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On w*-basic sequences and their applications
to the study of Banach spaces

by
W.B. JOHNSON and H.P. ROSENTHAL* (Berkeley, Ca.)

Abstract. w*-basic sequences in conjugate Banach spaces are investigated and
existence theorems are obtained for them, analogous to the Bessaga—Pelezyhski
exigtence theorem for basic sequences. Immediate consequences are that every sepa-
rable Banach space has a quotient with a basis and every separable conjugaie space
contains a boundedly complete basic sequence. Other examples of immediate appli-
cations of w*-basic sequences are that if X* has a subspace with a separable dual,
X has a quotient space with a boundedly complete basis, and it X** ig geparable,
.then both X and X* have reflexive subspaces. w*-basic sequences and previously
known theorems are also applied to show, for separable X, that if X* contains a sub-
space isomorphie to I, (respectively I;), then X has a quotient iromorphic to ¢, (re-
spectively, O[0, 1]); the technique for obtaining the existence theorems is used to
show that every separable X has a subspace ¥ such that ¥ and X /¥ both have finite-
dimensional desompositions.

¥. Introduction. In this paper we give a proof of a theorem shated
by Milman [127]: S

If X** is separable then both X and X* have reflemive subspaces. (Throu-
ghout this paper X, ¥, and Z refer to infinite dimensional Banach spaces.
“Subspace” means “infinite dimensional cloged linear submanifold; )
Our Theorem IV.2 yields immediately that if X** ig separable, then both
X and X* are somewhat reflexive, (A space Y is called somewhat ref-
lexive (see [5]) provided every subspace of ¥ contains a reflexive sub-
space). This result has also been obtained by Davis and Singer [2] under
the additional hypothesis that X** satisfies the approximation property.
They also have given a counter example to a key lemma in [12], and thus
the argument in [12] is incorrect. ’

The techniques developed to prove the above theorem stated by
Milman led to new results concerning bases in Banach spaces and their
quotients. Some of these results have consequences which may be stated
without reference to bages. -
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For example, in Section IV we prove ’

TueoREM IV.1. (i) If X is separable then X has a quotient space with
a basis. .

(il) If X s separable and there is a subspace ¥ of X* such that ¥ is
isomorphic to a subspace of a separable conjugate space, then X has a quotient
space with o shrinking basis; moreover this basis may be chosen with its
biorthogonal fumctionals lying in ¥, hence Y has a weak* closed subspace
with a boundedly complete basis.

(iii) If there is a subspace ¥ of X* such that Y* is separable then X
has a guotient space which has a boundedly complete basis. Consequently X*
contains a subspace isomorphic to @ second conjugate space.

(i) solves the separable version of a problem of Pelezyriski’s [13]:
Does every Banach space have a quotient space which has a bagis? (i)
yields that every subspace of a separable conjugate space containg a weak*
closed subspace, and also that it contains a boundedly complete basic
sequence, solving a problem raised in [3]. (iii) yields that if X has a sub-
space with a separable dual, X has a quotient space isomorphic to a sepa-
rable conjugaté space; the converse statement is obvious. (By quotient
space of X, we mean a space of the form X/Z where Z is subspace of X
with infinite codimension in X.)

In Theorem IV.3, we show that for separable X, if X* contains a sub-
space isomorphic to I, X has a quotient space isomorphic to ¢,, while
if X* has a subspace isomorphic to L, [0, 1], X has a quotient space iso-
merphic to C[0, 1]. (This extends a result of Pelezyriski’s [15].)

The concept underlying the proofs of the above results is that of
w*-basic sequence (see the definition in Section II). Our main lemma,
Theorem. IIL.1, is the w*-basic analogue to the theorem of Bessaga and
Petezytiski [1] on the existence of basic sequences.

Our final result, Theorem IV.4, shows that if X iy separable then
there is & ¥ = X such that ¥ and X/¥ both have finite dimensional
decompositions (the relevant definitions are given immediately preceding
the statement of IV.4). Although this result is not a direct application
of w*-basic sequences, its proof has some common features with the proof
of Theorem IIL.1. :

II. Notation, definitions, and preliminary results. As mentioned in the
introduetion, X, Y, Z, etc., refer to infinite dimensional Banach spaces
and “subspace” (resp. “quotient space”) means “closed, infinite dimen-
gional linear submanifold,” (resp. “quotient manifold”). “Operator”
means “bounded linear operator” and “isomorphism” means “linear
homeomorphism.” If 7' is an operator on X and ¥ < X, then T]E denotes
the restriction of T to H. If weX and A < X, d(w, A) = inf{jz—al:
acA}. For Ac X, Bc X, A+ B denotes {a+b: acd,beB)}.
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If 4 cX,A is the annihilator of 4 in X* ie, 4+ = {w*eX*:
#*(a) = 0 for every ae A} If A = X*, AT is the annihilator of 4 in X,
Le., AT = {ze X: a(x) = 0 for every acA}. For 4 < X, 4 is the norm
closure of 4 in X and for 4 = X*, 1 is the weak* closure of 4 in X*.
Thus if 4 is 2 linear manifold in X*, then 4 — AT,

Sequences are denoted by using parentheses and [z,] denotes the
norm-closed linear span of the sequénce (#,) IE (3,) =« X, 2e X, we write
%, @ (respectively, , = z) if (2,) converges to # in the norm (respecti-
vely, weak) topology on X. If (#%) < X* z*c X*, we write #% " o* when
() converges to 2* in the weak* topology on X*. .

