

so each $\widetilde{A}_i = \overline{\widetilde{A}/\ker \| \ \|_i}$ is a topologically nilpotent Banach algebra. From ([5], Theorem 10.10) it follows that A is the projective limit of \widetilde{A}_i .

- 5.3. COROLLARY. An m-convex B_0 -algebra A is topologically nilpotent if and only if there exists a system of pseudonorms giving the topology in A such that every \tilde{A}_i is a topologically nilpotent Banach algebra.
- 5.4. Remark. For a given system of pseudonorms in A, \tilde{A}_i need not be topologically nilpotent. Indeed, take the Cartesian product $\prod\limits_{i=1}^{\infty} \tilde{A}_i$, where $\tilde{A}_i = C(0,1)$ from Example 2.3.

Put

$$|x|_i = ||x_1|| + \ldots + ||x_i|| + \int\limits_0^1 |x_{i+1}(t)| dt$$
 for $x = (x_1, x_2, \ldots) \epsilon A$.

One may verify, that for each i, $\widetilde{A}/\ker | \ |_i$ is not a topologically nilpotent algebra, but A is a topologically nilpotent algebra.

Acknowledgment. We would like to thank Professor W. Zelazko for his encouragement during the preparation of this manuscript.

References

- E. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [2] C. E. Rickart, General theory of Banach algebras, Princeton 1960.
- [3] H. Schaefer, Topological vector spaces, New York 1966.
- [4] W. Zelazko, Algebry Banacha, Warszawa 1968.
- [5] Metric generalizations of Banach algebras, Dissert. Math. (Rozprawy Matematyczne) 47 (1965).

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW

Received April 20, 1971 (335)

Diagonal nuclear operators

bу

L. CRONE, D. J. FLEMING and P. JESSUP (Potsdam, N.Y.)

Abstract. Let E and F be Banach spaces with total biorthogonal sequences (x_n, f_n) and (y_n, g_n) respectively. An operator $T \colon E \to F$ is called diagonal if $g_i(Tx_j) = 0$ for $i \neq j$. The diagonal of a linear operator T is the scalar sequence $(g_i(Tx_i))$. A sequence space representation $\mathcal{F}(E, F)$ for the diagonals of the nuclear operators is given and a necessary and sufficient condition is obtained for $\mathcal{F}(E, F)$ to be the diagonal nuclear operators. In particular this is the case when (x_n, f_n) is an unconditional shrinking basis for E and (y_n, g_n) is an unconditional basis for F. As another application of this result, it is shown that if the coordinate vectors form an unconditional basis for the E space E then the vectors from E give precisely the diagonal nuclear operators from L1 into E.

1. Introduction. Let E and F be Banach spaces with total biorthogonal sequences (x_n, f_n) and (y_n, g_n) respectively. If T is a linear operator from E to F then by the diagonal of T we mean the sequence $\delta(T)$ $=(g_i(Tx_i))_{i=1}^{\infty}$. An operator T from E to F is called diagonal if $g_i(Tx_i)=0$ for $i \neq j$. The purpose of this paper is to determine the diagonal nuclear operators between certain Banach spaces. In Section 3 we present a simple proof that the diagonal nuclear operators on a space with an unconditional basis are l_1 and we obtain a sequence space representation for the diagonals of the nuclear operators in the case where (x_n, f_n) and (y_n, g_n) are complete biorthogonal sequences. This sequence space $\mathscr{S}(E,F)$ is a generalization of the series space studied by Ruckle in [4]. In Section 4 we show that if E' or F has the approximation property then a necessary and sufficient condition for $\mathcal{S}(E,F)$ to be the diagonal nuclear operators is that the diagonal of every continuous linear operator from E' to F' be well defined as a linear operator from E' to F'. In particular if E has an unconditional shrinking basis and F has an unconditional basis then the diagonal nuclear operators are determined.

After completing this work, the authors became aware of the results of Ruckle in [5]. There is overlap between Ruckle's work and the results that appear in our preliminary section.

2. Notation and terminology. If (x_n, f_n) is a total biorthogonal sequence for the Banach space E then E can be identified with the linear

space of all sequence $(f_i(x))$ under the correspondence $x \leftrightarrow (f_i(x))$. With the norm $||(f_i(x))|| = ||x||$ this space is a BK-space isometric to E. Under this correspondence x_i corresponds to $e_i = (\delta_{ij})_{j=1}^{\infty}$ and f_i corresponds to E_i , the ith coordinate functional. In light of this identification we will restrict our attention to E, F BK-spaces. A BK-space is said to have AD if φ , the span of the e_i 's, is dense in E. Note that (x_n, f_n) is a complete biorthogonal sequence for the Banach space E if and only if under the above correspondence E is a BK-space with AD.

