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Abstract. Let ¢: {0, o) - R be a nondecreasing continuous function satisfying
conditions g(u)ju — 0 if u - 0, p(u)/u oo if w —oc, X let denote a Banach space,
Z its dual space. Let, further, X~ denote a vector space consisting of sequences
z~ = {m;}, zieX.

Assuming that ¢ is a convex function on X~ one can define a modular g, (x)

{&: f181< 1)

Investigated are the properties of the space I*?(X), elements of which are the
sequences z~ ¢ X * such that pg{ir~) < oo for some A > 0. Section 2 of the paper deals
with the spaces of vector functions x(-): {a,b> - X, of finite Riesz g-variation (as
defined in 2.1) and with the spaces V*#(X).

In Section 3 ceriain remarks are made about orthogonal series of the form
() 1@y + To@a + ... wWhere z;¢X, and {g;} is an orthogoenal system in <a,b}.

If #(): <a, by — X is a vector function absolutely continuous in (a, b, then
its Fourier coefficients are represented by @, = | @,(f)dc where the integral in this

{a,b)

o0
= sup Yo(|%(2;)]), where supremum is taken over the ball 5y =
1

formula is a (Dunford) integral <a, b» with respect to the vector measure x(:) asso-
eiated with z(-).

Using the spaces I*#(X), T*¥(X), where g(u) = u2, authors obtain the analogue
of Riesz—Fischer Theorem for series of the form ().

1. In this note X always stands for a real Banach space provided
with a norm Ji-{, = for its conjugate space, 5, = {£e5; ||£]| < 1}. H denotes
the class of all zero-one sequences {n;}, # denotes the algebra of subsets
of an interval T = {a, b)> whose elements are finite unions of intervals
{e,dy,a<e<d<b, {d,b), a<<d<band the empty set, & is the o-al-
gebra of Lebesgue measurable subsets of 7 and u is the Lebesgue measure
on &. Measurability of sets and functions are always understood with
respeet: o p. A

z(*), y(-),... or x,¥,... always denote vector-valued functions
from T into X, f(-), ¢(*), ... or f, g, ... real-valued function on 7. A series

Ya; of elements belonging to a Banach space is said to be perfectly con-
L
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vmgeni if the series 27719? lb convergent for any {n;}<H, and perfectly

bounded if the set of su.ms Z‘mm“ {n}eH, n =1,2,... is bounded.

The purpose of the plesent paper is to discuss some modular spaces
of sequences with vector-valued terms and some modular spaces of vector-
valued set functions. In fact, we shall deal with some classes of modular
spaces of o-additive set functions «(:) for which the (weak) integral
f f(t)u(dz) in the sense of Dunford exists for any f belonging to a modular

space of scalar functions. The spaces 1*?(X), V*°(X) we deal with have
been to some extent investigated in [8] under the assumption that
p(u) =, a>=1. It seems that modular spaces of this kind may be of
an interest for example, in the study of orthogonal (or base) expansions
with respect to systems of scalar functions but with coefficients from
a Banach space. We intend to return to this subject in another publi-
cation. At present oceasion we limit ourselves to a very simple application,
giving in Section 3 a formulation of Riesz—Fischer’s theorem for vector-
valued functions. In our opinion, it is formulated in more adequate terms
than that of S. Bochner and A. Taylor [3]. Another domain of possible
applications could occur at studying some classes of linear operators
{e.g. generalizations of (p, ¢)-summing operators).

L.1. In the subsequent considerations we shall denote by 2+, y*, ...
sequences {x;}, {y;},... with terms =;,v,,... belonging to X and by
a~, 5", ... sequences {a;}, {b;}, ... with real terms, X" stands for the linear
space of all such sequences under the usual formation of addition of
sequences and their multiplication by scalars. In the sequel @ denotes
a continuous, nondecreasing function from {0, co) into R, such that
p(u) = 0 if and only if % = 0 (such a function will be called a g-function
shortly). The following conditions are of importance for us:

WU

o) 2™ ¢ w—>0;
u
@ ()

