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feI'(A) which has an extension f not belonging to I'(B), or even corB
for some superalgebra B > 4. To see this take as B the sup-norm dise
algebra of all eontinuous functions on the unit dise of the complex plane
holomorphic in its interior and let 4. — {we B: 2(0) = #(1)}. The maximai
ideal space of A is the closed unit disc with identified 0 and 1 and the
Silov boundary of A4 is the unit circle (with 1 identified with 0). So the
functional f(#) = #(0) = #(1) is in I'(4) and it has two extensions onto B:
Si(@) = (1) and fy(#) = #(0) such that S1eI'(B) but fy¢ corB.

The following purely algebraic result can support the conjecture
that I(4) coincides with the family of all non-removable closed ideals
of A. Let B and P be arbitrary rings with unit elements. P is an extension
of B if there is an isomorphic imbedding of R into P sending the unit
of B into unit of P. Callan ideal I of R non-removable if in any extension P
of E the ideal Iis contained in a proper ideal of P, A subset § of R
consists of joint divisors of zero if for any finite subset {®y ooy 8,} c R
there is a non zero element ye R such that sy =0fori=1,2,..,n

) P.ROPOSITION 4. An ideal I of a commutative ring B is a non-removable
ideal if and only if it consists of joint divisors of zero.

The proof can be obtained from a reasoning in [2].
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On cosine operator functions
and one-parameter groups of operators
by
J. RKISYNSKI (Warszawa)

Dedicated to Professor Anfoni Zygmund

Abstract. If 4 is a complex number then

i
cos (— A [ eos(—A)rdr
[

*) exp(t (21 (1))) = g s —oo< i< oo,

T cos(—A)  cos(—A)k

The paper gives a gencralization of this formula to the case, when 4 is an unbounded
linear operator in a Banach space.

1. Preliminaries.

1.1. If ¥ and F are Banach spaces over the same, real or complex,
field of scalars then £(#;F) denotes the space of all linear bounded
operators from B to F. Let £ (F; F) denote #(E; F) equipped with the
topology of pointwise convergence (called also the strong topology).
An & (E; F)-valued function of a real variable is called strongly continuous,

“or strongly continuously differentiable, if it is continuous or continuously

differentiable, when regarded as a mapping from (— oo, o) to L (H; F).
For instance, by an application of the Banach-Steinhaus theorem, it
follows that a function K: (— oo, oo) - Z(E; F) is strongly continnously
differentiable on ( — oo, o) if and only if for any fixed x« F the F-valued
function ¢— K (f)# is continuously differentiable on (—oo, oo) in the
sense of the norm in F. ) )

1.2. Let B be a Banach space. A strongly continuous mapping
G: (—oco0, ) >L(B; F) is called a one-parameter strongly econtinuous
group of operators it G(0) =1 and

G(#)G(s) = G(t+s) for every s,te (—o0, co).

The infinitesimal generator of the one parameter group ¢ is the
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linear operator A from F to H, with the domain D(4) defined by the
conditions

D(A) ={m: ze E,lim%—(G(t)m—w) exisf.s},

-0

Az = lim—:ll(G(t)m~m) for we D(4),

t—0

where the limit is taken in the sense of the norm in #.

It is known (see e.g. [3], chapter IX) that if ¢ is a strongly continuous
one-parameter group of bounded linear operators in a Banach space &
and if 4 is the infinitesimal generator of @, then

(1.2.1) there are constants M >1 and %k >0 such that
G@) < M for every te(—oo, oo);

(1.2.2) for every m =1,2,... the domain D(A"™ of A" is dense in B
and A" is a closed operator from F to ;

(1.2.3) G(t)D(4A) = D(4) for every te(—oo, o) and, for every fixed
we D(4), the BE-valued function ¢ — G (t)% is continuously differ-
entiable on (—oo, o) in the sense of the norm in F and

aG(t)z
at

=AG({t)w = G(t) A, te(— o0, o0).

1.3. Let & be a Banach space. A mapping ¥: (— oo, co) % (H; )

is called cosine operator function if it satisfies the d’Alembert functional
equation

C(t48)+€(t—s) = 29(1) % (s)

for's, te(~— o0, co), and if, moreover, #(0) = 1. As it ig eagy to see, any
cosine operator funetion is a pair function on (—o00,00), itis range being
2 commutative family of operators. ]

The theory of Z(H; B)-valued strongly continuous cosine functions
was developped by M. Sova [2].