We now recall some familiar facts about bases which will be nsed
in the sequel without further reference. A sequence (,, #,) with (z,) = X, y
() = X*is called biorthogonal provided By (@,) = Oy forallm,n =1, 2, ...
A sequence (z,) = X is a basis for X provided that for each ze X there

. . d
Is a unique sequence (z,(s)) of scalars for which Y a(v)a;— . The
i=1

functionals mi': are necessarily linear and continuous, (,, ) is biortho-
gona_l, and (z;) forms a basis for [a}]. A basis (#,) for X is called shrinking
provided the functionals (z}) biorthogonal to (,) form a basis for X*.

. - : ted
A basis (z,) is called boundedly complete provided that (Y em) is con-
. i=1

vergent whenever it is bounded. We will use repeatedly two results due
to R. 0. James: A Banach space with a basis is reflexive if and only if
the basis is shrinking and boundedly complete. If (%,) is a basis with
biorthogonal funetionals (%), then (z,) is shrinking (respectively, bounde-
dly complete) if and only if (z}) is a boundedly complete (respectively,
shrinking) basis for [z}].

A sequence (,) = X is called basic provided that (@,) forms a basis
for [@,]. A basic sequence (=,) is called shrinking (respectively, boundedly
complete) provided that (s,) is a shrinking (respectively, boundedly
complete) basis for [,]. Two basic sequences (z,) and (y,) are called

equivalent provided that for any sequence (a,) of secalars, >’ a,z, converges

A - n=1

if and only it }' a,y, converges. It follows from the closed graph theorem
=1

n:

that (2,) is equivalent to (y,) if and only if there is an isomorphism 7T
from [#,] onto [y,] such that T, =y, for n =1,2,... If (z,) and (y,)
are bases with associated biorthogonal funetionals (#) and (y7), respecti-
Ere%y, then (z,) is equivalent to (y,) if and only if (z}) is equivalent to
Yn)-

We refer the reader to [18] for proofs of the above and for a compre-
hensive study of bases and basic sequences in Banach spaces.

‘We now come to the concept which underlies most of our results:
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DerFmvrTIoN IL1. A sequence (y,) = X* is called w*-basic provided
that there is a sequence (#,) « X so that (,,y,) is biorthogonal and

~ n w* . s
for each ye[y,], O ¥(@;)y;— y. (Note that although (#,) is not uniquely
: =1
determined by (¥y), if (@4, ¥,) and (2., ¥,) are both biorthogonal then for
each ye [4,], ¥(@,) = y(2,) for n =1, 2,...).

I (y,) = X, then [y,] can be identified with (X /(yn)T)* via the
mappmg T*, where T: X — X/(y,)7 is the quotient mapping, because T™
is an 1sometry and a weak® isomorphism. From this it follows that (y,)
is w*basic if and only if (I"'y,) is & * Schauder basis for (X/(y,)T)*
according to Singer’s definition in [17] (see also [18], p. 144 ff.).

Proposition 1 summarizes some of the elementary plopertles of
w*-basic sequences:

PropostzioN IL1. Suppose that (y,) < X* and let T: X — X [(y,)7
be the quotient map. Then

(8) (¥n) i w*-basic if and only if X [(y,)T has o basis (#,) with asso-
_ ciated biorthogonal functionals (ay) such that T (w) =y, for n =1,2,...
Thus if (y,) 8 w*-basic, then (y,) is basic.

(b) The following are equivalent:

(i) (y,) 18 @ boundedly complete w*-basic sequence;

(il) (4n) is o*-basic and [y,] = [y,];
(iil) X/(y,)T has a shrinking basis (x,) with associated biorthogonal
functionals () such that T*(a,) =1y, for n =1,2,...

(€) (yn) 18 a shrinking w*-basic sequence if and only if X [(y,)T has
a boundedly complete basis (w,) with associated biorthogonal functionals
(wh) such that T (a)) =y, for m =1,2,...

Proof. (a) follows from the comment preceding the statement of
Proposition 1 and Singer’s work on w* Schauder bages. (see [18], p. 155).
(c) follows from (a) and the duality between sghrinking and boundedly
complete bases proven by James. The equivalence of (i) and (iii) in (b) also
follows from Singer’s and James’ work, It remaing to. be seen that (i) and
(ii) in (b) are equivalent.