For E a BK-space let E^{δ} denote the space of all sequences (f(e))as f ranges over E^* ; with norm $||(f(e_i))|| = ||f|| E^{\delta}$ is a BK-space. If Ehas AD then E^{δ} is isometric to E^* under the map $f \leftrightarrow (f(e_i))$. In any case $E^{\delta} = E^{\circ \delta}$ where E° denotes the closure of φ in E.

2.1. Notation.

- a) Let ω denote the space of all scalar sequences; with the topology of coordinate wise convergence ω is an FK-space.
- b) Let cs denote the space of all sequences $x \in \omega$ such that $\sum_i x(i)$
- c) Let $x, y \in \omega$ be such that $xy \in cs$; the sum $\sum_i x(i)y(i)$ is denoted by (x, y).
 - d) For $A \subseteq \omega$

$$A^{\varphi} = \{t \in \varphi \colon |(t, u)| \leqslant 1, u \in A\}.$$

e) For $A \subseteq \varphi$

$$A^{\omega} = \{t \in \omega \colon |(t, u)| \leqslant 1, u \in A\}.$$

f) For E a normed space

$$D_1(E) = \{x \in E \colon ||x|| \leqslant 1\}.$$

2.2. Definition. Let E and F be BK-spaces. A sequence $t \in \omega$ is called a multiplier from E to F if $tx \in F$ for each $x \in E$. The linear space of all multipliers from E to F is denoted by M(E, F).

In the case E = F, M(E, F) is denoted by M(E) and is called the multiplier algebra of E. Detailed discussions on multiplier algebras can be found in [1], [3] and [4].

The proof of the following is similar to 3.3 of [3] and 7.1 of [4].

- 2.3. Proposition. Let E and F be BK-spaces.
- a) M(E, F) is a BK-space with the norm $||t|| = \sup ||tx||$.
- b) If E and F have AD then

$$M(E,F)=igcup_{n=1}^{\infty}n(A_1A_2^\omega)^\omega,$$

where $A_1 = D_1(E) \cap \varphi$ and $A_2 = D_1(F) \cap \varphi$.

The space M(E, F) can be identified with the continuous diagonal operators from E to F under the correspondence $t \leftrightarrow T_t$ where $T_t(x) = tx$.

If A is a coordinatewise bounded subset of ω then there is a smallest BK-space containing A as a bounded subset. We will denote this space by S(A) and it can be characterized as follows:

53

$$S(A) = \left\{ \sum_{i} \lambda(i) x_{i} \colon \lambda \in l_{1}, x_{i} \in A \text{ for each } i \right\}$$

with norm

$$||x||_A = \inf \{ ||\lambda||_{l_1} \colon x = \sum_i \lambda(i) x_i, \, x_i \in A \}.$$

This is equivalent to the formulation of S(A) given by Ruckle in [4] and so we omit the argument that S(A) is a BK-space. If A and B are subsets of ω and each absorbs the other we write $A \sim B$. Note that if $A \sim B$ then S(A) = S(B).

2.4. Definition. Let E, F be BK-spaces then

$$\mathscr{S}(E,F) = \mathcal{S}(A_2A_1^{\omega}) = \Big\{ \sum\nolimits_i \lambda(i) s_i t_i | \ \lambda \in l_1, \, s_i \in A_2, \, t_i \in A_1^{\omega} \Big\}.$$

Note that for E=F $\mathscr{S}(E,F)=\mathscr{S}(E)$ is the series space of E discussed by Ruckle in [4].

2.5. Proposition. Let E, F be BK-spaces then $\mathscr{S}(E, F)$ is a BK-space with norm

$$||x|| = \inf \sum_{i} |\lambda(i)| ||s_{i}|| ||t_{i}||,$$

where the infimum is taken over all representations for x.

If F has AD then $\mathcal{S}(E,F)$ can be shown to consist of all sequences $\sum_{i} \lambda(i) s_i t_i$, where $\lambda \in l_1$, $s_i \in D_1(F)$ and $t_i \in A_1^{\infty}$.

- 3. Preliminary results. The following is a routine generalization of 6.2 of [4].
- 3.1. Proposition. Let E and F be BK-spaces with AD then $\mathcal{S}(E, F)$ consists of all sequences of the form $\delta(T)$ as T ranges over N(E, F), the nuclear operators from E to F. Furthermore, δ is a continuous linear operator from N(E, F) onto $\mathscr{S}(E, F)$.
- 3.2. Proposition. Let E and F be BK-spaces with AD and let B = $D_1(M(E, F))$ then $\mathscr{S}(F, E) = S(B^{\varphi})$.

