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so each A; — Afker| |; is a topologically nilpotent Banach algebra.
From ([5], Theorem 10.10) it follows that 4 is the projective limit
of 4,, =

5.3. COROLLARY. An m-convex By-algebra A is topologically nilpotent
if and only if there exisis a system of pseudonorms giving the topology in A
such that every A; is a topologically nilpotent Bamach algebra.

5.4. Remark. For a given system of pseudonorms in 4, 4, need

not be topologically nilpotent. Indeed, take the Cartesian product 114,
where 4; = C(0, 1) from BExample 2.3. fml
Put

ol = lleall+ - o+ [ o, )@ for @ = (2,05, ...)e 4.
0

One may verify, that for each i, ﬁ_/ker[ ls is not a topologically nil-
potent algebra, but A is a topologically nilpotent algebra.
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Diagonal nuclear operators

by
L.CRONE, D.J. FLEMING and P. JESSTUP (Potsdam, N.Y.)

Abstract. Let B and F be Banach spaces with total biorthogonal sequences
(@ s fn) a0d (Y, g,) respectively. An operator T: B - F is called diagonal if g;(Tw;) = 0.
for @ % j. The diagonal of a linear operator T is the scalar sequence (g;(Tw;)). A se-
quence space representation & (E,F) for the diagonals of the nuclear operators is
given and a necessary and sufficient condition is obtained for &(E,F) to be the
diagonal nuelear operators. In particular this is the case when (%, fn) is an uncondi-
tional shrinking basis for B and (y,, g,) is an unconditional hasis for F. As another
application of this result, it is shown that if the coordinate vectors form an uneondi-
tional basis for the BE-space F then the vectors from B give precisely the disgonal
nuelear operators from I, into E. .

1. Introduction. Let EF and F be Banach spaces with total biortho-
gonal sequences (w,, f,) and (y,, g,) respectively. If T is a linear operator
from ¥ to F then by the diagonal of T we mean the sequence (T)
= (g:(T%;))2:- An operator T from F to F is called diagonal if 9i(Ta;) =0
for ¢ # j. The purpose of this paper is to determine the diagonal nuclear
operators between certain Banach spaces. In Section 3 we present a simple
proof that the diagonal nuelear operators on a space with an unconditional
basis are I, and we obtain a sequence space representation for the diagonals
of the nuclear operators in the case where (a,, f,) and (y,, g,) are complete
biorthogonal sequences. This sequence space & (E, F) is a generalization
of the series space studied by Ruckle in [ri]. In Section 4 we show that if B
or F has the approximation property then a. npecessary and sufficient
condition for #(E, F) to be the diagonal nuclear operators is that the
diagonal of every continuous linear operator from B’ to F’ be well defined
as & linear operator from B’ to F’. In particular if ® has an unconditional
shrinking basis and F has an unconditional basis then the diagunal nuclear
operators are determined.

After completing this work, the authors became aware of the results
of Ruckle in [5]. There is overlap between Ruckle’s work and the results
that appear in our preliminary section.

2. Notation and terminology. If (w,,f,) is a total biorthogonal se-
quence for the Banach space F then F can be identified with the linear
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space of all sequence (f;(#)) under the correspondence < (fy(w)). With
the norm ||(f;(#))ll = |l=l| this space is a BE-space isometric to H. Under
-this correspondence ®; corresponds to ¢ = (d;)i2; and f; corresponds
to B;, the ith coordinate functional. In light of this identification we
will restrict our attention to F,F BK-spaces. A BE-space is said to
have AD if g, the span of the ¢;’s, is dense in . Note that (z,, f,) is a com-
plete biorthogonal sequence for the Banach space X if and only if under
the above correspondence F is a BK-space with 4.D.

For B a BK-space let B° denote the space of all sequences (f(ﬁi))
as f ranges over H'; with norm [|(f(e,))| = |fl B° is a BK-space. If B
has AD then B is isometric to B* under the map f« (f(e;). In any
case B’ = E* where F° denotes the closure of ¢ in J.

