,(B,F) for every p.
Proof. The p-absolutely summing assertion is well-known. If (=)

c L,(B), (9) = L, [F*] and To = 3 f;j(®)y; is a representation of T
=1 ‘

satisfying the above conditions, then

Z”|<Tw¢,yi> = | D h@aw,)]

i=1 i=1  f=1

< 2 15 e (9 tp (o) s Il <+ o

Again the notion of & nuclear operator depends on both the domain
and range. To overcome some of the difficulties in working with such
operators, the notion of a fully nuclear operator was introduced. An
operator Te % (B, F) is fully nuclear [23] if the astricted operator T,: F
— T(B) is nuclear. Motivated by this we say that T« £ (B, F) is fully
p-summing if the astriction T,: H— T(E) is strongly p-summing. The
proof of 2.9 shows that a fully nuclear operator is fully p-summing for
any p. Denote the fully p-summing operators from ¥ to T by §,(¥, F).
Clearly i Z(B,F) =%,(E,F) then Z(I,F,) = D,(B,F,) for any
P, = F. Thus by 2.6 (choosing F, to be an & y-space) it follows that & (&, F)
=, (B, F) it and only if min(dim #,dimF) < - oco. This together with
the above remarks gives a new proof of [23].

§ 3. WEAKLY p-SUMMING SERIES AND p-TRIVIALITY

We now consider the implication 2.1(b). Using the same argument
as [17] for 2.1(b) one can prove the following result.

3.0. TarOREM. If (X, Y) is p-trivial and 1< p <2 then

LIX] e 1,y ().
~-p

2

Theorern 3.7 below shows that there is no comparable result for
p > 2 and arbitrary Y. Of course the proof of 3.0 rests on the fact that
every infinite dimensional Banach space is a 9,-space. We show in 3.11
below that there is & true generalization of 2.1(b). An immediate corollary
to 8.0 is the following result.

CoroLLARY. If <X, Y is strongly p-trivial, p > 2 then

lp‘[yﬁ < l_m_‘ (Y.

2=

icm
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Theorem 3.0 above shows that the result of Grothendieck [12] is the
best possible. We now outline a known technique for constructing basic
sequences. This is then used to generalize a result of Grothendieck [12].

Let P and Q be linear subspaces of a Banach space X. The inclination
of P and @ is defined to be '

I(P;Q) = inf{lo+yl| @< P, lz| =1,y<Q}.

Let (#;) be a sequence of elements in a Banach space X and let L(x;)iv,
be the finite dimensional subspace spanned bY {5, Buiiy---s Zm} We
define the indew of the ordered n-tuple (x;)7_; to be

0(@)i=1 = mm{-l (L (06:)715 L(wi);ia=p+1)‘ 1<p< %}.”
The index of the sequence (x;) is defined by
02 = mE{B (@), | > 1}

3.1. PrROPOSITION. Let X be a Banach space and (w;) a sequence in X.
Then (;) is basic if and only if 0(z;)i2; > 0.

3.2. TEEOREM. Given ¢ > 0 and a finite dimensional, subspace P of
am infinite dimensional Banach space X, there exisis an infinite dimensional
subspace @ of X such that

I(P;Q)>1—e¢.

3.3. THEOREM. Let (.'Jr:i);?’f__,-k_ﬁ_1 be o basis for Py, where (i), i an
increasing sequence of positive integers. If

e(mi);},f_l—}—l Za>0

for each k, and for any integers m, n

I(P,® ..+ Ppy Py ® - ®Ppin) 2 >0,

then (w;) 4s basic and
af?

Omiza =5

These results arve essentially due to Gurarii [13].

Next we observe some properties of sequences in infinite dimensional
Banach spaces.

