icm[©]

 $f \, \epsilon \, \Gamma(A)$ which has an extension \bar{f} not belonging to $\Gamma(B)$, or even $\cos B$ for some superalgebra $B \supset A$. To see this take as B the sup-norm disc algebra of all continuous functions on the unit disc of the complex plane, holomorphic in its interior and let $A = \{x \, \epsilon \, B \colon x(0) = x(1)\}$. The maximal ideal space of A is the closed unit disc with identified 0 and 1 and the Šilov boundary of A is the unit circle (with 1 identified with 0). So the functional f(x) = x(0) = x(1) is in $\Gamma(A)$ and it has two extensions onto $B \colon f_1(x) = x(1)$ and $f_0(x) = x(0)$ such that $f_1 \, \epsilon \, \Gamma(B)$ but $f_0 \, \epsilon \, \operatorname{cor} B$.

The following purely algebraic result can support the conjecture that t(A) coincides with the family of all non-removable closed ideals of A. Let R and P be arbitrary rings with unit elements. P is an extension of R if there is an isomorphic imbedding of R into P sending the unit of R into unit of P. Call an ideal I of R non-removable if in any extension P of R the ideal I is contained in a proper ideal of P. A subset S of R consists of joint divisors of zero if for any finite subset $\{x_1, \ldots, x_n\} \subset R$ there is a non zero element $y \in R$ such that $x_i y = 0$ for $i = 1, 2, \ldots, n$.

Proposition 4. An ideal I of a commutative ring R is a non-removable ideal if and only if it consists of joint divisors of zero.

The proof can be obtained from a reasoning in [2].

References

- [1] R. Arens, Extensions of Banach algebras, Pacific J. Math. 10 (1960), pp. 1-16.
- [2] Ideals in Banach algebra extensions, Studia Math. 31 (1968), pp. 29-34.
 [3] Г. Е. Шилов, О расширении максимальных идеалов, Докл. А. Н. СССР 29
- (1940) pp. 83-85.
- [4] О нормированных кольцах с одной образующей, Мат. сб. 21 (63) (1947), pp. 25-37.
- [5] W. Zelazko, A characterization of Silov boundary in function algebras, Prace Mat. 14 (1970), pp. 59-64.
- [6] B. Bollobás, Banach algebras and theory of numerical ranges, Ph. D. Thesis, Cambridge 1971.
- [7] J. A. Lindberg, Extension of algebra norms and applications, Studia Math. 40 (1971), pp. 35-39.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Received June 15, 1971 (354)

On cosine operator functions and one-parameter groups of operators

Ъy

J. KISYŃSKI (Warszawa)

Dedicated to Professor Antoni Zygmund

Abstract. If A is a complex number then

$$(*) \qquad \exp\left(t \begin{pmatrix} 0 & 1 \\ A & 0 \end{pmatrix}\right) = \begin{pmatrix} \cos{(-A)^{\frac{1}{2}}t} & \int\limits_0^t \cos{(-A)^{\frac{1}{2}}\tau} d\tau \\ \frac{d}{dt} \cos{(-A)^{\frac{1}{2}}t} & \cos{(-A)^{\frac{1}{2}}t} \end{pmatrix}, \quad -\infty < t < \infty.$$

The paper gives a generalization of this formula to the case, when A is an unbounded linear operator in a Banach space.

1. Preliminaries.

1.1. If E and F are Banach spaces over the same, real or complex, field of scalars then $\mathscr{L}(E;F)$ denotes the space of all linear bounded operators from E to F. Let $\mathscr{L}_s(E;F)$ denote $\mathscr{L}(E;F)$ equipped with the topology of pointwise convergence (called also the strong topology). An $\mathscr{L}(E;F)$ -valued function of a real variable is called strongly continuous, or strongly continuously differentiable, if it is continuous or continuously differentiable, when regarded as a mapping from $(-\infty,\infty)$ to $\mathscr{L}_s(E;F)$. For instance, by an application of the Banach–Steinhaus theorem, it follows that a function $K: (-\infty,\infty) \to \mathscr{L}(E;F)$ is strongly continuously differentiable on $(-\infty,\infty)$ if and only if for any fixed $x \in E$ the F-valued function $t \to K(t)x$ is continuously differentiable on $(-\infty,\infty)$ in the sense of the norm in F.

1.2. Let E be a Banach space. A strongly continuous mapping $G: (-\infty, \infty) \to \mathcal{L}(E; F)$ is called a one-parameter strongly continuous group of operators if G(0) = 1 and

$$G(t)G(s) = G(t+s)$$
 for every $s, t \in (-\infty, \infty)$.

The infinitesimal generator of the one parameter group G is the

On cosine operator functions and one-parameter groups of operators

linear operator A from E to E, with the domain D(A) defined by the conditions

$$D(A) = \left\{ x \colon x \in E, \lim_{t \to 0} \frac{1}{t} \left(G(t) x - x \right) \text{ exists} \right\},$$

$$Ax = \lim_{t \to 0} \frac{1}{t} \left(G(t) x - x \right) \quad \text{for } x \in D(A),$$

where the limit is taken in the sense of the norm in E.

It is known (see e.g. [3], chapter IX) that if G is a strongly continuous one-parameter group of bounded linear operators in a Banach space E and if A is the infinitesimal generator of G, then

(1.2.1) there are constants $M \ge 1$ and $k \ge 0$ such that

$$||G(t)|| \leq Me^{k|t|}$$
 for every $t \in (-\infty, \infty)$;

- (1.2.2) for every n = 1, 2, ... the domain $D(A^n)$ of A^n is dense in E and A^n is a closed operator from E to E;
- (1.2.3) G(t)D(A) = D(A) for every $t \in (-\infty, \infty)$ and, for every fixed $x \in D(A)$, the *E*-valued function $t \to G(t)x$ is continuously differentiable on $(-\infty, \infty)$ in the sense of the norm in *E* and

$$\frac{dG(t)x}{dt} = AG(t)x = G(t)Ax, \quad t \in (-\infty, \infty).$$

1.3. Let E be a Banach space. A mapping $\mathscr{C}: (-\infty, \infty) \to \mathscr{L}(E; E)$ is called cosine operator function if it satisfies the d'Alembert functional equation

$$\mathscr{C}(t+s) + \mathscr{C}(t-s) = 2\mathscr{C}(t)\mathscr{C}(s)$$

for $s, t \in (-\infty, \infty)$, and if, moreover, $\mathscr{C}(0) = 1$. As it is easy to see, any cosine operator function is a pair function on $(-\infty, \infty)$, its range being a commutative family of operators.