Suppose that (»,) =« X is such that (@, ¥,) is biorthogonal. Assume

that (i) holds and let (e,) be a sequence of scalars for which (Z’a,y,)
is bounded. Then ( Z‘ ;%) hag a weak™ cluster point, say Y, and of course

Ye [yn] Thus by (u) Ye (Y] Smce by (a) (y,) is basie, Z‘ y (@)Y, —> v
NOW for a,rbl’rmry kand n>=k, (2 ) B = oy 80 Y (W) = 0 Dbecauge ¥
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is & weak™ cluster point of ( 2 a;y;)- Hence _S_,‘ a.iy1~> y and (1) follows.

Conversely, (i) is satisfied zmd Ye [yn], then 5‘ y(m, --——» y and hence

(Z y{x;)y;} is bounded. Since (y,) is boundedly complete, Z y(2,)Y;

ls norm convergent, necessarily to y. Hence ye[y,]. m

The next result is an immediate consequence of the known results
about bases mentioned above and Proposition IL.1.

ProrosirioN IL.2. Let (b,) be a basis in the Banach space ¥ with biort-
hogonal functionals (by), let (y,) = X* with (y,) w*-basic and suppose that
(v,) is equwalem to (b*) Then X |(y,)7 is isomorphic-io Y and (y,) is o*-
equivalent to (by); i.e. for any sequence of scalars (), Za,y, converges w*
if and only if Za,b; does.

Remark. IL.1. It is easily seen that every basic sequence is equivalent
to some other basic sequence which is also w*-basic. For let (x,) be a basic
sequence in X with biorthogonal functionals (}) and let (f,) be the funetio-
nals in [#;]* biorthogonal to (#*). Then (f) is a w™basic sequence and
(z,) and (f,) are equivalent.

Prorosrrron I1.3. If X* is separable, (%,) = X, @, ~ 0, and lim sup {z,]]

- >0, then (z,) has a shrinking basic subsequence.

Proof. By normalizing a suitable subsequence, we may assume
ol =1 for n =1,2,... By passing to another subsequence, we may
assume by a result of Bessaga and Pelezynski [1] that (z,) is basic (see
also our proof of II1.1). Now by a well-known stability theorem (cf.,e.g.

[18], p. 93) there is a 1> 0 such that if (y,) <« X and ' |o,—y.ll<<2
then (y,) is a basic sequence equivalent to {a,). . ne=l

Let (d,) be a countable dense subset of X* with d, = 0. By induction
we may choose a sequence n, << 7, < ... of positive integers and elements
(2,) iIn X to satisfy, fori =1, 2, ...

(@) #e (&),

(i) fe—m < 2275

Indeed, let 2, = @y, n; = 1. Suppose 2y, ...,2 ; and B, < ... < %,
have been defined. Since ®,—-0 we may choose m; >m;_, large enough
so that

@@ (d)f1,) = sup{|d(@,,)]: de (&)1, Al <

Then choose z; to satisfy (i) and (ii).
Since ani——wni]]< Ay (%) is a basic sequence equivalent to ()
Suppose fe [#;]* and let f be a Hahn-Banach extension of f to an element
in X*. Then there is a subsequence (d,, ) of (d;) such that ||, —-f[[——>0

1} < 2278

6 — Studia Mathematica XLIII.1
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Now d’”ill(”i)}'imil = 0 hence Efgllf l[(z,);';mi1 || = 0 whence also |[f I[(gy,);;tlu - 0.

Thus (2,), and consequently (z,), is & ghrinking basic gsequence. m

Remark. IT.2. Of course it follows immediately that if X™* ig sepa-
rable; X contains a shrinking basic sequence. This latter result is due to:
Dean, Singer, and Sternbach [3].

III. Extracting w*-basic sequences. In this section we prove a w*-basic
analogue to the following theorem of Bessaga and Pelezyiiski [1] on the
existence of basic sequences: if (#,) = X, %, 0, and lim sup |2,|| > 0,
then (w,) has a basic subsequence. We show that for X separable, if (y,)
= X%, yni 0, and limsuplly,| > 0, then (y,) containg a w*-bagic sub-
sequence (Theorem IIL1), and if also X™* is separable, then (y,) contains
a boundedly complete w*-basic subsequence (Theorem IIT.2). Another
variation of the Bessaga~Pelezyniski theorem iy that if (y,) = X*, [4,]*
ig separable, 4, — 0, and limsup|ly,| > 0, then (y,) contains a shrinking
w*-bagic subsequence (Theorem IIL.3).

Most of the results of this paper follow easily from the argument
for Theorem ITI.1 and previously known facts. Thig argument is a varia-
tion of the “product” technigue for producing basic gequences, due to
Mazur (c.f. the proof of the Proposition of [14]).