It should be remarked, that in [2] & cosine operator function is defined
only on [0, co). However, as Sova proved, the range of any strongly
continuous cosine operator function defined ¢n [0, o) is a commutative
tamily of operators, and from this it follows easily, that the pair extension
“onto ( —oo, oo) of such a cosine function satisfies the d’Alembert’s equation
on whole (— o0, o). According to [2], the infinitesimal generator of an

©
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Z(B; B)-valued cosine function % is the linear operator 4 from E to E,
with the domain D(4), defined by the conditions

2
D(4) ={w: e B, im — (€ ({t)e —z) exists},
tao 02

5 ‘
Az =lm —(¢{i)s—x) for e D(4),
ts0 1F

the limit taken in the sense of the norm in E.
As proved by Sova [2], if #is 2 Banach space and if % is an Z(E; B)-
valued strongly continuous cosine function with the infinitesimal generator
A, then
(1.3.1.) the domain D(4) of 4 is dense in F and A is a closed operator
from ® to E;

(1.3.2.) #(t)D(A) = D(A) for every te{— oo, o) and, for every fixed
ze D(4), the E-valued function ¢ -> ¥ (¢) is twice continuously
differentiable on (—oo, co) in the sense of the norm in F and

B% (1)

—i = A[)e = ¥(1) 4o, — o< i< oo

The following lemma will be also useful in our further reasonings.
(1.3.3.) Lewmma. Let B be a Banach space, let € be an L(EB; B)-valued
fumction strongly continuous on (—oo, o) and let A be a closed linear
operator from E to B with o domain D(A) dense in E. If

(@) €(t)D(4) =« D(A) for every te(—oco, co0)
and )

(b) for amy fimed me D(A) the E-valued funciion t-—>€)w is tiwice
strongly continuously differentiable on (— oo, oo) and we have

2
d ?;z(;)w = A¥(t)x = €(t)Ax for te(~ o0, o0),
de(
€0 =z and (e =0,
2

then %(t) is a cosine fumction and A is its infinitesimal generator.

Proof. In order to prove that € satisfies the d’Alembert functional
equation it is sufficient to show that for any fixed z,¢ D(4) and any
fixed s the E-yalued function

#(t) = F(A+8)@+C(s—1) 1, —2F(s) € (1),
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vanishes identically on (— oo, o). As it is easy to see, the function ¢ — ®(t)
has the following properties:
(o) @(t)e D(A) for every te (—oo, o),
(B) t-—>w(f) is twice continuously differentiable on (— oo, oco)
sense of the norm in B and #''(f) = Ax(?) for fe (—oo, co)
(v) #(0) =0, .
(3) #'(0) =% (s)s—%'(s)®2—2%4(s)¥'(0) = 0.
If we define a norm on D(4) by

in the

’

ey = lellz+ 142]z

then, by the closedness of A, D(4) with the norm | llpey is a Banach
space. Moreover, by («) and (B), t — 2 (t) is a D (4)-valued function contin-
uous on (—oo, co) in the sense of the norm || |54 4nd, by (b), £~ C ()| pay
is an #(D(4); B)-valued function tivice strongly continuously differ-
entiable on (- oo, o). For any te(— oo, oo) let €' (t)eZ(D(A); E) and
%”(t)s.?(D (4); E} denote the corresponding derivatives at the point i,
It follows that for any fixed ¢e (— oo, co) the F-valued function 7 — y(T)
= ®(t—7)u(r) is continuously differentiable on (—co, c0) in the sense
of the norm in ¥ and that

Y1) =CH—1)a' (1) —F (t—1)w(r), —o0o< 1< 0O,

Sinee y(t) = ?(O)m(t) = a(?) by (b), and y(0) = €()x(0) = 0 by (y), we
have #(t) = [y'(z)dr, ie.
[}

&
a(t) = f{’f(t—f)m’('f)~‘f'(t—r‘)w(r)}dr, —00 <1< oo.