3.4, LEMMA. Let X be an infinile dimensional Banach space. Then
for amy positive integer n and any & > 0 there is o sequence (y)r, in X such
thet Yyl = 1 and such that if (A;)j., is any collection of real numbers,

<oz
=1

“j}%yi
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and

B(y’b =1 / 1 + 8

Proof. Let 7 be a positive integer and ¢> 0. Then by (0.9) there
is a subspace U of X such that d(U, 1) < 14e. Thus there is an iso-
morphism T from I3 onto U such that |[7] =1 and |77Y <1+e If
(6;)7_, is the unit vector basis for I}, let o, = T'(¢;) for each 4. Then

1270l = 1T 12 (eadll = 1T (ea)ll = feal -
Thig implies that |z > L 1 Let y;, =

for each ¢, and congider
. Then 1t 20 ,n

HZ W = 2 M Tl (e
1 a0 N2

B T(_Z il < 2%l o

- A 2] \2\ 2
) g”_”w z"_(Z(umfn)z)

(1+e) LZﬂ zg)”’.

i=1

< ;( % Ml,|2)”z =
N

1+4¢

n n
Thus- ||22,»yi]]< (L+e) ( > M), and (y,)%, is the desired sequence if
b

1
we show that 0 (y;)i-, > >0 ‘We do this by showing that 0 (z;);_, =

Let I<p<<m,weL(w)
z = Y‘aﬂ'(e
¥1

1
1te
_./1 a’iT(e'i)7

=

- and ze L(@) . py1- Then w =

||T( 5‘ a;¢;)||; hence
‘2 ”2“‘% Iy
=z HZ“ HT(ZM)

and. |g+w| =

(L&) oo > 77| Zum)

»
> S
Fe=

= [lwl].
Thus

1
T Il

Iz +wil = Tre

icm
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1+¢, and hence 0(%)171 1+e. This completes

Consequently, 0(x)i., =

the proof.
3.5. LemmA. Let (x;) be a sequence in a Banach space X such that
> o0 /
(*) | X aa] < ( 3 )" (1 +e)
i=1 im1

for every square summable sequence (4;). Then

D)7 | e X ot <

—1%5— > sup {(2 ™ ()

Proof. Define a linear operator S from I,into X by 8((4))
for each (4;)el;. Then by (x)

Istall = | 3aa] <t

Hence § is continuous and |8} <

1} for all p =2

[>=]
= > Aa;
=1

v 34" <

=1

< (X+&) A, -

1+e Now consider 8" from X* into l,-

Then
(8° (@) () = 0" (8((4) = 0 3 h) = D hea” (0)-

Sinee (4;) is arbitrary in I, 8*(z*) = (2" ()2,
= sup{I8* (")l | 2™l <1}

= sup {(2” " (@) | Ia* <1} > sup { Z lo* (@

SUP{( | (@) P) 2] Jla"]| <

a—l

(L+e) > IS] = 18"

2P| [l <1}

Hence (1-4¢)= 2 and the
proof is complete.

3.6. COROLLARY. If X is an infinite dimensional Banach space and

1} for all p=

1
& > 0 then there is a sequence (y,)7, in X such that ly| = 1, 0(y)ies > E

and

(1+¢) = sup Z o )" o'l < 1}

3.7. TuEOREM. If X is an infinite dimensional Banach space and (a;)
is an clement of ¢, with 0 < a,< 1, then there is a basic sequence (;) in X
such that ||z;|| = a; for all i and

15 sup{[ 3o @t o*

i=1

X o< 1)
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Proof. Let « = (L —sup(e,;)). Then
) i
(2) 1—2a = sup(a,)-
. 11

and 1 > a > 0 since a;——> 0 and 1 > a;. For each positive integer & select
i, inereasing with %, such that

a
(b) if 4 > 4; then a; 2k+1

. Since X is infinite

1
(1—a)
dimensional, we can select (y;)i, such that [y = 1,

Let ¢ =Ii—. 'Then e>0and 14¢e =

1
e(y) —a,
ili= 1 +

a,nd»l— =14s> sup{(Z]w () )1/2 ll¥]] <

Gorollary 3.6). Let 4, = ayy; for 1< i<y, Then 6(;)iL,>1—a and
&;] = a;. For convenience, lot 4, = (%)wl: where z; = ; for 1<i<4,
and 2z, = 0 otherwise. Let &(4,) = sup {( |m (#)P)"*: |lo"| <1}. Then
X I
ea(dy) = sup{( 3 la"))": lo¥l< 1}
=1

!
= sup{( 31" (@) )" 1o < 1)