TrRoREM ITL.1. Suppose that X is separable, (y,) = X*, 4, ~>0, and
Lmsupliy,ll > 0. Then (y,) has a w*-basio subsequence, (yy,). Furthermore
(Yn,;) may be chosen such that if (2n,) = X s selected with (2, y,,) biorthogonal

m
and Sp: [§n,] > [Tn,] i defined (for m =1, 2 ) by Spy = ) Y (%n,) Y,
for all ye [yn 1, then (18l = 1. =1
Proof. By passing to a subsequence and normalizing, we may agsume

that ||y, = 1 for all n. Let (e,) be a sequence of positive numbers less

than one such that 2 &, < 003 consequently H

n=1 =1 1 -

Now using Helly’s theorem and the compactness of the unit ball
of a finite-dimensional space together with the separability of X, we
may choose an increasing sequence %, << k, < ... of positive integers and
finite subsets F, = F, = ... of the set of elements of X of norm one with
the linear span of () F; dense in X, such that for each » = 1,2, ...,

4=1

(i)  for each fe [y, ?_.J* with ||f|| = 1, there is an we I, such that
1y () —f(9)| < (e/3) ly]| for all Y& [(Yr)ir]

(ii) Y., @) < &,[3 for all e F,.
We claim that (Yr,) is the desired «* basic sequence.

< o0,

n
Fix n, let scalars ay, ..., a, be given such that || 3 a,y,,|| = 1, choose
i=1 .
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fel(¥x)ien]" such that f(zn,’ aig/,'%) =1 =|fll, and choose weF, sati-

stying (i) for this f. It fo]lows that |( 2 a; ykl) (#)| > 1—(&,/3). Then for
any scalar A,

“ g @Y, + }'yk”_l_l“ = ] ﬁ“ﬁf’/ki(w) + M, . (99)’
Z1—(5,[3)—2(5,[3) it 4<2,
=1 otherwise.

n 1 n+l X
Thus || 3 a9y, gT-—e—-” 2, %9y, holds for any sealars a,, ..., a,,,. But
i=1 T e i=1

then for any % and scalars ay, ..., a,.z,

| Sen<(T] 2 Sl

from which it follows easily that (¥z,) 15 @ basic sequence. (This is the
Mazur argument for producing basic sequences.) Moreover letting (f;)
denote the functionals in [y, I* blorthogonal to (y;,) and defining P,: [f;]

> U b7 Baf = S0 then 121 < [T (1 ) and hence 7,1

n=m
as m—» oo,

Now define T': X»{ykz]* by (T=)(y) _y(m) for all ye [y,] To
complete the proof it suffices to show that 7'(X) = [f;] (which ylelds
that (y ) is a o* basic sequence) and that 7™ is an 1sometry (which shows
that ”Pml] = ||8,ll for all m and hence |8,,]l =1 as m > oco).

Now if z¢ I, for some n, then 3|y, (#)| < oo, whence T = Zi’lk, (#)f;
< [f;] and thus 7(X) = [f;].

‘We shall now show that

(*) for all g in the Uinear span of (f;) with ljg|] =1 and & > 0, there
exists an xwe X with (2| =1 and | Tr— g|| < 4e.

Let 0<e<1, choose N such that Y &< ¢ and |[P,]<1+e for
J=n

all » >N and fix n> N. For the sake of convenience, define [fl,
= Il ppll for Fe [(F)1]1; 1t follows that [If]l, < I < IPalllfll < 2171l
for all such f. Now fix ge [(f;)7-,] with [jgf] =1 and put f =g/llgl;. Then
fi—Fl: < eal3-
—P <4
Hj=§; . Ui, ()il < 4 122,, &/3 < (4/3)e. Thus

choosing e F, satisfying (i) for f, we have that || Z‘yk]

Hence ||2ykf(a: fi—f]| < 2(e./3) <
for all j > n, and hence by (ii),

(2/3 £; Ioreover Hfj|| = [|P;—
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|To—fl|< 2. But finally [f—g|<e(l+e) sinee L1 = [lg < |P,llgls
< (1+e)llglly, whence [Tz g < 4.

Thus (*) is proved, from which it follows easily that T is an isometry
and that T has dense range in [f;], whence I'(X) = [f;]. m

Remark IIL1. The above argument yields that given any X,
possibly nonseparable, given (y,) = X* with zero a weak* clugter
point of (y,) and 0 < limsupljy,| < oo, then (y,) hag & basic subsequence
(Yn;) such that if (f;) is the sequence biorthogonal to (Ys,) in (¥, ]* and
T: X [y,]* is defined by (I=)(y) = y(x) for all ye [¥n,] and ®e X,
then TX > [f;]. (Indeed the separability of X was used only to pick

(F;) so that | Loj F;] = X, from which it followed that 7'(X) = [f,]. When
iz

X is non-separable and (y,) is as above, we can still choose (F,) and (%;)

. to satisfy (i) and (ii). Proceeding exactly as in the proof of IIIL1, one
obtains that (*) holds; a standard iteration argument baged on () alone,
yields that T'(X)> [f;].) Thus the result of Bessaga and Pelezynski
mentioned above also follows from the proof of IIL.1.

Remark. III.2. Theorem ITL.1 gives, in some sense, the best possible *

regult (for X separable), because if (y,) = X* (y,) is w*-basic, and ( llyall)

is bounded, then ¥, <~ 0. Indeed, otherwise (9.) has a weak* cluster point,

y, with y 5 0. If (#,) ¢ X with (w,, 9,) biorthogonal, then evidently
~ n *

y(@,) =0forn =1,2,.... But ye [v,], hence 0 = 2 Y (®;)y; — ¥, which

Tl

contradicts the fact that y is not 0.