Bth) and () we have 2’ (1) = [1 Awn(g)do. By (b) we have ' (t—7)z(r)
= [ % (o) Az(r)do. Therefore

t i t—z
o) = f[f%(twr)Am(g)dg] dr— | [f %(U)Am(r)da] dr =0,
0 0 0 0
by the Fubini theorem. :

So we proved that % is a cosine function and now it follows at once
from (b) that if 4, denotes the infinitesimal generator of ¢ then 4 < 4,,
iLe. D(4)c D(4,) and Az = Az for we D(A). In order to prowe that
A = A, it is sufficient to apply Lemma 2 from Section 3 of the author’s
paper [1]. :

However, the reasoning in [1] is complicated by the fact that the
general cagse of a locally convex sequentially complete space is treated

icm°
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there. Therefore we shall repeat the argumentation in a simplified version
for a Banach space. We have to prove that D(4,) = D(4).
If e D(A) then, by (b) and by the closedness of 4, we have €(t)s—
i 3

= [ [A%(o)wdodr = A [ [%(c)mdodr. Again by the closedness of A
00 00
and by the fact that D(A4) is dense in F it follows that

i 7 it r
(*) [ [#(0)zdodrcD(4) and Aff (o) edodr = € () —w

for every #¢ B and te(—oo, o). If zeD(4,) then Lim 2’ (#@)o—a)
9 it =0
= 4,2 and ]im-——ff‘é”(o‘)mdo‘dr =@, so that, by (*) and vy the clo-
0 7 g
sedness of 4, e D(A) and Az = A,z. Consequently D(4,) =« D(4) and
the proof is complete.

1.4. In the sequel we shall consider one-parameter groups of operators
belonging to .Z(E, x E,; E, x E,), where E, and E, are Banach spaces.
It will be convenient to write elements of B, x E, in the form of columns

(:), where ze B, ye B, and to represent any operator BeZ(H, X E,;

B B
B [P 12)
} (le B,,)’

whose elements are operators By.e #(H,_,; F,_;) defined by the condition

E, % B, as a matrix

z
that, for every eolumn (y) « B, x E,,

B (ﬂ’?) — (Bul"l‘Bm?/)
Y By, 2+ Byoy !

according to the common rule of multiplication of matrices. A similar
matricial representation may be used for any linear operator A from
E, x Byinto B, x F,, having domain of the form D(A) = D, x D,, where D,
is a linear subset of FH,.

2. Generalization of the formula ().

THEOREM. Let E, be a Banach space and let A be a linear operator
from By to B, with domain D(4). If B, is a Banach space such that D(A)
< B, < E, and that the Banach space topology of E, is not weaker than the
topology induced in E, by E,, and if the operator o from B, X By into By X By, .
with domain D(<7), defined by the conditions

01
(2.1) D() = D(A)X B, o = ( ),

40
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18 the infinitesimol generator of a strongly continuous one-parameter group
G: (—o0, 00) L (B, x By; By x By), then A is the infinitesimal generator

 of & strongly continuous £ (Hy; By)-valued cosine fumction € (1),

(2.2) E, = {®: ze B, the Byvalued function t—F({)x is continuously
differentiable on (—oo, oo) in the sense of the norm in H},
and t .
, ¢(W)a+ [ €(r)yde '
(2.3) se(t)(‘” = ° AP e By x By, —o0 < t < 0.
y az (s Yy
o TEMy

On the other hand, if A is the infinitesimal generator of a strongly continuous

& (By; By)-valued cosine function € (t) and if By is defined by (2.2), then B,

under the norm

a¥(t)w
dt

(2.4) y  wely,

¥af)

llollz, + sup

|97”E1
0t

becomes. o Banach space and the formula (2.3) defines a strongly continuous
one-parameter group ¥: (—oo, coy—L(H, x By; B, X B,), whose infinites-
imal generator is the operator o defined by the conditions (2.1).

3. Proof of the part “from % to %”. Everywhere throughout this
section it'is assumed that B, is 2 Banach space, % is a strongly continuous
Z(By; By)-valued cosine function and A is the infinitesimal generator
of €. We define the linear subset E; of E, by (2.2) and define the norm
Il liz, on By by (2.4).

LEMMA 3. 1 B, under the morm || ||z, 4s & Banach space. We have € (g,

a
cZ(B; B f%(t Ve Z (By; By) and mfm)‘ cZ(B; B, for every

By
te (—o0, oo), where the integral is the Riemann integral of a stromgly contin-
»OuUS _CZ(EO; Ey)-valued function and the derivative is taken in the sense
of the strong topology in £ (By; B,). Moreover, the mappings

(a) (=00, 00)2 1> B (t)|g « £ (By; By,
t

(b) (=00, 00)3 1> [€(v)dve (Hy; Ty),
0

(© (=0, )2 tor 6 (0)| (B By

7y

- are strongly continuous.