Proof. By 2.3 $B \sim (A_1 A_2^{\omega})^{\omega}$ thus by ([1], Proposition 3.5) B^{φ} $\sim (A_1 A_2^{\omega})^{\omega \varphi} \sim K(A_1 A_2^{\omega})$, where K denotes the absolutely convex hull. Therefore $S(B^{\varphi}) = S(A_1 A_2^{\omega}) = \mathcal{S}(F, E)$.

As a consequence of the above, we give a particularly simple proof that on a Banach space with an unconditional basis the nuclear operators diagonal with respect to this basis are precisely the l_1 sequences.

3.3. Theorem. If (e_i, E_i) is an unconditional basis for the BK-space Ethen

$$\mathscr{S}(E) = DN(E) = l_1$$

where DN(E) denotes the diagonal nuclear operators on E.

Proof. If (e_i, E_i) is an unconditional basis for E then by ([3], Theorem 5.7) M(E) = m and so by Proposition 3.2 and ([4], Proposition 4.1) $\mathcal{S}(E) = l_1$. Thus by 3.1 $DN(E) \subseteq l_1$. Let $x \in l_1$ and define $T_x : E \to E$ by

$$T_x(y) = \sum_i x(i) E_i(y) e_i.$$

Then T_x is diagonal and is nuclear since $\sum_i |x(i)| ||E_i|| ||e_i|| \le \sup_i ||E_i|| ||e_i|| \times \sum_i |x(i)| = M ||x||_i$, where $M = \sup_i ||E_i|| ||e_i|| < \infty$ since (e_i, E_i) is a basis.

For E = F a Banach space the following is an improvement of Proposition 3.5 of [3].

3.4. PROPOSITION. If E, F are BK-spaces with AD then $M(E, F) = M(F^{\delta}, E^{\delta})$.

 $\begin{array}{ll} \text{Proof. Let } t \epsilon \, M(E,F), \quad s \epsilon \, F^\delta \ \, \text{and} \quad u \epsilon \, A_1 \ \, \text{then} \quad |(ts,u)| \, = \, |(s,tu)| \\ = \, ||t||_{M} \cdot |(s,\frac{1}{\|t\|_{M}} \, tu)| \leqslant \|t\|_{M} \|s\|_{F^\delta}. \quad \text{Therefore} \quad ts \, \epsilon \, (\|t\|_{M} \|s\|_{F^\delta}) \, A_1^\omega \subset E^\delta \quad \text{so} \\ t \epsilon \, M(F^\delta,E^\delta). \end{array}$

Conversely let $t \in M(F^{\delta}, E^{\delta})$, $u \in A_{1}$, and $v \in A_{2}^{\omega}$ then |(tu, v)| = |(u, tv)| $= ||t||_{M}|(u, \frac{1}{||t||_{M}}tv)| \leq ||t||_{M} \text{ and thus } tu \in ||t||_{M}A_{2}^{\omega \varphi} \sim A_{2} \text{ ([1], Proposition 3.5)}.$ Therefore $T_{t} \colon (\varphi, || ||_{E}) \to F$ is continuous and so has a continuous extension $T^{\hat{}}$ to all of E. Since coordinates are continuous on E and F, we have that $T^{\hat{}}(w) = tw$ for all $x \in E$ and thus $t \in M(E, F)$.

Remark. Let E be a BK-space with AD and let F be any BK-space. If $t \in M(E, F)$ then $T_t \colon E \to F$ is continuous and maps φ into φ thus $T_t(E) \subseteq F^\circ$. It follows that $M(E, F) = M(E, F^\circ)$. Since $F^\circ = F^{\circ \delta}$ we may drop the hypothesis from 3.4 that F has AD.

4. Main result. In this section, we obtain necessary and sufficient conditions for $\mathcal{S}(E,F)$ to be precisely the diagonal nuclear operators from E to F. We assume throughout that either E' or F has the approximation property. We define $D: L(E,F) \to L(E,\omega)$ by $D(T)(x) = \delta(T)x$.

4.1. THEOREM. Let E, F be BK-spaces with AD then D maps N(E, F) into N(E, F) if and only if D maps $L(E^{\delta}, F^{\delta})$ into $L(E^{\delta}, F^{\delta})$.