(o0y) % 8 U

The g-function ¢ is said to satisfy condition (A;) for small w if there
are positive constants %, u, such that ¢(2u) < ke(u) for 0 < u << 4. In
the following sections ¢ always is tacitly assumed to be convex and to
satisfy conditions (o), (oo,) except of a few points where the limiting
case g(u) = u occurs; it is always explicitly stated there. Under the
assumptions (0,), (co;) ¢* will denote the function complementary to @,
that is to say, defined for v> 0 by g*(») = sup(wv p(u)). It is well

known that g* is a convex p-function sa,tlsfymg (01) (o0y).

icm°®

On the Riesz-Fischer theorem for veclor-valued fumciions 151

Let us define the mapping m,: X X~ — {0, co) by the formula

o

my(§,3°) = 3 g(1E(@)).

=1

Denote by I**(X) (or by I*?, if X = R) the class of those sequences
2+ for which for any & there is a positive number A such tha,t o (& A" ) < 00,
1*(X) is a linear space. Evidently a- «I*® if and only if Zqo(}. {a;]) is finite

1

for some 4 > 0. Instead of 1™ (X) we shall also write I*(X), I* (when X =R)
if p(u) = 2% a>=1.

1.2. The following statements are mutually equivalent:

(a) x~<l™(X);

(b) if
{(*) p(e~) = supmy (£, z~)

feZ,

then there exists a constant 2 > 0 such that

(**) o, (A2*) <1
holds;

(e) it
(#%%) (z*) = sup g[Zaiwt-

i=1
where the supremum is taken over all {a;} ¢ =1,...,n such that
*(la;]) < 1 and for all n, then n,(z*) is finite.
(a) = (b). For a fixed z~<I**(X) and any £eZ seb
18l = inf{e > 0: my(&e, ) <1}

It is well knovm and easy to check that ||&], is homogeneous and subad-
ditive on &. If &, —>§thenhmm£m (Ak,, ) = m,(AE, »~) for any 1> 0
and therefore liminf j|£,li, > ||£]l,, whence, by the Orliecz—Gelfand lemma,

the inequality [&], <k[&| follows. Since [£]<1 implies [I&, <k
Mg (A€, ") = m,,(&,ka:*), we obtain (**) with 1 =1/k.

(b) = (c). Let Vzp (ja;]) < 1. The application of the Young inequality
yields

1.
@ xZa@s m|<

/l

(mg (&, 22°) +1),
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and consequently by (b) the imequality

Thus (i) 7, (%) < 2/4 To prove the
)>0 and remark that

= sup (1, Zqo (lal); EeZq.

>0in such 2 manner that

holds, where & <
implication (¢) =

(«*x) implies ylﬂllf(%)l

We now apply a famlhar a,rgument ‘We chose a;

BRG] =¢(IE(%)1)+¢*(%),

q,(fﬂ ) Ny (47)
16 ()] ) +2

which yields » =1, prowded there is a &(»;) # 0. In any case we geb
(@)l
<1, f =1,2,..
g?’(n‘p(wh) ) or % 3 Ay ey
thus (a) follows.

1.3. The functional n,,(
homogeneous norm ||z~ |5 in [ (X), equivalent to n,(x
by the formula

2[4 n=1,2,....
= (a) let us suppose that n,(z*

2~)r, wWhere 7

whence

<7,

(i)

~)is a homogeneous norm in I*?(X). Another
*), may be defined

le~ll; = inf{e > 0: p,(z" /) < 1}.
In virtue of the inequalities (i), (ii) we have o~ lp < me (@) < 2| |-

Tf o el™ then |la*|, =int{e> 0: So(la;]/s) < 1}

13.1. If 2°: 0,0, ...,3,0,.
then sup[[m[<[q3~( } ‘g (z7).

<y then my(w*) = ¥ (1) Jall, if 2~ I (X)
. Thls is & trivial consequence of the definition of n,(x~).