The theory of $\mathcal{L}(E; E)$ -valued strongly continuous cosine functions was developed by M. Sova [2].

It should be remarked, that in [2] a cosine operator function is defined only on $[0, \infty)$. However, as Sova proved, the range of any strongly continuous cosine operator function defined on $[0, \infty)$ is a commutative family of operators, and from this it follows easily, that the pair extension onto $(-\infty, \infty)$ of such a cosine function satisfies the d'Alembert's equation on whole $(-\infty, \infty)$. According to [2], the infinitesimal generator of an

 $\mathcal{L}(E; E)$ -valued cosine function \mathscr{C} is the linear operator A from E to E, with the domain D(A), defined by the conditions

$$D(A) = \left\{x\colon x\in E, \lim_{t\to 0} \frac{2}{t^2} (\mathscr{C}(t)x - x) \text{ exists} \right\},$$
 $Ax = \lim_{t\to 0} \frac{2}{t^2} (\mathscr{C}(t)x - x) \text{ for } x\in D(A),$

the limit taken in the sense of the norm in E.

As proved by Sova [2], if E is a Banach space and if \mathscr{C} is an $\mathscr{L}(E; E)$ -valued strongly continuous cosine function with the infinitesimal generator A, then

- (1.3.1.) the domain D(A) of A is dense in E and A is a closed operator from E to E;
- (1.3.2.) $\mathscr{C}(t)D(A) \subset D(A)$ for every $t \in (-\infty, \infty)$ and, for every fixed $x \in D(A)$, the *E*-valued function $t \to \mathscr{C}(t)x$ is twice continuously differentiable on $(-\infty, \infty)$ in the sense of the norm in *E* and

$$\frac{d^2 \mathscr{C}(t) x}{dt^2} = A \mathscr{C}(t) x = \mathscr{C}(t) A x, \qquad -\infty < t < \infty.$$

The following lemma will be also useful in our further reasonings. (1.3.3.) Lemma. Let E be a Banach space, let $\mathscr E$ be an $\mathscr L(E;E)$ -valued function strongly continuous on $(-\infty,\infty)$ and let A be a closed linear operator from E to E with a domain D(A) dense in E. If

(a)
$$\mathscr{C}(t)D(A) \subset D(A)$$
 for every $t \in (-\infty, \infty)$

and

(b) for any fixed $x \in D(A)$ the E-valued function $t \to \mathcal{C}(t)x$ is twice strongly continuously differentiable on $(-\infty, \infty)$ and we have

$$rac{d^2\mathscr{C}(t)x}{dt} = A\mathscr{C}(t)x = \mathscr{C}(t)Ax \quad \ \ for \ t \in (-\infty, \infty),$$

$$\mathscr{C}(0)x = x \quad \ \ and \ \, rac{d\mathscr{C}(t)x}{dt} \bigg|_{t=0} = 0,$$

then $\mathcal{C}(t)$ is a cosine function and A is its infinitesimal generator.

Proof. In order to prove that $\mathscr C$ satisfies the d'Alembert functional equation it is sufficient to show that for any fixed $x_0 \in D(A)$ and any fixed s the E-valued function

$$x(t) = \mathcal{C}(t+s)x_0 + \mathcal{C}(s-t)x_0 - 2\mathcal{C}(s)\mathcal{C}(t)x_0$$

9

vanishes identically on $(-\infty, \infty)$. As it is easy to see, the function $t \to x(t)$ has the following properties:

- (a) $x(t) \in D(A)$ for every $t \in (-\infty, \infty)$,
- (β) $t \to x(t)$ is twice continuously differentiable on $(-\infty, \infty)$ in the sense of the norm in E and x''(t) = Ax(t) for $t \in (-\infty, \infty)$.
- $(\gamma) \quad x(0) = 0,$

96

(8) $x'(0) = \mathscr{C}'(s)x - \mathscr{C}'(s)x - 2\mathscr{C}(s)\mathscr{C}'(0)x = 0.$ If we define a norm on D(A) by

$$||x||_{D(A)} = ||x||_E + ||Ax||_E$$

then, by the closedness of A, D(A) with the norm $\| \|_{D(A)}$ is a Banach space. Moreover, by (α) and (β) , $t \to x(t)$ is a D(A)-valued function continuous on $(-\infty, \infty)$ in the sense of the norm $\| \|_{D(A)}$ and, by (b), $t \to \mathscr{C}(t)|_{D(A)}$ is an $\mathscr{L}(D(A); E)$ -valued function twice strongly continuously differentiable on $(-\infty, \infty)$. For any $t \in (-\infty, \infty)$ let $\mathscr{C}'(t) \in \mathscr{L}(D(A); E)$ and $\mathscr{C}''(t) \in \mathscr{L}(D(A); E)$ denote the corresponding derivatives at the point t. It follows that for any fixed $t \in (-\infty, \infty)$ the E-valued function $\tau \to y(\tau) = \mathscr{C}(t-\tau)x(\tau)$ is continuously differentiable on $(-\infty, \infty)$ in the sense of the norm in E and that

$$y'(\tau) = \mathscr{C}(t-\tau)x'(t) - \mathscr{C}'(t-\tau)x(\tau), \quad -\infty < \tau < \infty.$$