Before proceeding to the next theorem, we recall a renorming theorem

due independently to Kadec [6] and Klee [7]: if X* 4¢ separable then

there is a morm |||*]|| on X equivalent to the original norm om X such that

for any sequence (z) = X* and 2*< X*, of of 2> o* and ||j0}]]] - ||l2*|]

. then @, — o*. (For a simple proof of the theorem of Kadec-Klee see [187,
D. 486). ) ‘

THEOREM IIL.2. Suppose that X* is separable, (y,) < X*, 4,20,
and limsup ly,|| > 0. Then (y,) has a boundedly complete w*-basic sub-
sequence (Yy,).

Proof. By the aformentioned renorming theorem, we may assume
that for any sequence (#)) = X* and a*e X*, it o} 25 &* and |o] — |2,
then 2, —2*, By Theorem ITL.1 we may extract a w*-basie subsequence (Yn,)
of (y,) and find (z;) = X so that (a, Yn;) i8 biorthogonal and if 8,,: [3/:5]

~ nm
> [¥,) is defined (for m =1,2,...) by 8,y 2'21 Y (@;)Yy,, then
i=

(a) 18l = 1.
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Suppose that ye [y,\n;]. Then Smyiy because (y,) is w*-basic and thus
Liminf||8, | > |ly|l. But from (a) it follows that lim sup|8,,9]l < |lyll, hence

Spy—>y and ye [?/”i]' Thus [yni] = [y,,] and (¥n;) is boundedly complete
by Proposition IT.1 (b). m )

We complete this section with a result that gives information even
in the case where X is non-separable.

TreorEM IIL3. Suppose that (y,) = ¥ < X*, ¥* is separable, y,—-» 0,
and Hmsup |jy,ll > 0. Then (y,) contains a shrinking w*-basic subsequence.

Proof. By passing to a subsequence, we may assume by Proposition
IL.3 that (y,) is a shrinking basic sequence. By the proof of Theorem ITI.1
(see the remark immediately following the proof of ITI.1), we may.choose
a basic subsequence (yx,) of (y,) such that if (f;) is the sequence in (¥e)*
biorthogonal to ('l-/ki) and T: X - [yki]'f is defined by Tz(y) = y(x) for
all 2¢ X and ye [¥,], then T(X)> [f;]. But since (y,) is shrinking so is
(yx); whence [f;] = [yki]*. It follows by Proposition IL.1 (¢) that (:l/}%)
is a shrinking w*-basic sequence. m

Remark II1.3. It is an open question if every X has a separable
quotient space. Theorem IIL.3 yields immediately that X has this property
if X* has a subspace with a separable dual. A slight modification of the
proof of Theorem ITL.1 yields that X has a separable quotient space under
the following hypothesis: there exists a sequence X,, X,, ... of subspaces

of X with X, ; X,., for all » and X = (JX,. Indeed, if for all # one
. n=1

chooses y, ¢ X* of norm one with y, ¢ X, then (y,) has @ w* basic sub-

sequence. (It is trivial that if X has a separable quotient space, then

there exists such a sequence (X,) of subspaces of X).

IV. Applications of w*-basic sequences. The results of this section,
with the exception of Theorem IV.4, are either easy consequences of the
theorems of the preceding section (e.g. IV.1 and IV.2), or of the proofs
of these theorems and previously known arguments (e.g. IV.3).

Proof of Theorem IV.1. (i) is an immediate consequence of Theo-
rem ITL.1 and Proposition IL.1 (a), because for any separable X, X*
contains & sequence (y,) with ynfio and |ly,/| =1 for n =1,2,...

Letting X, ¥ be as in (ii), by Theorem III.2 there exists a boundedly
complete normalized basic sequence (y,) in ¥. Since X is separable, there
exists a weak* convergent subsequence (Y;) Of (y,). Putting 2 =y, i1 Yrigg
for j =1,2,..., (%) is a boundedly complete basic sequence with inf|j]|
> 0, and of course z,i": 0. Hence by Theorem IIL1, (2;) contains a w*
basic subsequence (z,,j), of course (z;,) is also boundedly complete, and the
agsertions of (ii) now follow from Proposition IT.1.
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Finally, the first conelusion in (iii) follows from Theorem IIL.3 and
Proposition IL.1 (¢), because if Y* is separable then Y containg a sequence
(#,) with 9,0 and |ly,]|=1 for n =1,2,... Now if Z is a quotient
space of X then Z* is isomorphic to a subspace of X*. If also Z has
a boundedly complete basis (z,) with biorthogonal functionals (2)),
then Z is isomorphic to [e;]", whence [2,]** is isomorphic to a subspace
of X*. m »

Remark IV.1. We do not know if every separable space X hag
a quotient space with a shrinking basis; by IV.L (i), this is equivalent
to whether X* has a boundedly complete basic sequence. However the
conclusion of (ii) concerning Y requires critically the assumptions of (ii).
For example suppose that ¥ has no reflexive subspaces and X == ¥*
Then regarding Y as canonically imbedded in X* = ¥™, ¥ has no weak*
closed subspaces. If ¥ =1, ¥ i3 & separable conjugate space yet X is
non-separable; if ¥ = ¢,, X is separable but Y is not isomorphic to a sub-
space -of a separable conjugate-space; it is well known that neither ¢, nor
I* have reflexive subspaces.