1.3.2. The space I**(X) provided with the norm Ny (%) or o~ |i, res-
pectively, is a Banach space and the inequalities

o~ 17 < mg () < 211~ [
hold. For any z~ el"(X), a* <l* the Holder inequality

i || < (@7 la I

]|

s satisfied, provided the series Z%Wi converges.
1
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In view of 1.3 it remains to prove the completeness, e.g. of ng(x"),
and the Holder inequality. The completeness ean easily be verified ap-
plying 1.3.1, the Holder inequality is & consequence of the definition

of n(x") and the equivalence of conditions Y g*(la]) < 1 and Jja~ [ < 1.
1

1.4. If the series
(*)

is convergeni for every a* elI™* then z~ I™(X). If ¢* satisfies condition
(As) for small w and a* eI'* then the series (*) is convergent for any
z~ ' (X).

The first part of the statement is a simple consequence of the Ba-
nach-Steinhaus theorem when applied to the sequence of operators

n
a* - Y aw; on I"". The second one follows from the Holder inequality
1

and the remark that, under the a,ssumpﬁon of the (A,)-condition,
fa-™—ag* |t ~0 as n oo, where a~™: a,, a5, ...,a,,0,0,...

1.5. Let us now discuss the limiting case g(u) = u. Under this
assumption the space I"*(X) (written also as I*(X)) is the space of those

sequences {r;} for which the series  i#(;)! is convergent for any £eZ
¥ ?,! KA J
i=

n
or, equivalently, such that the sums Y a;z; (» = 1,2,...) are bounded
1

for every bounded sequence a*. This in turn is equivalent to the assump-

tion that the series ,\’x is perfectly bmmded in X, The space ['(X) will
be equipped with the norm n,(z") =

is taken over all » and all sequeneces {a;} sueh that {a;) < 1. The space
I'(X) provided with this norm is a Banach space. If we restrict the defini-
tion of n (x*) to zero-one sequences we obtain another norm in I'(X)
which is equivalent to n,(z").

(Az) < oo for some

1.5.1. Write g} (z~) = Vq*(\l:r Ny (X)) = {z~: ¢

A> 0}. It is well known that o5(2z~) is a convex modular in 27(X) and

that 2*#(X) is under this modular a modular space in which a homogeneous

norm may be defined, e.g. by ljiz~]lj; = inf{s > 0: o} (2~ [e) < 1}. Clearly

I"(X) > 7'%(X) and ‘*¢(X) is a Banach space. If q(u) = u then 1*¥(X)

(written also as A'(X)) is the space of absolutely convergent series. If
() = u®, a1, we write i°(X) instead of A*7(X).

sup‘i Va :m where the supremum *
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1.6. The following statements are mutually equivalent:
(a) there are positive constants a, b, w, such thab

if 0<<u<<ug;

{*) w(u) < ap(bu)

(b) T°(X) = I™(X); .

(e) °(X) = 1™(X);

(d) if z; I*(X) and @, U™ (X), then |;]5 — 0 as % —>co implies
Jalls — 0 as m — oo. The above statements concern also the limiting
cage p(u) = u, p(u) = .

(a) = (b). Let - l*?(X) and set 1, = ¢%, (1) Uo/2. Since |z~ [l}/n, (")
> 1 we obtain by 1.3.1 A,lzll/llz~ll; < %,. In view of (*) we have for
0< A<, EeB,,

(Molf(%)l)<a (bMoIE(%)I)

=13 e~ 15

(Mom* ) <a (buom“ )
o) = " e )

Setting 4 = inf ((b,)™", (b} 'a™, 1} we get the term on the right-
hand side of the last inequality less or equal 1, therefore %~ <I™*(X) and
fe~ iy < (Uo)‘lllm‘ I

Thus (a) = (d), too. The proof of the implication (a) = (e¢) is similar.
The unphcamons (b) = (a), (e¢) = (a), (d) = (a) are well known in the
case when X is the space of scalars. The case of an arbifrary Banach space
X may be immediately reduced to the former one.

1.7. Assume that a g-function v fulfils condition (A,) for small » and
that a @-function ¢ satisfies the condition ¢(u)/p(u) =0 as u — 0.