=1
= sup | Zl’iw*(aiyl B et < 1

i=1

< (supay) sup | 2 I (gal?) s ¥l < 1))

te=]

=

{the last inequality is due to (a) and the selection of (y;)iL,). Thus g,(A4,)
< (1—2a) (

<(1—2a)(

1—a
" Now select a sequence (g;) with 0<<g <1 and H(l——ei) = p for

some f >0, and let By = [(#): ¢<<4;]. Then by Theorem 3.2 there i3

1} (this is possible by,

icm
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an infinite dimensional subspace of X, say Fy, such that I(Hy, F,) > 1—s,.
Since F', is infinite dimensional there is, by Corollary 3.6 a collection
()41 in F, such that

vl =1, e(?/’i)‘t‘:iil+l =1l—a,
and

Iy

g = | Y e wor ™ 1ol <)

i=1+1

Again letting @; = a;y;, we get |zl = 4y, 6()2; 1, >1—a. H 4, = (2)2,,
where 2; == @; for 4;+1< i< 14, and 2 = 0 otherwise, then

&2 (4s) = sup {( ff )" el < 1)
—sup{( 3 @) e <)
i=i7+1

= sup > l2* (@) Jo*il <1}

i=ipt1
i
<( sup (@))(sup{( 3 le* o)™ Io" < 1})
1_1_’<1<12 i=i1+1

3l

(the latter inequality is due to (b) and the selection of (yi)ﬁiil +1)- Thus
£a(4y) 2"; (—li—a) Let B, = [(2;): i< 4,] and choose an infinite dimen-
sional subspace F; of X such that I(E,, Fy) > (1—¢,). In the same manner
as above we get a sequence (;)73. Liptl in Fy such that |l = a5 0(#)24,41
> 1—a, and & (4;s) < (f_) (—ii—a), where A, = (2,), with 2z, =z; for

23
tp+1< i< i; and #;, = 0 otherwise.
Oontlnmnv in thig mannel we get for each % an infinite dimensional sub-
space F;, and o collection (#;) K141 in F), such that ||z = a;, B(ml)mk 1
1
= 1—a, and &(d;) < (—27) (—1—-—), where A4, = (2;)52, With z =; for
[

i+l < i< 9 and 2, = 0 othghwise, and I(By,, Fy) =
B, = [m 1 ey ]

1—e¢,_; where

2 — Studia Mathematica XLIIL.1
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Now,
af@m) =sup{ Y1a" @) o< 1)< Yeldy)

fo-nali) S3(ek]
=(1ia)[1_<‘“"‘2_;’?] <(E%Z) [1—a] = 1.

Ie=2

" ‘
Thus 1> sup {(21‘ [ (@) )2 0¥ < 1} and () is the desired sequence.
This completes the proof. s

The above proof, combining ideas of Gurarii [13], Grothendieck

[12] and Dvoretzky [6] is very useful for constructing operators of spe-
cific fypes.

To illustrate the technique we prove the following theorem.
3.8a. THEOREM. Let X be o Banach space, 2 < p < oo, ‘aind; &>.0.
If Y is an Loy, -space and (X, T is p-trivial then X is finite dimensional.
Proof. Since every infinite dimensional & ~Space contains a comple-
mented copy of I, for 1< g<ooib sufflees to prove the theorem for
= lyppa-
Thus choose (4;)ely, Nk, with 0<a; <1 (eg. (

-]

1
. ), )
Since (@;)e 6y, by Theorem 3.7 there is a basic sequence (w;) such that

llm] = a; for each ¢ and ¥ |o*(s,)/° < oo for every "< X*. Let (f,) be
. i=1 !

a sequence of norm-preserving extensions to all of X of the associated

sequence of coefficient functionals. Then by (0.1)

o<l <2

6t y; = 7 f, T for each 4, where (¢;) is the unit vector basis for ly..,-

Define T, (x) 2 fi(#)y;. Then for each weX,
i=1 )

12, = H Z o), H fﬁ;jl) N
(; ftfl)?” 2p+')1/2” " < | (é | wi‘]”"l")l-”“’*
= )