Since $y(t) = \mathscr{C}(0)x(t) = x(t)$ by (b), and $y(0) = \mathscr{C}(t)x(0) = 0$ by (γ) , we have $x(t) = \int_0^t y'(\tau) d\tau$, i.e.

$$x(t) = \int\limits_{-\tau}^t \{\mathscr{C}(t-\tau)x'(\tau) - \mathscr{C}'(t-\tau)x(\tau)\}d\tau, \qquad -\infty < t < \infty.$$

By (3) and (β) we have $x'(\tau) = \int\limits_0^\tau Ax(\varrho) d\varrho$. By (b) we have $\mathscr{C}'(t-\tau)x(\tau) = \int\limits_0^\tau \mathscr{C}(\sigma)Ax(\tau) d\sigma$. Therefore

$$x(t) = \int_0^t \left[\int_0^\tau \mathscr{C}(t-\tau) A x(\varrho) d\varrho \right] d\tau - \int_0^t \left[\int_0^{t-\tau} \mathscr{C}(\sigma) A x(\tau) d\sigma \right] d\tau = 0,$$

by the Fubini theorem.

So we proved that $\mathscr C$ is a cosine function and now it follows at once from (b) that if A_0 denotes the infinitesimal generator of $\mathscr C$ then $A \subset A_0$, i.e. $D(A) \subset D(A_0)$ and $Ax = A_0x$ for $x \in D(A)$. In order to prowe that $A = A_0$ it is sufficient to apply Lemma 2 from Section 3 of the author's paper [1].

However, the reasoning in [1] is complicated by the fact that the general case of a locally convex sequentially complete space is treated

there. Therefore we shall repeat the argumentation in a simplified version for a Banach space. We have to prove that $D(A_0) \subset D(A)$.

If $x \in D(A)$ then, by (b) and by the closedness of A, we have $\mathscr{C}(t)x - x$ $= \int\limits_0^t \int\limits_0^t A\mathscr{C}(\sigma)x d\sigma d\tau = A\int\limits_0^t \int\limits_0^\tau \mathscr{C}(\sigma)x d\sigma d\tau. \text{ Again by the closedness of } A$ and by the fact that D(A) is dense in E it follows that

$$(*) \qquad \int\limits_0^t \int\limits_0^\tau \mathscr{C}(\sigma) x d\sigma d\tau \in D(A) \quad \text{ and } A \int\limits_0^t \int\limits_0^\tau \mathscr{C}(\sigma) x d\sigma d\tau = \mathscr{C}(t) x - x$$

for every $x \in E$ and $t \in (-\infty, \infty)$. If $x \in D(A_0)$ then $\lim_{t \to 0} \frac{2}{t} \left(\mathscr{C}(t)x - x \right) = A_0 x$ and $\lim_{t \to 0} \frac{2}{t^2} \int_0^t \int_0^x \mathscr{C}(\sigma) x d\sigma d\tau = x$, so that, by (*) and by the closedness of A, $x \in D(A)$ and $Ax = A_0 x$. Consequently $D(A_0) \subset D(A)$ and the proof is complete.

1.4. In the sequel we shall consider one-parameter groups of operators belonging to $\mathscr{L}(E_1 \times E_0; E_1 \times E_0)$, where E_0 and E_1 are Banach spaces. It will be convenient to write elements of $E_1 \times E_0$ in the form of columns $\begin{pmatrix} x \\ y \end{pmatrix}$, where $x \in E_1$, $y \in E_0$, and to represent any operator $B \in \mathscr{L}(E_1 \times E_0; E_1 \times E_0)$ as a matrix

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

whose elements are operators $B_{ik} \in \mathcal{L}(E_{2-k}; E_{2-i})$ defined by the condition that, for every column $\begin{pmatrix} x \\ u \end{pmatrix} \in E_1 \times E_0$,

$$B\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} B_{11}x + B_{12}y \\ B_{21}x + B_{22}y \end{pmatrix},$$

according to the common rule of multiplication of matrices. A similar matricial representation may be used for any linear operator A from $E_1 \times E_0$ into $E_1 \times E_0$, having domain of the form $D(A) = D_1 \times D_0$, where D_i is a linear subset of E_i .

2. Generalization of the formula (*).

THEOREM. Let E_0 be a Banach space and let A be a linear operator from E_0 to E_0 with domain D(A). If E_1 is a Banach space such that $D(A) \subset E_1 \subset E_0$ and that the Banach space topology of E_1 is not weaker than the topology induced in E_1 by E_0 , and if the operator $\mathscr A$ from $E_1 \times E_0$ into $E_1 \times E_0$, with domain $D(\mathscr A)$, defined by the conditions

(2.1)
$$D(\mathscr{A}) = D(A) \times E_1, \quad \mathscr{A} = \begin{pmatrix} 0 & 1 \\ A & 0 \end{pmatrix},$$

is the infinitesimal generator of a strongly continuous one-parameter group $\mathscr{G}: (-\infty, \infty) \to \mathscr{L}(E_1 \times E_0; E_1 \times E_0), \text{ then } A \text{ is the infinitesimal generator}$ of a strongly continuous $\mathcal{L}(E_0; E_0)$ -valued cosine function $\mathcal{C}(t)$,

 $E_1 = \{x \colon x \in E_0, \text{ the } E_0\text{-valued function } t \to \mathscr{C}(t)x \text{ is continuously } t \in \mathbb{C}_0 \}$ differentiable on $(-\infty, \infty)$ in the sense of the norm in E_0 ,

$$(2.3) \quad \mathscr{G}(t) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \mathscr{C}(t)x + \int\limits_0^t \mathscr{C}(\tau)y d\tau \\ \frac{d\mathscr{C}(t)x}{dt} + \mathscr{C}(t)y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \epsilon E_1 \times E_0, -\infty < t < \infty.$$

On the other hand, if A is the infinitesimal generator of a strongly continuous $\mathscr{L}(E_0; E_0)$ -valued cosine function $\mathscr{C}(t)$ and if E_1 is defined by (2.2), then E_1 under the norm

$$\|x\|_{E_{1}} = \|x\|_{E_{0}} + \sup_{0 \leqslant t \leqslant 1} \left\| \frac{d\mathscr{C}(t)x}{dt} \right\|_{E_{0}}, \quad x \in E_{1},$$

becomes a Banach space and the formula (2.3) defines a strongly continuous one-parameter group $\mathscr{G}: (-\infty, \infty) \to \mathscr{L}(E_1 \times E_0; E_1 \times E_0)$, whose infinitesimal generator is the operator \mathcal{A} defined by the conditions (2.1).