Proof. Assume $D\colon L(E^\delta,F^\delta)\to L(E^\delta,F^\delta)$ and let $B=D_1\big(M(E^\delta,F^\delta)\big)$ then by 3.4 $B\sim D_1(M(F,E))$. For each $t\in B^\sigma$ define $T_t=\sum_i t(i)\,E_i\otimes e_i$. Since $t\in \varphi$, $T_t\in N(E,F)$. We now show that $\{T_t/t\in B^\sigma\}$ is bounded in N(E,F). In fact

$$\begin{split} |v(T_t) &= \sup\{|Q(T_t)|| \ Q \in N(E, F)', \|Q\| \leqslant 1\} \\ &= \sup\{|(t, \delta(P))|| \ P \in L(E^\delta, F^\delta), \|P\| \leqslant 1\} \\ &\leqslant k \sup\{|(t, s)|| \ s \in M(E^\delta, F^\delta), \|s\| \leqslant 1\} \\ &\leqslant k, \end{split}$$

where k = ||D|| (D is bounded on $L(E^{\delta}, F^{\delta})$ as it has closed graph). Here we have used the fact that $E^{\delta} \otimes_{\gamma} \hat{F}$ can be identified with N(E, F) and that in turn N(E, F)' can be identified with $L(E^{\delta}, F^{\delta})$ ([2], Proposition 2, § 1, #1). It is in these identifications that we have used the fact that E' or F has the approximation property.

Now take $u \in S(B^{\varphi})$, $u = \Sigma \lambda(i) t_i$, where $\lambda \in l_1$, $t_i \in B^{\varphi}$. Let $T_u = \sum \lambda(i) T_{t_i}$, where T_{t_i} is defined as above. Since $\sum \lambda(i) T_{t_i}$ converges absolutely in N(E,F), $T_u \in N(E,F)$ and clearly T_u is diagonal. Thus each sequence in $S(B^{\varphi})$ corresponds to a diagonal nuclear operator from E to F but $S(B^{\varphi}) = \mathscr{S}(E,F)$ and by 3.1 $\mathscr{S}(E,F)$ consists of the diagonals of the nuclear operators from E to F.

Conversely suppose that D maps N(E,F) into N(E,F). Let $||D||=k_1$. Then as above if $t \in B^{\varphi}$

$$\sup\{|(t, \delta(P))|: P \in L(E^{\delta}, F^{\delta}), ||P|| \leqslant 1\} = \nu(T_t).$$

It follows that for $P \in L(E^{\delta}, F^{\delta})$ with $||P|| \leq 1$

$$\operatorname{Sup}\{|(t,\,\delta(P))|:\,t\,\epsilon\,B^{\varphi}\}\leqslant k_{1}.$$

Thus $\delta(P) \in k_1 B^{\varphi \omega} = k_1 B \subset M(E^{\delta}, E^{\delta}).$

4.2. COROLLARY. Let E, F be BK-spaces with AD then D maps $L(E^{\delta}, F^{\delta})$ into $L(E^{\delta}, F^{\delta})$ iff $\mathscr{S}(E, F) = DN(E, F)$.

5. Some applications. If E has a shrinking unconditional basis and F has an unconditional basis then by ([6], Theorem 2.1) D maps $L(E^{\delta}, F^{\delta})$ into $L(E^{\delta}, F^{\delta})$ since E^{δ} is solid and $F^{\delta} = F^{\alpha}$ is perfect. It follows by 4.2 that $\mathcal{S}(E, F) = DN(E, F)$. In particular if E, F have unconditional bases and are reflexive then $\mathcal{S}(E, F) = DN(E, F)$.

The following example shows how one can determine the diagonal nuclear operators from E to F by using Proposition 2.3 and Corollary 4.2:

Let $1 < q < p < \infty$, $E = l_p$ and $F = l_q$ then we directly calculate $M(l_p, l_q)$ using Proposition 2.3 getting $M(l_p, l_q) = l_g$ where $g = \frac{pq}{p-q}$.

Let $B=D_1(l_g)$ then $B^p=D_1(l_h)\cap \varphi$, where h is the conjugate number of g. Thus by Proposition 3.2 and 4.2 $DN(l_q,l_p)=\mathcal{S}(l_q,l_p)=\mathcal{S}(B^p)=l_h$. A method for obtaining DN(E,F) for E and F l_p spaces was given by Tong in [6].