2.1. Notation.

a) Let w denote the space of all scalar sequences; with the topology
of coordinate wise convergence o is an FIK-space.

b) Let ¢s denote the space of all sequences we w such that 3,a(i)
converges.

(%, ).

d) For A cow

A% = {teg: |(t, u) <1,ucd}.

e) For 4 < ¢

A° = {tew: |(t, w)| <1, ue A}.
f) For F a normed space
Dy(B) = {ve B: |o| <1}

2.2. DERINITION. Let ® and F be BK-spaces. A sequence fe w is
called a multiplier from H to F if iwe I' for each w« H. The linear space of
all multipliers from ¥ to F is denoted by M(E, F).

In the case B = F, M (E, F) is denoted by M(H) and is called the
multiplier algebra of H. Detailed discussions on multiplier algebras can he
found in [1], [3] and [4].

The proof of the following is similar to 3.3 of [3] and 7.1 of [4].

2.3. PROPOSITION. Let B and F be BEK-spaces.

a) M(B,F) is a BEK-space with the norm (]| = sup |{z].

b) If E and T have AD then o<1

M(E: F) = TLLJI"q’(AlA;))wy
where 4; = D, (E)0vp and A, = D,(F)ng.

The space M (E,F) can be identified with the continuous diagonal
operators from E to F under-the correspondence t «» T, where T,(x) = fx.

o) Let x, y < o be such that aye os; the sum 3,2 (i)y (i) is denoted by
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If A is a coordinatewise bounded subset of w then there is a smallest
BE-space containing 4 as a bounded subset. We will ‘denote this space
by 8(4) and it can be characterized as follows:

8(4) ={ > Ai)a;: Aely, mye A for each i}
with norm
lolle = it {JAly: @ = 3, 4(5)a, o,c:4).

This is equivalent to the formulation of 8(4) given by Ruckle in [4] and
$0 we omit the argument that 8(4) is a BE-space. If 4 and B are subsets
of © and each absorbs the other we write A ~ B. Note that if 4 ~ B
then S(4) = S(B).

2.4. DEFINITION. Let ¥, F be BE-spaces then

S (B, F) = 8(4,47) ={ ' 16)s,t] 2ely, 5;¢ 4, tie 4}

Note that for B = F & (B, F) = %(E) is the series space of H discu-
ssed by Ruckle in [4].

2.5. PROPOSITION. Let B, F be BE-spaces then & (B, F) is a BEK-space
with norm

! llof] = it D" 1201l il
where the infimum is taken over all representations for .

If F has AD then & (F, F) can be shown to consist of all sequences
2iAi)s;t;, where dely, s;e Dy(F) and te AZ.

3. Preliminary results. The following is a routine generalization of
6.2 of [4]. .

"3.1. PROPOSITION. Let B and F be BE-spaces with AD then & (2, )
consists of all sequences of the form 5(T) as T ranges over N (B, F), the nuclear
operators from B to F. Furthermore, 8 is a continuous linear operator from
N(E,F) onto &(E, F). :

3.2. PROPOSITION. Let B and F be BEK-spaces with AD and let B
= D\(M(E, F)} then #(F, E) = 8(B").

Proof. By 2.3 B ~ (4,45)° thus by ([1], Proposition 3.5) B®
~ (4, 45)*" ~ K(A,47), where K denotes the absolutely convex hull.
Therefore S (B?) = S(4;47) = #(F, B).

As a consequence of the above, we give a particularly simple proof
that on a Banach space with an unconditional basis the nuclear operators
diagonal with respect to this basis are precisely the I, sequences.