3. Proof of the part "from & to &". Everywhere throughout this section it is assumed that E_0 is a Banach space, $\mathscr C$ is a strongly continuous $\mathscr{L}(E_0; E_0)$ -valued cosine function and A is the infinitesimal generator of \mathscr{C} . We define the linear subset E_1 of E_0 by (2.2) and define the norm $\| \|_{E_1}$ on E_1 by (2.4).

LEMMA 3.1. E_1 under the norm $\| \ \|_{E_1}$ is a Banach space. We have $\mathscr{C}(t)|_{E_1}$ $\epsilon \mathscr{L}(E_1; E_1), \int_0^{\epsilon} \mathscr{C}(\tau) d\tau \epsilon \mathscr{L}(E_0; E_1) \quad and \quad \frac{d}{dt} \mathscr{C}(t) \Big|_{E} \epsilon \mathscr{L}(E_1; E_0) \quad for \quad every$ $t \in (-\infty, \infty)$, where the integral is the Riemann integral of a strongly continuous $\mathcal{L}(E_0; E_0)$ -valued function and the derivative is taken in the sense of the strong topology in $\mathcal{L}(E_1; E_0)$. Moreover, the mappings

(a)
$$(-\infty, \infty) \ni t \to \mathscr{C}(t)|_{E_1} \in \mathscr{L}(E_1; E_1),$$

(b)
$$(-\infty, \infty) \circ t \to \int\limits_0^t \mathscr{C}(\tau) \, d\tau \, \epsilon \, \mathscr{L}(E_0; E_1),$$

(c)
$$(-\infty, \infty) \ni t \to \frac{d}{dt} \mathscr{C}(t) \Big|_{E_1} \epsilon \mathscr{L}(E_1; E_0)$$

are strongly continuous.

Proof. It follows from the d'Alembert functional equation, that if the function $t \to \mathscr{C}(t)x$ is continuously differentiable on [0,1] in the sense of the norm in E_0 , then $x \in E_1$. Therefore, by the theorem on term by term

differentation, E_1 is a complete space under the norm $\|\ \|_{E_1}$. If $x \in E_1$ and $s \in (-\infty, \infty)$ are fixed then the E_0 -valued function $t \to \mathscr{C}(t)\mathscr{C}(s)x$ $=\mathscr{C}(s)\mathscr{C}(t)x$ is continuously differentiable on $(-\infty,\infty)$ in the sense of the norm in E_0 , so that $\mathscr{C}(s)E_1 \subset E_1$. Since, for $x \in E_1$,

$$\begin{split} \|\mathscr{C}(t)x\|_{E_1} &= \|\mathscr{C}(t)x\|_{E_0} + \sup_{0\leqslant s\leqslant 1} \left\|\frac{d}{ds}\left(\mathscr{C}(s)\mathscr{C}(t)x\right)\right\|_{E} \\ &= \left\|\mathscr{C}(t)x\right\|_{E_0} + \sup_{0\leqslant s\leqslant 1} \left\|\mathscr{C}(t)\frac{d\mathscr{C}(s)x}{ds}\right\|_{E_0} \\ &\leqslant \left\|\mathscr{C}(t)\right\|_{\mathscr{L}(E_0;E_0)} \|x\|_{E_1}, \end{split}$$

we see that $\mathscr{C}(t)|_{E_1} \in \mathscr{L}(E_1; E_1)$. Moreover, if $x \in E_1$, then, by the d'Alembert equation,

$$\begin{split} &\|\mathscr{C}(t+h)x-\mathscr{C}(t)x\|_{E_1} = \|\mathscr{C}(t+h)x-\mathscr{C}(t)x\|_{E_0} \\ &+ \frac{1}{2}\sup_{0\leqslant s\leqslant 1} \left\|\frac{d\mathscr{C}(t+h+s)x}{dt} - \frac{d\mathscr{C}(t+h-s)x}{dt} - \frac{d\mathscr{C}(t+s)x}{dt} + \frac{d\mathscr{C}(t-s)x}{dt}\right\|_{E_0}, \end{split}$$

whence it follows that the mapping (a) is strongly continuous. This implies that if $x \in E_1$ then also $\int \mathcal{C}(\tau) x d\tau \in E_1$ and

$$\begin{split} \frac{d}{ds} \bigg(\mathscr{C}(s) \int\limits_0^t \mathscr{C}(\tau) x d\tau \bigg) &= \frac{d}{ds} \int\limits_0^t \mathscr{C}(s) \mathscr{C}(\tau) x d\tau \\ &= \frac{1}{2} \frac{d}{ds} \int\limits_0^t \left\{ \mathscr{C}(\tau+s) x + \mathscr{C}(\tau-s) x \right\} d\tau \\ &= \frac{1}{2} \int\limits_0^t \left\{ \frac{d\mathscr{C}(\tau+s) x}{d\tau} - \frac{d\mathscr{C}(\tau-s) x}{d\tau} \right\} d\tau \\ &= \frac{1}{2} \mathscr{C}(t+s) x - \frac{1}{2} \mathscr{C}(t-s) x. \end{split}$$