If, for a sequence of elements =, = {z;,}<"*(X), the inequality
ezl <%k holds for # =1,2,... and sup|z,] >0 as % —oo, then
flm, e =0 as m —co. i

By 1.6 (*) #; « I"?(X) and we can assume [, [ >
For any e >0

@ p(u/e) < by (u)

where 0 < % < oo, for sufficiently small 4. Choose %> 0 such that

¢>0forn=1,2,...

{if) k<

Then there is a # > 0 such that the inequalities (i) and

(i) plufe) <np(ufe) HO0<u<au

icm°®
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hold shnultaneo11sly I, similarly as in the proof of 1.6, we seb
2‘0 = 'P 1(1)/—12 we get' Z’ BUP ﬂ%n”/ﬂ% ‘v< u: Whence by (1)

(f e m“) "(E m,;n;) Feo

* ) <Felmg) <
<k <k.
9"(8 lale) = " ezl
For n> %, where % is sufficiently large, we have, by (iii),
Ay 3 Ay o3 Ao Ty ) -
— 2L — < — | <k < 1.
9"‘(e k)\""(e N A st

e izl
Thus |jz; [y < ekly* and |2z]5 — 0 as # —co follows.

(i)

1.8. A sequence 2~ <" (X) is called regular (in I**(X)) if n, (2™ —2-)

—0 as n —>o0, where z+™ denotes the sequence Lyy Loy eeey Tpy 0,0, ...

Let us remark that a sequence -~ ={z;} in I'(X) is regular if and only
hed

if the series Y »; is perfectly convergent. As easily seen, 1.3.1 implies
1

flmdl - 0 as a necessary condition for a sequence z~ to be regular. Note
that if - is a regular sequence then for any {x;}<H the sequence {n;x;}
is regular, too.

1.8.1. The collection of all regular sequences in U'*(X) forms & closed
linear subspace of U'%(X).

1.8.2. If ¢ satisfies condition (A,) for small u and z~ eJ™(X) then
x~ is regular in U'9(X). This is also trivially true for @(u) = u.

For every z-eA™(X) the series Zs‘v(lﬂ:ellls is convergent for any

> 0, whence g,{(z~™—2-)/) < ¥ lP(H-T fI/e) <
and Jz~®—2-]| < & follows. =nt

< 1 for sufficiently large n

1.8.3. Let y be a p-function such that p(u)jyp(u) =0 as u — 0. Hach
;Z; (t?) following conditions is sufficient for a sequence x~ to be regular in

(a) 2~ l*(X), #; — 0, v satisfies condition {A,) for small u,

(b) 2~ l*™(X), o~ is a regular sequence in T (X).

The assumptions in (a) make possible an application of 1.7, thus
2~ is regular in I*?(X). Since () < w(u) for small % and, in view of 1.6 (d),
the relation jz~®™—z~| >0 implies jz~™ —2-|} -0 as # —>co, thus
(b) follows.

4 — Studia Mathematica XLIV. 2
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1.8.4. If X s separable and every sequence belonging to *?( X) s
regular then U"?(X) is separable and conversely.

If X is separable then the set {w~™: £~ lI"(X), n =1,2,...} is
separable, Consequently, if for any @~ el*(X) n,(»~™—5+) >0, the
space I"(X) is separable, too. Now, suppose that I*(X) is separable.
If 2-;0,0,...,2,0,0,... then n,(z~) = ¢*;(1)|lzll, thus X is separable.
We claim that all -~ are regular in I*?(X). If this is not so then there
are an ¢ > 0 and two increasing sequences of indices {p.}, {¢:}, P; < ¢; < Py,
for ¢ =1,2,..., such that m,(z~@—g-P))>¢ 4 =1,2,... Denote
by ¥~ < I**(X) the class of sequences y~ = {y;} detined as follows: we
set ¥, =am; if p;<i<q, j=1,2,... where {5;}<H and y; = 0 else-
where. Clearly, for two different sequences y-,y-" in ¥  we have
Ng(y~ —y~") > ¢ and since the mapping just defined of H onto ¥~ is
bijective and H iy uncountable we get the contradiction with the se-
parability of 1*¢(X). _