<t Diaer,
i=1

p-irivial Banaoch spaces 19

Hence r]]T (@)l e

< Jlaf| - ][(a,)]]lgp e and (T,) is pointwise bounded.
If n > m and weX, then

1T (@) = T (@, = | D File)cl,

n
1f2p+8
+

Thus (T'(x,)) is Cauchy for each x since (a;)e by, .. Thus by the Banach~
Steinhaus theorem T'(z) = 2 fi(®)y; is continuous. For N € w,

N
P ft(mk)a-,@
g”w")”’z“‘ —2 12 Wl lopie
N- . .
= M\” ____a_;;__“ =_~—1_“ :
Oy

Now 3T (m)|P = + oo since (a,)¢ L, and so T' is not p-absolutely
k=1

summing. This is a confradiction; hence X must be finite dimensional.
This completes the proof. .

A gtronger theorem is true for 1< p < 2. However, the method of
proof used in 3.8a is no longer valid.

3.8b. TeroREM. Let ¢ > 2 and 1< p< 2. If Y is an &L space and
(X, Y) is p-trivial then X is finite dimensional.

Proof. Since Y contains a complemented subspace isomorphic to
1, we may suppose ¥ =1l Since a p-summing operator is r-summing
for r > p [21] we may suppose p = 2. Suppose X is infinite dimensional.
By (0.9) we can then find for each integer n a subspace X, of X, dim X,, = »
and &(X,, ) <1+e Let #,...,2, correspond under this s-isometry
to the unit vector basis u,, ...; u, of I and let ey, ..., ¢, denote the unit
vector basis of I7,. Also let fy,..., f,,, denote Halin-Banach extensions

-of the coefficient funetionals of @, ..., #, $o all of X and let (v,) denote

the unit veetor basis of 7,. Choose (&;)el, with Z]é]“ =1 and 2 | 8%
= -hoo. Let (B;)el, with Z’ﬂz = 1. Consider i=1

R LI SLI
where R,((4))ie: = 3 A:8;u;, T, is the s-isometry of (0.9) and §,(x)
=£‘fi(fv )v;. Since, by hypothesis, <X,%,> is 2-trivial and by [17]
s oy 18 2-trivial there is a constant ¢ > 0 such that
D8)<CIS,|  and (R, < Cl[R,]
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for all #n. Thus by Theorem 4 of [21],

, I, (8, T By) < Tl T (8) T (R,) <
Since the domain of 8,7, R, is I it is easily checked that ,(8,T,R,)
= anéiﬂil. Thus ﬁ'f&iﬁil < M for all » and it follows that (8;)el,,

P | i=1

contradicting our assumption. Thus X is finite dimensional.

Actually, by 2.7, ¥ need only be a 9,,,, space in 3.8a. Since a D~
space is a Z,-space for all p > 1 and a & -space we obtain the followmg
corollary:

3.9. CorOLLARY. (a) If X is @ Banach space and Y is a D -space
them (X, Y is p-trivial (1 < p < o) if and only if X is finite dimensional.

M) If X*isa Vl-spuce and Y* has the b.a.p. then (X, ¥> is strongly
p-trivial (1< p < co) if .and only if X is finite dimensional.

 The proof of (a) is immediate from the above discussion and (b) fo-
llows from 2.8 and 1.3.

Using the argument of 3.8a with e.g. a,
congtructively prove the following result.

3.10. TEEOREM. (a) Let X be a Banach space and Y an infinite dimen-
sional Z-space. If 1<p < co and (X, X) is p-trivial then X is finite
dimensional.

(b) Let X be an infinite dimensional y-space, Y o Bamach space
with the b.a.p. and 1< p < oo. If (X, X) ds strongly p-trivial then Y is
Jinite dimensional.. ‘

We now prove the generalization of 2.1(b).

3.11. TerOoREM. Let Y be o Dy-space; L < p < o0, ¢ > 1 and X o Ba-

(L+&)C* =M.