Now let $x \in E_0$. It follows from 1.3.1 and 1.3.2 that E_1 is dense in E_0 and so there is a sequence x_n , n=1,2,..., of elements of E_1 , such that $\lim_{n\to\infty} \|x_n-x\|_{E_0} = 0. \text{ If, for a fixed } t, \text{ we put } y_n = \int\limits_{-t}^{t} \mathscr{C}(\tau)x_n d\tau, \text{ then }$

$$\lim_{n\to\infty} \sup_{0\leqslant s\leqslant 1} \left\| \mathscr{C}(s)y_n - \mathscr{C}(s) \int_0^t \mathscr{C}(\tau) \, x d\tau \right\|_{E_0} = 0$$

and

$$\frac{d\mathscr{C}(s)y_n}{ds} = \frac{1}{2}\,\mathscr{C}(t+s)x_n - \frac{1}{2}\,\mathscr{C}(t-s)x_n,$$

10

so that $\lim_{n\to\infty}\sup_{0\leqslant s\leqslant 1}\left\|\frac{d\mathscr{C}(s)y_n}{ds}-\frac{1}{2}\mathscr{C}(t+s)x+\frac{1}{2}\mathscr{C}(t-s)\right\|_{E_0}=0.$ Hence, by the theorem on term by term differentation,

$$\int\limits_{0}^{t}\mathscr{C}(\tau)xd\tau\in E_{1}\quad \text{ and }\quad \frac{d}{ds}\bigg(\mathscr{C}(s)\int\limits_{0}^{t}\mathscr{C}\left(\tau\right)xd\tau\bigg)=\frac{1}{2}\,\mathscr{C}(t+s)x-\frac{1}{2}\,\mathscr{C}(t-s)x$$

for every $x \in E_0$ and $s, t \in (-\infty, \infty)$. From (3.1) it follows immediately that $\int\limits_0^t \mathscr{C}(\tau) d\tau \in \mathscr{L}(E_0; E_1)$ and that the mapping (b) is strongly continuous. The statements that $\frac{d}{dt} \mathscr{C}(t)|_{E_1} \in \mathscr{L}(E_1; E_0)$ and that the mapping (c) is strongly continuous are trivial consequences of the definitions of E_1 and $\|\cdot\|_{E_1}$.

LEMMA 3.2. The formula (2.3) defines a one-parameter strongly continuous group $(-\infty, \infty) \ni t \to \mathscr{G}(t) \in \mathscr{L}(E_1 \times E_0; E_1 \times E_0)$, whose infinitesimal generator is the operator \mathscr{A} defined by (2.1).

Proof. It follows from Lemma 3.1 that $\mathscr{G}(t) \in \mathscr{L}(E_1 \times E_0; E_1 \times E_0)$ for every $t \in (-\infty, \infty)$, and that the mapping $(-\infty, \infty) \ni t \to \mathscr{G}(t)$ $\in \mathscr{L}(E_1 \times E_0; E_1 \times E_0)$ is strongly continuous. For any $\binom{x}{y} \in E_1 \times E_0$ and $t, s \in (-\infty, \infty)$ we have

$$\begin{split} \mathscr{G}(t)\mathscr{G}(s) \binom{x}{y} \\ &= \begin{pmatrix} \mathscr{C}(t)\mathscr{C}(s)x + \int\limits_0^t \mathscr{C}(\tau)d\tau \frac{d\mathscr{C}(s)x}{ds} + \mathscr{C}(t)\int\limits_0^s \mathscr{C}(\sigma)yd\sigma + \int\limits_0^t \mathscr{C}(\tau)d\tau\mathscr{C}(s)y \\ \frac{d}{dt} \left(\mathscr{C}(t)\mathscr{C}(s)x\right) + \mathscr{C}(t)\frac{d\mathscr{C}(s)x}{ds} + \frac{d}{dt} \left(\mathscr{C}(t)\int\limits_0^s \mathscr{C}(\sigma)yd\sigma\right) + \mathscr{C}(t)\mathscr{C}(s)y \end{pmatrix} \end{split}$$

and so, in order to prove that \mathscr{G} is a group, we have to show that the following equalities hold for any $s, t \in (-\infty, \infty), x \in E_1$ and $y \in E_0$,

$$\begin{aligned} & 1^{\circ} \quad \mathscr{C}(t)\mathscr{C}(s)x + \int\limits_{0}^{t}\mathscr{C}(\tau)\,d\tau \,\frac{d\mathscr{C}(s)x}{ds} = \mathscr{C}(t+s)x, \\ & 2^{\circ} \quad \mathscr{C}(t)\int\limits_{0}^{s}\mathscr{C}(\sigma)yd\sigma + \int\limits_{0}^{t}\mathscr{C}(\tau)\,d\tau\mathscr{C}(s)y = \int\limits_{0}^{t+s}\mathscr{C}(\tau)yd\tau, \\ & 3^{\circ} \quad \frac{d}{dt}\left(\mathscr{C}(t)\mathscr{C}(s)x\right) + \mathscr{C}(t)\frac{d\mathscr{C}(s)x}{ds} = \frac{d\mathscr{C}(t+s)x}{dt}, \\ & 4^{\circ} \quad \frac{d}{dt}\left(\mathscr{C}(t)\int\limits_{0}^{s}\mathscr{C}(\sigma)yd\sigma\right) + \mathscr{C}(t)\mathscr{C}(s)y = \mathscr{C}(t+s)y. \end{aligned}$$