Proof. It follows from the d’Alembert functional equation, that if
the function ¢ — #(t)# is. continuously differentiable on [0, 1] in the sense
of the norm in #,, then ze B,. Therefore, by the theorem on term by term

N P
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differentation, ¥, is a complete space under the norm I g, If e By
and se(—oo, o) are fixed then the E -valued function t>EHE(s)x
=%(s)¥(t)w is continuously differentiable om {—oco, o) in the sense
of the norm in B, so that ¥(s)E, = B,. Since, for ¢ E,,

1€ () 2lz, = €@ olg,+ Sup J

(#(s) %’(t)a})’
112

&) a% (s)

= [#(t)2]5, + sup
. Oss<t

Ey
< 1€MWy £y 1#E, »

we see that ()] Elef {E,; Ey). Moreover, if &< ¥, then, by the d’Alembert
equation,

[€(t+h s —F(B)alle, = [€(i+h)e—F()alg,

| gt

=
2 ogsa f

+his)p  dAF(E+-h—s)m d@(t+s)m+d<€(t—s)ﬂ
dt a at FI

whence it follows that the mapping (a) is strongly continuous. This implies
t

that if e E, then also {#(r)adre £, and
0

d i

) {F(r+8)w+E(r—

bO| =

i
(’; (@(s)uj (z )mdz) - dsf% )% (v)2dr = 8)w}de

1 @€ (z+s)w A% (r»s)m’ 1 1
= - - Gt s)o— —F({— s)o.
-5 Jl = — }dr G+ 92— € (t—s)

Now let < E,. It follows from 1.3.1 and 1.3.2
so there is a sequence @,, n =1,2,...

that E; is dense in E, and
, of elements of E,, such that

i
lim [, — i, = 0. If, for a fixed 7, we put 3, = [ ¢(r)@,dr, then
A0 @

¢
lim sup ||%(s)y,—%(s) f @(t)zdd| =0
nso0 081 F HEq
and
a¢(s)y, 1

1
7 —2—%(t+s)mn—?<f(t—s)mn,
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= 0. Hence, by the
%y :

‘€(t—|—s)m+%€f(t—s)

dE(8)y, 1
50 that lim su \ —

n—>00 Dsszl, dS 2 .
theorem on term by term differentation,

(3.1)

11
f%(r)wdreEl and ——( f% mdr)
0

for every we B, and s,te(— o0, oo). From (3.1) it follows immediately

t
that [ #(7)dveZ (By; By)
0

(t—}—s)m——;—’— C(t—s)o

and that the mapping (b) is strongly

(t)|g, e 2 (B3 By) and that the

continuous. The statements that — &

mapping (c) is strongly continuous are trivial consequences of the defini-
tions of B; and || |z,

LeMMA 3.2. The formula (2.3) defines a one-parameter strongly contin-
uwous group (—oo, ) t—>%(t)e L (Ey X Hy; By x By), whose infinites-
imal generator is the operator o defined by (2.1).

Proof. It follows from Lemma 3.1 that 4(f)e L (H, X By; By, X By)
for every te(—oo, o), and that the . mapping (—oo, c0)2t— (1)

eZ (B, x By; By x By) is strongly continuous. For any ( )eL‘l X H,y and
t,se(—~e0, o0) we have

' g(t)g(s)(;”)
: ag(s)w :
€€ (s)o+ [€(v)dr = +%()f (0)ydo+ [ € () dv € (s)y
- 0 0 0
-1, .
S E0e@a+e0 T 2610 [¢ois) e 05wy

and 8o, in order to prove that ¢ is a group, we have to show that the
following equalities hold for any s, ¢e (—o0, o), we B, and ye By,

1° %@ fd?d(:)“"_
20 %(t)} € (o) ydo+ } C(r)dr ¥ (s)y = ifs%(r)ydf,
o 1 %(s)w_d(é"(t +s)w
3 dt( (t )‘f(s @)+ € (1) = i ,
o Yew e e
(e f (0)ydo) + (1) (8)y = (1+3)y.