=(ln(n+1) ! one can

nach space. If (X,Y) is p-trivial then'lp [X] ds contained in 1,,.(X).,

Proof. Since (X, ¥) is p-trivial by Theorem. 2.7 (X lpgy is p-tiri-
vial. Let (1) be a sequence of real numbers such that Z‘JM" =1 and
let ()el,[X]. Define TeZ(X,1,) by T(n) = 2(/1)””( m(m))e.i where

el

each o} is chosen in X* in such a way that |lo7] = 1 and @ (a;) == ||n,]|
and (¢;) is the unit vector basis in lpg- Then

(2 I;Ll/p MHGL “7)1_1)1/1941 "I/'H ( 2 lq)l/m”a,,” IIWH

=1

]lT (@),
Hence T <1 and

17 (@lh,,, = | Zzifpwk (@)en], > 12" lo

e

icm°
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for each 4. Hence

(S adt?) < ( 3 o)

=1

< my(Tysup | 2.0 | (@) )™ o < 1}
i=1

< ey () |T) < My ().

Thus 2) lz;]” << oo for every sequence of real numbers (4;) in 7, with
il )“q = 1. Thus (e ]”)75, ¢ (%) - Thus 2 fl™ < co.

Letting p =1, ¢ = 2. We see that 2 1(b) is an immediate conse-
quence of 3.11.

We now give the dual result.

3.12. COROLLARY. Lot 1< p< o0,q>1 and let X be a & (pgy-SPace
and Y* have the b.a.p. Then, if (X, ¥ is strongly p’-trivial then l [ X*1
is contaimed in T,,.(X*).

Unfortunately the hypotheses of 3.11 and 3.12 are rarely met.

3.13. COROLLARY. Iwaa wgSPace p =2, ¢ > 1, X has the b.a.p.
and (X, X is p-trivial then X s finite dimensional.

Proof. By 3.7, if dimX = + oo there is an (z, ;) e L, [X] with lzg|

1 . . .
= —  ie. (x >1. A1,
meED)’ ie. (w;)¢1,(X) for any g=> 1. This contradicts 3.11

§ 4. REMARKS AND UNSOLVED PROBLEMS

In this section.we make some remarks concerning the preceeding

section and raise some unsolved problems.
" REMARK 1. For p> 2 there is no analogue of 2.1(ec).

Indeed (I, is p-trivial for 1< ¢<2 and any p >
by 3.10 if (X,7.> is y-trivial for any y then AimX < - oo

We do not know if there is any analogue for p<2. Th1s question
is closely related to the following problem.

ProBrEM 1. ([17] p. 319.) If (X, XD is p-trivial for some fized p,
1<p<2is (X, Y 1-trivial? '

A somewhat weaker question is the following.

Pro®uEM 2. If (X, ¥) is p-trivial for some fized p, L<p <2 4s
{6y, X> 2-trivial?

Of course there is a dual to 2.1(c) for strongly co-summing operators.

ReMARK 2. If <X, Y) s strongly oo-trivial then for any Zy-space Z, *
XY, Zy is strongly 2-irivial, whenever ¥’ has the b.a.p.

2. pre'ver

&
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Indeed if (X, ¥ is strongly w—summing’ then <(¥', X'y is 1-trivial
and so (7', X' is 2-trivial. This is true since Z' is an &-space [18]. But
then (¥, Z) is strongly 2-trivial. : _

: en’lghe;e a?re obvious problems analogous to Problems 1 and 2 fqr strongly

-summing operators. .
¥ An a;f%firmative answer to the following problem would settle several

of the outstanding problems concerning p-trivial spaces.

PROBLEM 3. Is every infinite dimensional Banach space either a &1, &y
or Fo,-space? . o

In our next remark we summarize what is known about p-triviality
and Z,spaces.

REMARK 3. First recall that if X is an Ly-space and ¥ and.z’?-space
1< g< 2 then (X, ¥> is p-trivial for all p > 2. We show thai th.%‘ is false
for 1< p< 2. Indeed if X is an L-space and 1< p <2 then if (X, Y)
‘is p-trivial, Aim Y < + oo. ‘ T -

Indeed if (X, Y) is p-trivial, (X,l,) is p-trivial. Since X is an
2, -space, X* is an #,-space [18] and so ([17] Prop. 7.3, % 311) X has
a’ complemented subspace isomorphic to ' But then X™ containg an
isomorph of o,. . - o