It is easy to see, 3° and 4° follow from 1° and 2° by differentiation. If $x \in E_1$, then

$$\int_{0}^{t} \mathscr{C}(\tau) \frac{d\mathscr{C}(s)x}{ds} d\tau = \int_{0}^{t} \frac{d}{ds} \left(\mathscr{C}(\tau)\mathscr{C}(s)x \right) d\tau = \frac{1}{2} \frac{d}{ds} \int_{0}^{t} \left(\mathscr{C}(\tau+s)x + \mathscr{C}(s-\tau)x \right) d\tau$$

$$= \frac{1}{2} \int_{0}^{t} \frac{d}{d\tau} \left(\mathscr{C}(\tau+s)x - \mathscr{C}(s-\tau)x \right) d\tau = \frac{1}{2} \mathscr{C}(t+s)x - \frac{1}{2} \mathscr{C}(s-t)x$$

$$= \mathscr{C}(t+s)x - \mathscr{C}(t)\mathscr{C}(s)x$$

and so 1° is proved. Recalling that $\mathscr{C}(t)$ is a pair function of t we have $\mathscr{C}(t)\int\limits_0^s\mathscr{C}(\sigma)d\sigma+\int\limits_0^t\mathscr{C}(\tau)d\tau\mathscr{C}(s)=\frac{1}{2}\int\limits_0^s[\mathscr{C}(t+\sigma)+\mathscr{C}(t-\sigma)]d\sigma+\frac{1}{2}\int\limits_0^t[\mathscr{C}(\tau-s)+(\tau+s)]d\tau=\frac{1}{2}\int\limits_0^{t+s}+\int\limits_{t-s}^{t}+\int\limits_{-s}^{t}+\int\limits_{-t-s}^{s}-\int\limits_{-t-s}^{s}]\mathscr{C}(\tau)d\tau=\frac{1}{2}\int\limits_{-t-s}^{t+s}\mathscr{C}(\tau)d\tau=\int\limits_0^{t+s}\mathscr{C}(\tau)d\tau$ and so 2° is proved. Therefore \mathscr{G} is a one-parameter group. Let \mathscr{A}_0 be its infinitesimal generator. If $x\in D(A)$ then, by 1.3.2 and by Lemma 3.1, $t\to\int\limits_0^t\mathscr{C}(\tau)Axd\tau=\frac{d\mathscr{C}(t)x}{dt}$ is an E_1 -valued function continuous on $(-\infty,\infty)$ in the sense of the norm $\|\cdot\|_{E_1}$. Since $\mathscr{C}(t)$ is a pair function of t, it follows that $\lim_{t\to 0}\frac{1}{t}(\mathscr{C}(t)x-x)=0$ in the sense of the norm $\|\cdot\|_{E_1}$. Moreover

$$\lim_{t\to 0} \frac{1}{t} \frac{d\mathscr{C}(t)x}{dt} = \lim_{t\to 0} \frac{1}{t} \int_{0}^{t} \mathscr{C}(\tau) Ax d\tau = Ax$$

in the sense of the norm $\| \|_{E_0}$. If $y \in E_1$ then, by Lemma 3.1, $t \to \mathscr{C}(t)y$ is an E_1 -valued function continuous on $(-\infty, \infty)$ in the sense of the norm $\| \|_{E_1}$, so that

$$\lim_{t\to 0} \frac{1}{t} \int_0^t \mathscr{C}(\tau) y d\tau = \mathscr{C}(0) y = y$$

in the sense of the norm $\| \|_{E_1}$. Moreover, if $y \in E_1$ then, since $\mathscr{C}(t)$ is pair,

$$\lim_{t\to 0} \frac{1}{t} (\mathscr{C}(t)y - y) = 0$$

in the sense of the norm $\|\ \|_{E_0}$. It follows, that if $\binom{x}{y} \epsilon \ D(\mathscr{A}) = D(A) \times E_1$ then

$$\lim_{t\to 0} \frac{1}{t} \left(\mathscr{G}(t) \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x \\ y \end{pmatrix} \right) = \begin{pmatrix} y \\ Ax \end{pmatrix} = \mathscr{A} \begin{pmatrix} x \\ y \end{pmatrix}$$

in the sense of the norm in $E_1 \times E_0$. This means that $\mathscr{A} \subset \mathscr{A}_0$.

10

On the other hand, if $\binom{x}{y} \in D(\mathscr{A}_0)$ then, by 1.2.3, the $(E_1 \times E_0)$ -valued function

$$t
ightarrow \mathscr{G}(t) egin{pmatrix} x \ y \end{pmatrix} = egin{pmatrix} \mathscr{C}(t) x + \int\limits_0^t \mathscr{C}(\tau) y d\tau \ \dfrac{d\mathscr{C}(t) x}{dt} + \mathscr{C}(t) y \end{pmatrix}$$

is continuously differentiable on $(-\infty,\infty)$ in the sense of the norm in $E_1 \times E_0$. It follows that $\frac{d\mathscr{C}(t)x}{dt} + \mathscr{C}(t)y \in E_1$ for every $t \in (-\infty,\infty)$ and so $y = \left(\frac{d\mathscr{C}(t)x}{dt} + \mathscr{C}(t)y\right)\Big|_{t=0} \in E_1$. Therefore $t \to \frac{d\mathscr{C}(t)x}{dt} = \left(\frac{d\mathscr{C}(t)x}{dt} + \mathscr{C}(t)y\right) - \mathscr{C}(t)y$ is an E_0 -valued function continuously differentiable on $(-\infty,\infty)$ in the sense of the norm $\|\cdot\|_{E_0}$, and so $x \in D(A)$. Hence $D(\mathscr{A}_0) \subset D(A) \times E_1 = D(\mathscr{A})$. Since we already know, that $\mathscr{A} \subset \mathscr{A}_0$, it follows that $\mathscr{A} = \mathscr{A}_0$ and the proof is complete.

4. Proof of the part "from $\mathscr G$ to $\mathscr C$ ". Everywhere throughout this section it is assumed that E_1 and E_0 are Banach spaces such that $E_1 \subset E_0$ and the Banach space topology of E_1 is not weaker then the topology induced in E_1 by E_0 .

Moreover, it is assumed that A is a linear operator from E_1 to E_0 and that the operator $\mathscr A$ defined by (2.1) is the infinitesimal generator of a strongly continuous one parameter group $\mathscr G\colon (-\infty,\,\infty)\to\mathscr L(E_1\times E_0;E_1\times E_0)$. We have to prove that A is the infinitesimal generator of a strongly continuous $\mathscr L(E_0;E_0)$ -valued cosine function $\mathscr L(t)$ and that (2.2) and (2.3) hold.