3.3. THROREM. If (e;, B;) is an unconditional basis for the BK-space B
then .

S(B) =DN(EB) =1,,
where DN () denotes the diagonal nuclear operators on H.
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Proof. If (¢;, B,) is an unconditional basis for & then by ([3], Theo-
rem 5.7) M (E) = m and so by Proposition 3.2 and ([4], Proposition 4.1)
& (B) =1,. Thus by 3.1 DN(E) € 1,. Let wel, and define T,: B — F by

T.(y) = D), o) By(y)e,

Then T, is diagonal and is nuclear since ;{2 (4)| [ B, lle;]| < sup; 18] le;]| X
X Silw (i) = M |jal,, where M= sup; |B[le;| <oo since (e, F;) is a basis.
For E = F a Banach space the following is an improvement of Pro-
position 3.5 of [3]. :
3.4. ProroSITION. If B, T are BK—spaoes with AD ihen M(B, TF)
= M(F°, B°).
Prootf. Let te M(H, F), seF° and wed, then |(s,u) = |(s, tu)|
= [tllaz-I(s5 ——

te M(F°, B°).
Oonversely leb te M (F°, B°), ue A, and ve Ay then |(tu, v)| = |(u, )|

U < [tz lisllpe.  Therefore ise (|ieflallsllm) A7 = B 0

IJtII

1 s
= ”t”MKu’Ww < |ltllpr and thus twe |[t)|zA457 ~ A4, ([1], Proposition
M

3.5). Therefore Ty: (¢, || |lz) = F is continuous and so has a continuous
extension 7" to all of E. Since coordinates are continuous on B and F,
we have that 7" () = tw for all e ¥ and thus te M (H, F).

Remark. Let # be a BK-space with AD and let F be any BK-space.
If te M(E, F) then T;: E—F is continuous and maps ¢ into ¢ thus
“T,(E) = F°. 1t follows that M(B, F) = M (E, F°). Since F° = F° we may
drop the hypothesis from 3.4 that F has AD.

4. Main result. In this section, we obtain necessary and sufficient
conditions for &(H, F) to be precisely the diagonal nuclear operators
from ¥ to F. We assume throughout that either B’ or F has the approxi-
mation property. We define D: L(E, F) - L(E, ) by D(T) (#) = §(T)a.

4.1. THBOREM. Let E, F be BE-spaces with AD then D maps N (B, I)
into N(E, F) if and only if D maps L(E°, F°) into L(E’, F’).

Proof. Assume D: L(E’, F°) ~ L(E’, F’) and let B = D, (M (B, )
then by 3.4 B ~D,(M(F, H)). For each te B* define Ty= 3,t(3) B, e

Since tep, Tye N (B, F) ‘We now show that {T)/t«B%}is bounded in N(E ).
In fact

»(T) = Sup{|Q(T)| Q< N(E, FY, u@n 1}
" =sup{|(t, 6(P))|| Pe L(E’, I), |[P| < 1}
< kSup{(t, )|| se M (B, F), |s|| < 1}
<k,
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where & = |[D|| (D is bounded on L(#’, F°) as it has closed graph). Here
we have used the fact that B°®,” F can be identified with N (B, F) and
that in turn N (¥, F)’' can be identified with L (B F°) ([2], Proposition 2,
§ 1, #1). It is in these identifications that we have used the fact that E
or ¥ has the approximation property.
Now take we S(B?), w = Zi(i)t;, where Ael,, t;e B®. Let T, = S’l('l,)T,‘,
where T is defined as above. Since YA(%) Tt converges absolutely in
N(®, F), T,e N(E,F) and clearly T, is dlagonal Thus each sequence
in §8(B?) corresponds to a diagonal nuclear operator from F to F but
8(B®?) = #(E, F) and by 3.1 S(E,F) consists of the diagonals of the
nuclear operators from F to F.
Conversely suppose that D maps N (B, F) inte N (B, F). Let |D|=k,
Then as above if te B?
Sup{| (¢, (P))|: Pe L(E’, FY, |[P||
It follows that for Pe L(E° F%) with | P} <
Sup{|(t, 8(P))|: te B“‘} <k,
Thus §(P)ek, B =k, B = M(E, E°).
4.2. COROLLARY. Let E,F be BEK-spaces with AD then D maps
L(E, F°) into L(E°, F°) iff (B, F) = DN (E, F).