Choose (a;)e Is\l,, a; > 0 and define T by T'(s*") =.21w**(f,-)aiei,

i=
where (f;) corresponds to the unit vector basis of I, and (e;) is the unit
x .
vector basis of l,. Then |[T2™| < Hw"*[\sqpllf,,ll(izlag)m and T is conti-

nuous. Define SeZ(X,1,) by Sz = ) fi(®)a;e; then cleaxly .»S’** =T.
Tf (u;) corresponds to the unit vector basis of ¢, in X™* then (u;) is weakly
p-summing. But |[Tu)? = of and so i;; |Tu|P = -+ oo, i.e. T is not abso-
Iutely p-summing. By [21] 8 is not p-absolutely summing, contradicting
our hypothesis.
If X is an Zyspace 1<p< oo and (X, Y> is grivial for some
gz 1then MY < 4-0c0. ,
Iﬁdeed and Z,-space for 1< p<< co is an &,-space [24]. Thus by

2.5, dimY < +oo. o

' The analogous results for &, -spaces and for the strongly p-trivial

case is covered in the above or the unsolved problems. .
Finally we mention the following striking result of 8. Xwapied [26]:

Let B an £, -space and F-an Zo-space, p > 2. Then *

(i) <B, Fy is g-trivial for any q > p; and

(ii) <H, F is not p-trivial.

‘We end this péper with some remarks on Hilbertian operators.

icm
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Lindenstrauss and Pelezyriski ([17] Prop. 5.2, p. 294) have shown
that the property of being a Hilbertian operator is a local property of the
domain. .

More precisely, an operator T from X to Y is Hilbertian if and only
if there is a constant C such that for every finite dimensional subspace B of X
there are operators Uryz: E->1, and Veg: b—Y such that VypUpg
1s the restriction of T to B and |[Vy gl | Up gl < C.

Motivated by this result we define the Hilbertian Constant b — X, Y)
of the Banach spaces X and Y by .

WX, Y) < sup o(T),
ITi<t

where o(T') is the infimmm of the constants ¢ satisfying. the above.

It follows from [17] that if X is an Loa0d Yan £, spacel <p <2
then #(X, Y) < A0Kg, where K is the Grothendieck constant [17 1

From the definition it is clear that if X or ¥ is isomorphic to a Hilbert
space then R(X, Y)<d(Z,H) where Z is the isomorph of Hilbert
space H. We now prove that if every Te.#(X, Y) is Hilbertian then
B, T) < +oo.

First observe that if every Te#(X,Y) is Hilbertian the same is
true for any complemented subspace X, of X, in particular for the subspa-
ces of finite co-dimension in X. By this remark and the Lindenstrauss—
Pelezyniski - theorem above if h(X, ¥) = o0, we can construct a se-
quence of disjoint finite dimensional spaces (F,) in X and operators
T,: X X,|T,)] =1 such that for any U,: F,—1,, V,: l,—~ Y with
VU, the restriction of T, to F,, [V, [|U,l = 4"l —P,_,||"}, where P,
is the identity on X and Py the projection onto X determined by

- . & 1
X = F,DX;. Define T: X>Y by T = va

n=1

I.[I-P,,]
Then [T <1 and since (¥,) are disjoint

T,

- T [I-P, ]=
w = g, T Ee

TP VaUnlI =Py 1.

But _
= | Ul [Vl [ =Pl = 27
P 1TVl ] il =
and this contradiets [17].
With this observation we can sharpen 1.6. If X is a Banach space,
Y an ZL,, i-space and every Te (X, Y) is Hilbertian then X is an Lo
space, where B < h(X, X)A(L+¢), where ¢ >0 is arbitrary.
Indeed, if F < X, dimF < + oo then there is an operator 8: ¥ —» ¥
with @(F, 8(F)) < A(L+e). Since ¥ is an' %, ;-space and S has finite
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. rank, there is an extension § of 8 to all of X with |S|I< 4]8]- We hﬁWO,

by hypothesis

7 Sl v

PN
Iy

UGVl < B(X, DA+

Now Vg must be onto §(F) and so ST is isomorphic to a factor space
of 1, with a bound on the isomorphism no larger than hX, )AL +¢).
Since this constant iy independent of F, X is an %,,-space with
B<h(X, X)A(L+e).
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