1.9. In this section we give some remarks and examples concerning
the notion of the regularity and Theorems 1.8.1-1.8.3. Under our assump-

tion that ¢ satisfies condition (o,) any sequence #~ = {»,;}, where } z; is
1
perfectly convergent in X, is regular in I*?(X). Let X be the space ¢, and
@, the unit sequence {d;,}, d;, = 0 if j %, ., = 1, in ¢,. The sequence
{z}, m; = {0y}, belongs to any I*(X) but, since {z,| = 1, it is not regular,
‘though X is separable. More generally: if there exist in a Banach space

X perfectly bounded series which are not perfectly convergent, then
there are sequences - <I*”(X) which are not regular. Tndeed, for an

o
arbitrary Banach space X, if Y, is a perfectly bounded series in X, the
1
sequence #~ = {2;} belongs to I"*(X). On the other hand, we always
can construct a perfectly bounded series ) w; with |jz,| =1 fori=1,2,...
1

if we only assume that perfect boundednes not always implies perfect
convergence in X.

Let X = L°(a, by, a>1, 1ja+1/a’ = 1. Choose disjoint measurable
sets e, of positive measure in (a, zl:)> and define functions @, (t) = ¥, (?)

plo™ T £e5 then £(@) = [o,(f (@, |E@)" < | [lo ()@

JIf®I¥ @ < oo, whence 2 HE@NT < [If 01 dt and conse(ﬁlently g =

i {m}l(X), y > o'. Since |jz,||, = 1, - is not regular. The following exam-
pleisalso worth remarking. Let {z,} be an orthonormal system of uniformly
bounded functions in {a, b>. Then it follows from the Young-Hausdorff—
Riesz theorem that o~ = {3,}<l*(X), where X =I%a,bd, a2,
1/a+1/a’ = 1 (the restriction that 2; are uniformly bounded may be drop-

* ©
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ped i a =a =2). Sinee fr;,=>¢>0 for i =1,2,... the sequence
2~ is not regular in I"(X). Concerning relations between the spaces 1*(X)
and 2°(X), let us recall the well known inclusions: }(X) < 23(X) if
X =L%a, by, 1< a2, X)) c (@) if X = L%a,b), a> 2.

2. For any interval § « T «(5) denotes the difference = (1) — (')
where "' is the right end point and ¢’ the left end point of 8. For a function
x(-): T - X, we mean by variation of »{-)— in symbols var # — the

n
value of suplio{=)j, where o(z) = Y a(6;), =: 6y, 8y,..., 6, is a finite
= 1

collection of disjoint intervals 6; = T, and the supremum is taken over
all such collections. A function x(-): T — X is said to be absolutely con-

n
tinuous if for every & > 0 thereis a 4 > 0 such that the inequality >u(6;)<<2,
n 1
where 8, 8, ..., 8, are disjoint intervals in T, implies || Y'=(4;)| < s. Any
1

such funetion is of bounded variation on 7. Denote by AC(X) the class
of all absolutely continuous functions. The set AC(X) becomes a Banach
space under standard definitions of the sum of elements and of multipli-
cation by scalars, and provided with the norm izl = llz(a)|+ vare.
The following well known fact is basic for our futher considerations:

There is a one-to-one correspondence between a-additive set functions
#(:): & - X which are also absolutely continuons with respect to u
and absolutely eontinuous functions z(-) on 7, which are equal to 0 at a.
This correspondence is established by setting z(<a,t)) = o(t) —z(a) = =(f)
for teT. x(:) will be called associated with z(-). In what follows we always
restrict ourselves (exeept 2.1-2.2) to absolutely continuous functions ()
such that z(a) = 0. For such functions and measurable sealar functions

b

J(-) the notion of an integral —written Jf®de — will be used. Namely,
a
by this integral — if it exists — we mean the integral of Dunford type
(the weak integral) [f(t)z(du) where f(-) always is assumed to be a mea-
T
surable scalar funetion and «(:) is the set function associated with the
funetion «(-) [3], [4], [6].