5. Some applications. If ¥ has a shrinking unconditional basis and P
has an unconditional basis then by ([6], Theorem 2.1) D maps L(E°, F’)
into L(F’, F®) since B’ is solid and F° = F*° is perfect. It follows by 4.2
that (¥, F) = DN(E,F). In particolar if E, F have unconditional
bases and are reflexive then & (¥, ¥) = DN(E, F)

The following example shows how one can determine the diagonal
nuclear operators from F to F by using Proposition 2.3 and Corollary 4.2:

Let 1<g<p< oo, B =1, and F =1, then we directly calculate
M (1, 1,) using Proposition 2.3 getting M(l,,1,) = I, where g — 22

r—q
Let B = Dy(l,) then B® = D,(;)ng, where h is the conjugate number
of g. Thus by Proposition 3.2 and 4.2 DN (I,, I} = ¥ (I, L) = 8(B*) =1,.
A method for obtaining DN (H, F) for P and F I, spaces was given by
Tong in [6].
Ag another example suppose E has uneondltlonal basis (e,

by 2.3 M(E, 1) = Un(A A2y,

basis and A4y =D (m) by [3, Theorem 5.7] 4,45 ~ D;(#)Ng. Thus
(A, A2)° ~ D, (B ~A? and so by ([1], Ploposmon 3.6) D, (F°)® ~ AP®
~A;. It follows that &(I,, B) = DN(l,, B) = B.

Similarly if (e;, B;) is a basis for & then one reasons as follows to
conclude & (cs, ) = H. Let 4, = D,(E)np and A, = D,(cs)np then

1} =»(Ty).

E;) then

Since E has (e;, B;) as an unoonditional


GUEST


56 L. Crone, D.J. Fleming and P. Jessup

2 = D,(bv). Since (¢;, E;) is a basis for ¥ it follows that ¥ is bv-inva-
riant [3] and so & (es, B) = S(4,47) = §(4,) = B. In this situation
one may have DN (¢s, B) § E. For example let B = ¢, then the condition
that D map L(es’, &) into L(cs’, ¢}) is not satisfied [to see this consider
the natural isomorphism of ¢s’ = bv into ¢ = I, given by To = (v,, w,—
— @y, @y —y,...)] and so by Corollary 4.2 DN (cs, ¢))  ¢,.
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Helson sets and simultaneous
extensions to Fourier transforms

by

COLIN C. GRAHAM* (Evanston, Ti.)

Abstract. A tensor algebra proof of this result is given: if K is an infinite Helson
subset of an LCA group @, then there does not exist a continnous linear map B: C(K}
= A(K)—> A(G) such that BEf(k) = f(k), for all ke E.

1. A compact subset K of a LOA group G is a Helson set [5] if every
fe C(K) may be extended to a Fourier transform Fe A(G). We have this
result:

TrrOREM. Let K be an infinite Helson subset of a LOA group Q. Then
there does mot emist & comtinuous linear map B: C(K)—> A(G) such that
Ef(k) = f(k) for all ke K.

More general results of this form have been proved: see [2], [8], [10],
[11]. The fact that the existence of the map B of the theorem implies
that BEC(K) is complemented in A (@) implies (when @ is the circle group
and A4(@) =~1') that weak sequential convergence and norm econver-
gence in C(K) are equivalent (see [7], p. 431]). In this note we give a simple
proof of the theorem, using tensor algebras. It is not too hard to see that
& technique of Katznelson and McGehee [6] may be used, along with
our proof, to show that if K < R is a convergent sequence, then there
is no continuouns linear map ¥: 4A(K)— A(R).

A Helson subset K of the circle group has the property that every
fe O(K) has an extension to an absolutely convergent Taylor series (this
was due to Wik; (gee [5], p. 145])). The theorem shows immediately that
aresult [9] of Petezyniski for the disc algebra fails for absolutely convergent
Taylor series.

‘We shall write PM (@) for A (@)*, and M (X) for the set of regular
Borel measures on a locally compact space X.

DermnrtioN. If R and S are Banach spaces, R§&S will denote the
closure of R x 8 in the projective norm (see [3], [13]). If B = C(X) and
8 = (0(X), we set V(XXY)=R&S =C(X)HC(Y).

* Partially supported by the National Science Foundation (USA).


GUEST