Our next result shows that if ¥ has no reflexive subspaces, then
either ¥*is non-separable or ¥ cannot be imbedded in a separable conjugate
space.

. TemormM IV.2. Suppose that X* is separable; ¥ X* and Y* is
separable. Then Y is somewhat veflexive.

Proof. Let Z be a subspace of ¥. Then also Z* is separable, hence

' contains a éhrinking basic sequence (y,) with |ly,/l =1 for n = 1,2, ...,
by Proposition I1.3. Of necessity ¥, — 0 hence y,, 2z 0, whence by Theorem.
IIL.2 (y,) has a subsequence (y,,) which is boundedly complete. Of course
(#n,) 18 also shrinking, hence (¥x,]is @ reflexive subspace of Z. m

COROLLARY IV.1. If X** is separable then both X and X* are somewhat
reflexive. C

Proof. That X* is somewhat reflexive follows immediately from
Theorem IV.2. Now suppose ¥ = X. ¥ can be considered as a subspace
of the separable conjugate space X** and Y™ is separable, hence ¥ containg
a reflexive subspace by Theorem IV.3. m

Remark IV.2. We do not know if the converse to IV.2 ig true. That
is, it ¥ is separable and somewhat reflexive, is ¥* separable and ¥ iso-
morphic to a subspace of a separable conjugate space? (The fixst part
of this question ig also raised in [21]). It follows from a recent result of
Lindenstrauss [9] and the above corollary that there exists a separable
somewhat reflexive space ¥ which is not isomorphic to a complemented
subspace of any conjugate space. (A subspace Z of X is said to be comple-
mented in X if there exists an idempotent operator on X whose range
is Z.) Indeed, Lindenstrauss showed that there exists a ¥ with ¥** sepa-
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‘rable and Y™*/Y isomorphic to ¢, (the space of sequences which converge

to zero). Our corollary yields that ¥ (and also ¥* and ¥**) are somewhat
reflexive. Nevertheless if ¥ were isomorphic to a complemented subspace
of a conjugate space, ¥ would be complemented in ¥**, which would
imply that ¢, is isomorphic to a subspace of the separable conjugate
space Y**, an impossibility (see the remark following the proof of Theo-
rem IV.1). . )

Our next result follows easily from our proof of Theorem III.1 and
an argument of Lindenstrauss and Pelezyriski [10]. Before proceeding
to i, we need some preliminaries: L, denotes the space of Lebesgue inte-

1

grable functions on [0,1] with |f]f = [1f]di. Given a measurable set
0

A <= [0,1], x, denotes its characteristic function and |4] its Lebesgue
measure. The Haar basis (h,)5, for L, (c.f. [18], p. 13] is defined as follows:
hy =1, :
hotey gy = Xy@i-2)2=k—1, @i—1)2~k—1 — ¥[@i~n2—F-1, @2ip—%—1},
1<i<25k=0,1,2,...).

Let (h)3., denote the functionals biorthogonal to (hy,), regarded as
elements of L*[0; 1]. It is known and easily seen that [A}] is isomettic
to the space of continuous functions on the Cantor discontinuum, under
the supremum norm. Indeed, the linear span of (k) consists of those
funetions on [0, 1] which are equal almost everywhere to & step function.
which has breaks at dyadic rationals. Then letting {0, 1}* denote the
compact space of all sequences of zeros and ones, there is a unique sur-
jective linear isometry T': [k;]— C({0,1}*) such that T1 =1 and for

all o and j with 0<<j<2% n=1,2,..., Tyr; ;.7 = %af; Where
[ 5]
" .
A7 = {(;)e {0, 1} o, = g;foralll<i<nandj = ) 2" withe; = 0
or 1for all 1 <i<<n}. =1

We recall finally the following consequence of the Liapounoff con-
vexity theorem [8]: If F is a finite subset of Z*[0, 1], and B is a mea-
sureable subset of [0, 1], then there exists a measureable subset 4 of B
with |4| = (1/2)|B| such that [,fdt = [ fdt for all feF.

Bed

THEOREM IV.3. Let X be a separable Banach space and Y a subspace
of X*.

(a) If XY is isomorphic o 11, there exisis a w*-basic sequence (y,) in ¥
such that (y,) is equivalent to the usual basis for 1. Consequently ¢, is iso-
morphic to a quotient space of X.