©
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It is easy to see, 3° and 4° follow from 1° and 2° by differentiation.
If ¢ B, then

[ 20 i
i d
ffg(r) ;:)m v :fg(‘g(r)

:%fi(z’(rﬂ)m—g(s-r)m)dr - %

ar

)|

€ (s)a)dr = C(r+s)o+€(s—7)w)dr

1o |

1
Clt+s)o— S Cs—t)a

=F(t+s)s—C()F (8
and so 1° is proved Recalling that #(¢) is a pair function of ¢ we have

f{s’ daq»f‘é"(r)dr‘é(s =3 [{?(i—ro‘)—{—?(t—o‘)]do‘—~f[(f T — )+

i+s -8 it+s

4% (z+8)]dr v~[f f f ]%(r)dr == fff(r)d—r _f%(r)dr

and so 2° is proved. Therefore ¢ is a one-parameter group Let o/, be
its mfuutesunal generator. If xe D(4) then, by 1.3.2 and by Lemma 3.1,
. [ d‘é (t).’c

H lll
(—o0, o0) in the sense of the norm | g .

(z) Axdr an FE;-valued funetion continuous on

Since ¥(t) is a pair function

. .1 , .
of t, it follows that lim —(% (1) —«) = 0 in the sense of the norm || Iz,
Moreover o
1 d¢(t)x
lim = EOE n~—f‘€ 1) Avdr = A

w0 ¢ di -0
in the sense of the norm | llg,- I ye By then, by Lemma 3.1, ¢ — % (1)y
is an #;-valued function continuous on (— oo, o) in the sense of the norm
I llzz; so that

¢
1
lim —f%(r)y(lr = €(0)y =y
s T
in the sense of the norm || [jz,. Moreover, if y< B, then, since #(t) is pair,
.1 )
Iim —(%@W)y—y) =
o b

in the sense of the norm | |z, It follows, that if (;)eﬂ(&i) =D(4)x B,

| i L o0(?) (2)) = (1) = ()

in the sense of the norm in F, X F,. This means that & < .
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On the other hand, if (m) e D(of,) then, by 1.2.3, the (B, x By)-valued
_funetion y

)+ f % (v)ydr
@
A )] ( ) =
V) ag(t)w
+ €t
Franis *)y)
is continuously differentiable on (—co, oo) in the sense of the norm in
a% (t)w :
I, x H,. It follows that oét) +@(f)ye B, for every te(—oo, oo) and
4 : d¥ (t) ae(t
80 Y = € ()o + &)y ¢ B,. Therefore t—->-~—-—(~)-— = ()a,:
t=0 dat dt
(t)y)— (t)y is an Eo-valued function continuously differentiable on

(—co, oo} in the sense of the norm || ”Eo’ and 50 ze D(4). Hence D(s7,)
< D(A)x B; = D(«). Since we already know, that & = «,, it follows
that & = &7, and the proof is complete.

4. Proof of the part “from ¥ to ¥”. Everywhere throughout this
section it is assumed that B, and E, are Banach spaces such that B, < B,
and the Banach space topology of H, is not weaker then the topology
induced in B, by H,.

Moreover, it is assumed that A is a linear operator from B, to B,
and that the operator & defined by (2.1) is the infinitesimal generator
of a strongly continuous one parameter group #: (— oo, o) =2 (B, X By;
&, x B,). We have to prove that 4 is the infinitesimal generator of a strong-

ly continuous & (H,; H,)-valued cosine function #(1) and that (2.2) and

(2.3) hold.

Lemua 4.1. The operator A is closed as an operator from B, to By, and
its domain D(A) is dense in H,.

Proof. We have
D(A*) = {w: weD(A), Azc B} x D(A

(o) = s} ()20

and, according to 1.2.2, &#* is a closed operator from H, x K, to B, x H,,
with the domain D(s*) dense in B, x H,.

Lmywma 4.2. The operator A is the infinitesimal generator of an £ (Ey; Bo)-
valued strongly continuous cosine function € such that €(t)B, < By for
6very te (—oo, o), and for any fived we By the T -valued function t— O(t)w
is continuous on (—oo, oo) in the sense of the norm in B, and is continuously

.

©
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differentiable on (— oo, co) in the sense of the morm in B,
formula (2.3) holds.

Proof. Represent ¢(f) as a matrix
ot - (Gum Gum)_
Gn(f)  Ga(?)

Then any ? — Gy (?) is a strongly continuous Z(F,_;

Moreover, the

E,_;)-valued function
and it follows from 1 .3 that for any (y)e D(s7), i.e. for ¢ D(A) and

ye B, and for any fe(— o0, o) we have

(4.1)
a6, () + dGs (1)y
di dat _ Goy (N +Gea(D)y ) _ (Gm(t)A“»‘+Gu(t)y>
4G (D) + s (1)y (—AGll(t)m‘f‘AGJ.z(t)f‘/ G (1) Az + 6oy (t)y)
dt dt

where the derivatives in the first row are taken in the sense of the norm
in F; and the derivatives in the second row are taken in the sense of the
norm in E,.