LEMMA 4.1. The operator A is closed as an operator from E_0 to E_0 and its domain D(A) is dense in E_0 .

Proof. We have

$$egin{aligned} D(\mathscr{A}^2) &= \{x\colon\, x\,\epsilon\,D(A)\,,\, Ax\,\epsilon\,E_1\} imes D(A)\,,\ &\mathscr{A}^2igg(egin{aligned} x\y \end{pmatrix} = igg(egin{aligned} Ax\y \end{pmatrix},\,\,igg(egin{aligned} x\y \end{pmatrix}\epsilon\,\,D(\mathscr{A}^2)\,, \end{aligned}$$

and, according to 1.2.2, \mathscr{A}^2 is a closed operator from $E_1 \times E_0$ to $E_1 \times E_0$, with the domain $D(\mathscr{A}^2)$ dense in $E_1 \times E_0$.

LEMMA 4.2. The operator A is the infinitesimal generator of an $\mathcal{L}(E_0; E_0)$ -valued strongly continuous cosine function \mathcal{C} such that $\mathcal{C}(t)E_1 \subset E_1$ for every $t \in (-\infty, \infty)$, and for any fixed $x \in E_1$ the E_1 -valued function $t \to C(t)x$ is continuous on $(-\infty, \infty)$ in the sense of the norm in E_1 and is continuously

differentiable on $(-\infty, \infty)$ in the sense of the norm in E_0 . Moreover, the formula (2.3) holds.

Proof. Represent $\mathcal{G}(t)$ as a matrix

$$\mathscr{G}(t) = \begin{pmatrix} G_{11}(t) & G_{12}(t) \\ G_{21}(t) & G_{22}(t) \end{pmatrix}.$$

Then any $t \to G_{ik}(t)$ is a strongly continuous $\mathscr{L}(E_{2-k}; E_{2-i})$ -valued function and it follows from 1.2.3 that for any $\begin{pmatrix} x \\ y \end{pmatrix} \in D(\mathscr{A})$, i.e. for $x \in D(A)$ and $y \in E_1$, and for any $t \in (-\infty, \infty)$ we have (4.1)

$$\begin{pmatrix} \frac{dG_{11}(t)x}{dt} + \frac{dG_{12}(t)y}{dt} \\ \frac{dG_{21}(t)x}{dt} + \frac{dG_{22}(t)y}{dt} \end{pmatrix} = \begin{pmatrix} G_{21}(t)x + G_{22}(t)y \\ AG_{11}(t)x + AG_{12}(t)y \end{pmatrix} = \begin{pmatrix} G_{12}(t)Ax + G_{11}(t)y \\ G_{22}(t)Ax + G_{21}(t)y \end{pmatrix},$$

where the derivatives in the first row are taken in the sense of the norm in E_1 and the derivatives in the second row are taken in the sense of the norm in E_0 .

From these equalities and from the fact that $D(\mathscr{A})$ is dense in $E_1 \times E_0$ it is easy to see that for $\mathscr{C}(t) = G_{22}(t)$ all the continuity and differentiability properties stated in the lemma are valid and moreover the formula (2.2) holds. Therefore it remains only to prove that $\mathscr{C}(t)$ is an $\mathscr{L}(E_0; E_0)$ -valued cosine function and that A is its infinitesimal generator.

To that end we shall apply Lemma 1.3.3.

Let operators $\pi_0 \in \mathscr{L}(E_1 \times E_0; E_0)$ and $J_0 \in \mathscr{L}(E_0; E_1 \times E_0)$ be defined by the formulae

$$\pi_0 \begin{pmatrix} x \\ y \end{pmatrix} = y, \quad J_0 y = \begin{pmatrix} 0 \\ y \end{pmatrix}.$$

Then $\mathscr{C}(t) = \pi_0 \mathscr{G}(t) J_0$, $J_0 D(A) \subset D(\mathscr{A}^2)$, $\pi_0 D(\mathscr{A}^2) = D(A)$, $J_0 A = \mathscr{A}^2 J_0$, $\pi_0 \mathscr{A}^2 = A \pi_0$, so that, by 1.2.2 and 1.2.3,

(i) $\mathscr{C}(t)D(A)=\pi_0\mathscr{G}(t)J_0D(A)\subset\pi_0\mathscr{G}(t)D(\mathscr{A}^2)=\pi_0D(\mathscr{A}^2)=D(A)$ and

(ii)
$$\frac{d^2\mathscr{C}(t)x}{dt^2} = \pi_0 \frac{d^2\mathscr{G}(t)J_0x}{dt^2} = \pi_0 \mathscr{A}^2\mathscr{G}(t)J_0x = \pi_0\mathscr{G}(t)\mathscr{A}^2J_0x$$
$$= A\pi_0\mathscr{G}(t)J_0x = \pi_0\mathscr{G}(t)J_0Ax = A\mathscr{C}(t)x = \mathscr{C}(t)Ax$$

for any $t \in (-\infty, \infty)$ and $x \in D(A)$. We know from Lemma 4.1 that A is closed and D(A) is dense in E_0 . Therefore all the assumptions of Lemma 1.3.3 are satisfied and consequently $\mathscr C$ is a cosine function and A is its infinitesimal generator.

Lemma 4.3. The equality (2.2) is true.