As another example suppose E has unconditional basis (e_i, E_i) then by 2.3 $M(E, l_1) = \bigcup_{n=1}^{\infty} n(A_1 A_2^{\omega})^{\omega}$. Since E has (e_i, E_i) as an unconditional basis and $A_2^{\omega} = D_1(m)$ by [3, Theorem 5.7] $A_1 A_2^{\omega} \sim D_1(E) \cap \varphi$. Thus $(A_1 A_2^{\omega})^{\omega} \sim D_1(E^{\delta}) \sim A_1^{\omega}$ and so by ([1], Proposition 3.6) $D_1(E^{\delta})^{\varphi} \sim A_1^{\omega \varphi} \sim A_1$. It follows that $\mathcal{S}(l_1, E) = DN(l_1, E) = E$.

Similarly if (e_i, E_i) is a basis for E then one reasons as follows to conclude $\mathscr{S}(cs, E) = E$. Let $A_2 = D_1(E) \cap \varphi$ and $A_1 = D_1(cs) \cap \varphi$ then

 $A_1^o = D_1(bv)$. Since (e_i, E_i) is a basis for E it follows that E is bv-invariant [3] and so $\mathscr{S}(cs, E) = S(A_2A_1^o) = S(A_2) = E$. In this situation one may have $DN(cs, E) \subseteq E$. For example let $E = c_0$ then the condition that D map $L(cs^\delta, c_0^\delta)$ into $L(cs^\delta, c_0^\delta)$ is not satisfied [to see this consider the natural isomorphism of $cs^\delta = bv$ into $c_0^\delta = l_1$ given by $Tx = (x_1, x_2 - x_1, x_3 - x_2, \ldots)$] and so by Corollary 4.2 $DN(cs, c_0) \subseteq c_0$.

References

- L. Crone, D. J. Fleming and P. Jessup, Fundamental biorthogonal sequences and K-norms on φ, to appear in Can J. M.
- [2] A. Grothendieck, Products tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16 (1955).
- [3] R. J. McGivney and W. H. Ruckle Multiplier algebras of biorthogonal systems, Pacific J. Math. 29 (1969), pp. 375-387.
- [4] W. H. Ruckle, Representation and series summability of complete biorthogonal sequences, Pacific J. Math., 34 (1970), pp. 509-526.
- [5] Diagonals of operators, Studia Math. 38 (1970), pp. 43-49.
- [6] A. Tong, Diagonal nuclear operators on lp spaces, Trans. A.M.S., 143 (1969), pp. 235-247.
- [7] Diagonal submatrices of matrix maps, Pacific J. Math. (to appear).

CLARKSON COLLEGE OF TECHNOLOGY POTSDAM, N. Y.

Received April 25, 1971 (333)

Helson sets and simultaneous extensions to Fourier transforms

by

COLIN C. GRAHAM* (Evanston, III.)

Abstract. A tensor algebra proof of this result is given: if K is an infinite Helson subset of an LCA group G, then there does not exist a continuous linear map $E \colon C(K) = A(K) \to A(G)$ such that Ef(k) = f(k), for all $k \in K$.

1. A compact subset K of a LCA group G is a Helson set [5] if every $f \in C(K)$ may be extended to a Fourier transform $F \in A(G)$. We have this result:

THEOREM. Let K be an infinite Helson subset of a LCA group G. Then there does not exist a continuous linear map $E\colon C(K)\to A(G)$ such that Ef(k)=f(k) for all $k\in K$.

More general results of this form have been proved: see [2], [8], [10], [11]. The fact that the existence of the map E of the theorem implies that EC(K) is complemented in A(G) implies (when G is the circle group and $A(G) \cong l^1$) that weak sequential convergence and norm convergence in C(K) are equivalent (see [7], p. 431]). In this note we give a simple proof of the theorem, using tensor algebras. It is not too hard to see that a technique of Katznelson and McGehee [6] may be used, along with our proof, to show that if $K \subseteq R$ is a convergent sequence, then there is no continuous linear map $E: A(K) \to A(R)$.

A Helson subset K of the circle group has the property that every $f \in C(K)$ has an extension to an absolutely convergent Taylor series (this was due to Wik; (see [5], p. 145])). The theorem shows immediately that a result [9] of Pełczyński for the disc algebra fails for absolutely convergent Taylor series.

We shall write PM(G) for $A(G)^*$, and M(X) for the set of regular Borel measures on a locally compact space X.

DEFINITION. If R and S are Banach spaces, $R \otimes S$ will denote the closure of $R \times S$ in the projective norm (see [3], [13]). If R = C(X) and S = C(Y), we set $V(X \times Y) = R \otimes S = C(X) \otimes C(Y)$.

^{*} Partially supported by the National Science Foundation (USA).