From these equalities and from the fact that D (<) is dense in B, X F,
it is easy to see that for €(f) = @y, (t) all the continuity and differentiability
properties stated in the lemma are valid and moreover the formula (2.2)
holds. Therefore it remains only to prove that € (1) is an £ (H,; E,)-valued
cosine function and that 4 is its infinitesimal generator.

To that end we shall apply Lemma 1.3.3.

Let operators mye Z(F, X By; B,y) and J,e Z(Ey; B, X B,) be defined

by the formulae
i 0
Ty (y) =19, Jy= (y)

Then €(2) = 2@ ()T, J,D(A) © D(2), mgD (%) = D(A
myel® = Amy, so that, by 1.2.2 and 1.2.3,
(i) ¢ D(A) =m@({) T, D(A)  m@ (1) D () = my D(s£?) = D(4)

)s Jod = 'ngw

and
2 ()T gt
dar
= Am @ (1) J o = 7, @ () J Az = A€ ({)x = € (1) Az

for any te(— o0, o) and zeD(4). We know from Lemma 4.1 that A4 is
closed and D(A4) is dense in E,. Therefore all the assumptions of Lemma
1.3.3 are satisfied and consequently ¥ is a cosine function and 4 is its
infinitesimal generator.

(ii) T = = np G () T o1 = m@ (1) T o
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Levva 4.3. The equality (2.2) is true.

Proof. Let .
()
Y

= l@llz, + Wiz,
By x By

and put ) .
B} = {#: z< B,, the E,-valued function {—%(¥)z i3 continuously
differentiable on ( — oo, co) in the sense of the norm in H}
and
% (t) o
dt

It = oz, + sup
o<1

Ho
for every e B). According to Lemma 3.1, %] under the norm | s
is & Banach space. According to 1.2.1, there are constants 4 > 0 and M > 1
such that

@

()

(4.2) “g(t) (:) < MMt
for every z e B, x Eyand te(—oo, o). From 1.2.2 and from Lemma 3.2

Eyx By

-2 X By

it follows that D(A) is dense in B9 in the sense of the norm || ll=g. From
Lemma 4.2 it follows, that B, < BY. Since D(4) = By, it follows, that B,
is dense in B in the sense of the norm || || - Therefore the equality B) = B,
will follow, if we shall show, that there is a constant 0, such that

(4.3) * lele, < Clelg!  for every we H,.

If z¢ By, then, by Lemma 4.2, € ()« is an ,-valued function of 4,
continuous on (—co, o) in the sense of the norm || Iz, and so, by the
Lemma 4.2, by (2.3) and by (3.1), we have

lolls, < 4| Jew o], + | flo—2(a) it
< Dlslis,+ sup I (t-+8)0—%(1—5)all,

t
= D]|mHE0+2s,st1Ji£1] H%(%(s) Df % (r)mdr)HEl

By ) Therefore, inequality

1 2
for every xe By, where D = —Z—Hof‘f(t)dtug(
(4.3) will be proved, if we shall show, that

d% (t)x
at i

< MeMel
1

E

(4.4) “ _d”.ls_ (%”(s) f %(r)wdz)

7,

for every e B, and s,te(—oo, co).

cm

©
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Tf se D(A), then (g:)el)(&?), so that, by 1.2.3, 9(%) (‘;’;)el)(w) and

a¥ (t) & &
dt

consequently = m% (1) (O) <« By. Let the operator ;e % (B, X Eo;Ey)

be defined by the formula =, (;) =& If weD(A), then, by the
Lemma 4.2, by (2.3) and 1.2.3, and by inequality (4.2), we have

ag)wl |
ds “!'-'71 -

0
x

yzlg(s)x(ﬁ)nEl -

| ! )

I ze B, then( )eD(&I), so that also %) (g)eD(&!) and hence

: 0
[€@)2dr = =,%(1) (m

)sD(.A). It follows, that if xeB,, then
I '

1 | i
H%(% (s) of ff(r)a:dr)“Elg Met| 4 of % (v)adx

Ey

. - 1

But from equality (4.1) we have, that if ze E,, then Af E(r)wdr = AG,(H)w
ag &)z 0

=Gyu(t)r =

and so, inequality (4.4) is proved. This completes

the proof of Lemma 4.3 and, at the same time, the whole proof of the
theorem from Section 2. .
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