Proof. Let

$$\left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|_{E_1 \times E_0} = \|x\|_{E_1} + \|y\|_{E_0}$$

and put

 $E_1^0 = \{x \colon x \in E_0, \text{ the } E_0\text{-valued function } t \to \mathscr{C}(t)x \text{ is continuously differentiable on } (-\infty, \infty) \text{ in the sense of the norm in } E_0\}$

and

$$||x||_{E_1^0} = ||x||_{E_0} + \sup_{0 \leqslant t \leqslant 1} \left\| \frac{d\mathcal{C}(t) x}{dt} \right\|_{E_0}$$

for every $x \in E_1^0$. According to Lemma 3.1, E_1^0 under the norm $\| \|_{E_1^0}$ is a Banach space. According to 1.2.1, there are constants $\lambda > 0$ and $M \geqslant 1$ such that

$$\left\|\mathscr{G}(t)\begin{pmatrix} x\\y \end{pmatrix}\right\|_{E_1 \times E_0} \leqslant Me^{\lambda_1 t_1} \left\| \begin{pmatrix} x\\y \end{pmatrix}\right\|_{E_1 \times E_0}$$

for every $\binom{x}{y} \in E_1 \times E_0$ and $t \in (-\infty, \infty)$. From 1.2.2 and from Lemma 3.2 it follows that D(A) is dense in E_1^0 in the sense of the norm $\| \ \|_{E_1^0}$. From Lemma 4.2 it follows, that $E_1 \subset E_1^0$. Since $D(A) \subset E_1$, it follows, that E_1 is dense in E_1^0 in the sense of the norm $\| \ \|_{E_1^0}$. Therefore the equality $E_1^0 = E_1$ will follow, if we shall show, that there is a constant C, such that

(4.3)
$$||x||_{E_1} \leqslant C ||x||_{E_1^0}$$
 for every $x \in E_1$.

If $x \in E_1$, then, by Lemma 4.2, $\mathscr{C}(t)x$ is an E_1 -valued function of i, continuous on $(-\infty, \infty)$ in the sense of the norm $\| \cdot \|_{E_1}$ and so, by the Lemma 4.2, by (2.3) and by (3.1), we have

$$\begin{split} \|x\|_{E_1} &\leqslant \tfrac{1}{2} \left\| \int\limits_0^2 \mathscr{C}(t) \, x dt \right\|_{E_1} + \frac{1}{2} \left\| \int\limits_0^2 \left(x - \mathscr{C}(t) \, x \right) dt \right\|_{E_1} \\ &\leqslant D \, \|x\|_{E_0} + \sup_{s,t \in [0,1]} \|\mathscr{C}(t+s) \, x - \mathscr{C}(t-s) \, x \|_{E_1} \\ &= D \, \|x\|_{E_0} + 2 \sup_{s,t \in [0,1]} \left\| \frac{d}{ds} \left(\mathscr{C}(s) \int\limits_0^t \mathscr{C}(\tau) \, x d\tau \right) \right\|_{E_1} \end{split}$$

for every $x \in E_1$, where $D = \frac{1}{2} \left\| \int_0^2 \mathscr{C}(t) dt \right\|_{\mathscr{L}(E_0; E_1)}$. Therefore, inequality (4.3) will be proved, if we shall show, that

$$\left\|\frac{d}{ds}\left(\mathscr{C}(s)\int\limits_{0}^{t}\mathscr{C}(\tau)\,xd\tau\right)\right\|_{E_{1}}\leqslant \left\|Me^{\lambda|s|}\right\|\frac{d\mathscr{C}(t)\,x}{dt}\Big\|_{E_{0}}$$

for every $x \in E_1$ and $s, t \in (-\infty, \infty)$.

If $x \in D(A)$, then $\binom{x}{0} \in D(\mathscr{A})$, so that, by 1.2.3, $\mathscr{G}(t) \binom{x}{0} \in D(\mathscr{A})$ and consequently $\frac{d\mathscr{C}(t)x}{dt} = \pi_0 \mathscr{G}(t) \binom{x}{0} \in E_1$. Let the operator $\pi_1 \in \mathscr{L}(E_1 \times E_0; E_1)$ be defined by the formula $\pi_1 \binom{x}{y} = x$. If $x \in D(A)$, then, by the

Lemma 4.2, by (2.3) and 1.2.3, and by inequality (4.2), we have
$$\left\|\frac{d\mathscr{C}(s)x}{ds}\right\|_{E_1} = \left\|\pi_1\mathscr{G}(s)\mathscr{A}\binom{x}{0}\right\|_{E_2} = \left\|\pi_1\mathscr{G}(s)\left(\frac{0}{Ax}\right)\right\|_{E} \leqslant Me^{\lambda|s|} \|Ax\|_{E_0}.$$

If $x \in E_1$, then $\binom{0}{x} \in D(\mathscr{A})$, so that also $\mathscr{G}(t) \begin{pmatrix} 0 \\ x \end{pmatrix} \in D(\mathscr{A})$ and hence $\int\limits_0^t \mathscr{C}(\tau) x d\tau = \pi_1 \mathscr{G}(t) \begin{pmatrix} 0 \\ x \end{pmatrix} \in D(A)$. It follows, that if $x \in E_1$, then

$$\left\|\frac{d}{ds}\left(\mathscr{C}\left(s\right)\int\limits_{0}^{t}\mathscr{C}\left(\tau\right)xd\tau\right)\right\|_{E_{1}}\leqslant Me^{t\left|s\right|}\left\|A\int\limits_{0}^{t}\mathscr{C}\left(\tau\right)xd\tau\right\|_{E_{0}}.$$

But from equality (4.1) we have, that if $x \in E_1$, then $A \int\limits_0^t \mathscr{C}(\tau) x d\tau = A G_{12}(t) x$ = $G_{21}(t) x = \frac{d\mathscr{C}(t) x}{dt}$ and so, inequality (4.4) is proved. This completes the proof of Lemma 4.3 and, at the same time, the whole proof of the theorem from Section 2.

References

J. Kisyński, On operator valued solutions of d'Alembert's functional equation,
 II, Studia Math. 42 (1971), pp. 43-66.

[2] M. Sova, Cosine operator functions, Dissertationes Math. 49 (1966), pp. 1-47.

[3] K. Yosida, Functional Analysis, 1965.