(b) If X is isomorphic to Ly, there ewists a w*-basic sequence (y,)2., in X
such that (Y,)n-, is equivalent to the Haar basis for L. Consequently C' ({0, 1}*)
18 isomorphic to a quotient space of X.
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Proof. (a) follows easily from Theorem IIL.1 and Propositions II.1
and IL.2. Let (y,) = X* be a basic sequence equivalent to the usual unit
vector basis for I*. Since X is separable, (y,) has a weak* convergent
subsequence (). Then (Y, —Yny, ) =0 and (Yp,, —Yny;,,) 15 eqnivzulent
to the usual basis for I*. Thus by Theorem IV.1, ( Yngy — Yngy,.y) DS 2 w*-
basic subsequence (2;); (2;) is equivalent to the usual basis for {* and hence
X has a quotient space isomorphic to ¢, by Propositions IL.1 and IL2.

To prove (b), we combine the proof of Theorem IIL.1 and the proof
of Theorem 4.1 of [10] as follows:

Let Y be as in (b) and let T: ¥ — L, be a surjective isomorphism

Let (¢;)72, be an increasing sequence of positive numbers with Zsj< 1. We
i=
may chooge a sequence (B, Of finite subsets of {we X: |jw|| = l} with the
linear span of UF dense in X, a sequence (A,L),mo of meagureable subsets
of [0,1] (wmh Al, = [0, 1]) and a sequence (y,)o, of elements of ¥ (with
Ty, = 1) satisfying the 'fo]lowing properties for n = 0,1, 2, ...; and for
0g<j<2,r=20,1,2,..
(i) for all fe (yi),-=0]* with [|f]] =1, there is an xeF, such that
Iy (@) —F(y)] < ea/31ll for all ye [(g:)in];
(ii) Yny1€ Fys
_(111) Tyorss = Lagrr, pojm1 T K1 g3
(iv) [Agry gl =277
(v) vr+1+2y—1UAzr+1+zj = gy 1;
(vi) 4
To see that this is possible, for each fe X, let f denote the unique
1.
element of L*[0, 1] such that [f()(Ty) (@)dt = y(f) for all ye ¥ and
N 0

let {d,, dy, ...} be a dense subset of {xeX: ful| = 1}. Put y, = T"(1),
4, =[0,1], and choose F, o finite set of elements of X of norm one
satisfying (i) for n = 0, such that d,e Fy.

Suppose that y, and F, have been defined for all ¢<<n = 2"4j
and that' 4, has been defined for ¢ < 2™*+-2, , satisfying (i) —(vi). By
the Llapounoff convexity theorem, there exist measureable sety A amd B
suoh that AUB = 4y, ; 1, ANB =@, |4| = |B|, and

f fdw = ffdm
4 B

o+l 951 ﬂAzﬂr.{;l_'_zj = .

for all fe F, ..

Define Ayri1,9; 1 = 4, Aypt1,,; = B, and y, by (iii). Now using the com-
pactness of the unit ball of a finite dimensional space, choose F, satistying
(i) with d,¢ F,. This completes the induective definition of these objects.
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Ag observed in [10],it follows that (Ty,,)>, is isometrically equivalent
to the Haar basis of L,, hence (y,) is equivalent to (%,). Our proof of ITI.1
yields immediately that (y,)5, is & o* basic sequence, and thus by Propo-
sitions IT.1 and I1.2, X /(y,)T is isomorphic to [% ], which is in turn isometric
to C({0,1}) by our preliminary remarks. =

Remark IV.3. Our proof of the above result and IIL1 yields that
if 1 (vesp. I,) is isometric to a subspace of X* and X is separable, then
¢, (resp. C({0,1})) is isometric to a quotient space of X. The proofs of
Theorem IV.L and Theorem IIL.1 also yield that if # is a symmetric
function space (as defined in [10]) such that the Haar system (k,) is a basis
for ¥, then if ¥ is a subspace of X* isomorphic to # and X is separable,
Y contains a w*-bagic sequence (y,) equivalent to (%,) (and consequently
[%:] (in E*) is isomorphic to 2 quotient space of X).

Remark IV.4. The result mentioned in the Introduction is an imme-
diate consequence of a theorem of Milutin which asselts that C[0,1]
iy isomorphic to C({0, 1}*) (c.f. [16]).

Remark IV.5. It is a theorem of Pelezynski [15] that if X* contains
a semi-norming subspace isomorphic to I,(u) for some non-purely atomic
measure u, then X contains a subspace isomorphic to I It has recently
been observed by James Hagler that the proof in [15] may be modified
50 a§ to yield this result without the “semi-norming” hypothesis. Actually,
this result also follows from our Theorem IV.3. For if X* contains a sub-
space isomorplic to L, (u) for some non-purely atomic u, it also eontains
a subspace Y isomorphie to L,[0, 1]. But then there is a separable subspace
Z of X such that the (separable) space Y is isomorphic to a subspace of
Z”*, and hence by Theorem IV.3, 0({0,1}”) is isomorphic to a quotient
space of Y. It then follows easily (c.f. [16]) that I* is isomorphic to a sub-
space of Y, and hence of X. (On the other hand, the fact that ([0, 1]
ig isomorphic to a quotient space of X provided X is separable and L, [0, 1]
iy isomorphic to a subspace of X*, follows immediately from the obser-
vation of Hagler and the results of [15].)

For the final result of this paper, we need the following definitions

‘ and notation:

A sequence (E,) of finite dimensional subspaces of X is called a finite
dimensional decomposition (£.d.d., in short) for X provided that each
zeX can be written uniquely as } P,z with P,zeF,. The operators

n n=1

Q,: X - X defined by Q2 = 2 P,z arve uniformly bounded, satisfy
Q.90 = Quingnym» and [@,X] = X Conversely, if (@,) is a uniformly
bounded sequence of finite rank operators on X for which @,@, = Qmin(m,m)

and [@,X] = X then ([@,—@Q,_,]1X) (wheré Q,=0) is a £d.d. for X,
-and we call ([Q, —Q,_,]1X) the £.d.d. determined by (@,). If (@) determines
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a f.d.d. for X*-equivalently, if [@;X*] = X* — then the f.d.d. determined
by (Q,) is called shrinking.

A gubset A of X* is called norm determining over X provided that
for each we X, o] = sup{la(@)]: ac 4, o] <1}

TasoREM IV.4. If X is separable then there is a ¥ = X such that Y
and X|Y both have finite dimensional decompositions. If also X* is sepa-
rable, then ¥ may be chosen so that both Y amd X|Y have shrinking finite
dimensional decompositions.

Proof. By a result of Gaposkin and Kadec [4] (vee also Lemma 2
of Mackey’s paper [11]) X has a biorthogonal sequence (w,, wZ) with
[#,] = X and [#;] norm determining over X. It follows easily that we
can choose finite sets oy = oy < ..., 4; = dy = .., 80 that ¢ = (o, and
4 = J4, are complementary infinite subsets of the positive integers
‘and, for n =1,2,..., '

(i) if 0" e[(®])iea,] there is we[(#;)ea

F , 1 E3 R
o2 (@) > (1=~ ) o)
(i) if @e[(@)no,] there is o™ e[(@])eo,ya,] 50 that [l =1 and

1
ok ——
ool > (1 2V
For m =1,2,..., define §,: X—X and I, X—-X by Sz
= D @} (@)@, .’Z’m—— DA We claim that, for n =1, 2, ...,

ieoy, ied

] so that |2 =1 and

aUon+1

n

() 178 1< 142

. 1
(iv) I8, H <1+ W

To see that (111) hold%, suppose that ye (x, )m oy AN using (i) pick

J(w*)T

@€ [(@)iea,Jop,,] 50 that |lo| = L and |Tyyiw)| >(1—-——1~~)||1’*y[| Since

Ye (@), 1¥(@)] = {T5y()] and hence [y >(1~
Iyl <

manner.
‘We show now that if y e (2, )j;c, then Ty 2% y. By (iii) (T*y) i3 bounded;

)][1";‘;%[ o that

1
1 —) [ly]l. Thus (iii) is true and (iv) follows from( ) in o gimilar

hence has o weak™ cluster point, say, «*. Evidently Ta* = Ty fox‘

n =1,2,..., hence & ——~ye(a:%);';4 for each n=1,2,..., whence o —

—-ys(m)f;A Smce also o* -—ys( )y, & -—y_-o and @* =y. Thus:
,__d

T,g—»y and (@), = [(2]);cq]. Sebiting ¥ = (#})f,, and using the obvious
analogue of Proposition II.1(a) for £.d.d.’s, we have that X /¥ has a f.d.d.
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Now Y ($) €4 _[(w uA]T (mv, iec T [( )tea]} 80 from (iV) it
follows that (S, ) determines a f.d.d. for Y This completes the proof
of the first statement.

Suppose now that X* is separable. By the aforementioned I'esult of
Mackey and Gaposkin-Kadec, the biorthogonal sequence (z,, #) may
be chosen so that [#,] = X and [#] = X*. Also, in view of the renorming
theorem of Kadec—Klee mentioned in Section ITI, we may assume that
for any sequence (y,) = X* and yeX*, if y,~»y and |y,J|—> |ly| then
Y, —y. Bub it follows from (ii) (ef. the proof of Theorem IIL.2) that if
o ¢ (;)iz, then ||T5a"] — o], hence T;a* - &*, whence [(#});es] = [(&])seal-
Using the f.d.d. variant of Proposition IL.1 (b), we have that X|Y has
a shrinking f.d.d. Of course, since [#}] =X, (S,y) automatically deter-
mines & shrinking f.d.d. for ¥. m

Remark IV.6. Kadec and Pelezyriski have proved the following
theorem related to Theorem IV.4 (see [18], p..489): I (=,, o) is a biort-
hogonal sequence with [2,] = X and [#,] norming over X, then the
positive integers can be partitioned into disjoint infinite subsets ¢ and 4
with ¢ = Jo,, 4 = (U4, where (s,) and (4,) are disjoint and finite,
and such that [(x m)m Ty (resp. [(=; )w1 Y is a finite dimensional de-
composition for (} )“_4 (zesp. for (@ )M)
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