Let us still recall the definition of a space L** (an Orlicz space).
For a given p-function ¢ it is the Banach space of all measurable functions
g for which [g(2ig(f)])dt < co holds for some 1> 0, provided with the

T .
norm gy = inf{e > 0: fcp(}g(t)|/a) dt < 1} (or with another B-norm equiv-
-4
alent to [[-[lo). If g(u) = u% a > 1, we shall denote by |||, the respective
norm ||-]; and by L® the space L*¢.

2.1. For a partition z corresponding to the points a =1, <t; < ...
<ty =b write & = iy, t) i {=1,2,...,0—1, 8 = (by1y tuds
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_\ IE(wwn)t)
(*) o, (&, %) —Zw( w8 #(85),

i=1

O [l (3]
oi() = an( PO )M(cm,

=1

(*%)

and set m, (&, )—supa (&, 8), my(®) = supo (z). We define V**(X)
= {m( (5, lw)< oo for any £e& and f01 some 1 = A(&, x)> 0},
WX {cc( m, (M) < oo for some 1 = A(z) > 0}. Evidently V**(X)
> W*"’(X) and routme arguments show that V*"’( , W*?(X) are linear
spaces. If X = R, then V*?(X) = W*(X) and we shall denote by V**

this space of scalar functions f(+). It is well known that fe V*® if and
only if f( t) = f g(z)dr+e¢, a <t< b, where g belongs to the Orlicz space
', ie. fzp(}.]g(t)[)dt< oo for some A>0 ([1], [2], [7], [9]).

2.2, If @< V*(X) then
(a) there exists a positive constant A such thai

0p(Am) < 1

where g,(x) = supm, (£, x);

geE,
(b) z(-) is absolutely continuous.
Ad (2). If we define [&]|, by the formula

1&ll, = int{e > 0: m,(&fe, @) < 1}

then the proof parallels that of 1.2. (b).

Ad (b). We can assume g,(z) <1. Let 4 be the union of disjoint
intervals 8;, &) ..., d,. By the convexity of ¢ and by the Jensen ine-
quality the inequality

)< Z ( ) (89,

() qo('f(”(
<1, we get’

81) +2(d,)+... +w(4 )
u(4)

holds for £e5,. Since the sum on the right-hand side is
1
#(8.) +2(8s) + ... + 2 (8u)l < rp_l(v)?

where 7 = 1/u(4). I p(4) -0, then by condition (c03) @_y(r)/r = 0.
For an additive set function x(:): & - X we define o,,{é , tv(:)) and
o%{w(:)) analogously to (*) and (*), respectively, by replacing there §; by

icm°®
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disjoint mets e;e& (if u{e;) =0, z(¢;) = 0 then the respective term in
(*), (**) is supposed to be equal 0). Set m, (&, z(:)) = supo, (&, 2(2)),

oz (=(2)) = supm, (&, 2(:)), myz(2)) = supa"(:c( )); using these functionals

we define V:; (X) or W22 (X) analogously to V**(X) or W*?(X), respecti-
vely. For V;2,(X) a theorem analogous to Theorem 2.2 holds. Consequently
any #(:)e V*a;"s(X ) is absolutely u-continuous and obviously it is associated
with a function (-} belonging to V**(X). Moreover, g,(z)< g3 Vim( ))-
Conversely, if z<V*?(X) then its associated set function #(:)e V% (X)
and gz (#(:)) < g, (@). Indeed, z(:) is defined on # by setting =(e) = x(8;) +

+ontw(d,) ifeef, e = Ué,-, where §; are disjoint intervals. Assume

0,(%) < co. By (i) in dz we have o,(£, (:)) < g,(w) if £e&,, for any
partltmn €1, €5y ...5 6, Of T, where ¢;¢.#. By the absolute continuity of
z(-), z(:) is absolntely eontinuous on .£, uniquely extendable to an
absolutely continuous «(:) on &, and the last inequality remains true
for any paa’mmon of T into measurable sets ;. Therefore o ((:)) < g,,(x)
and #(:) is in V3% (X). The functional g, () is a convex modular on V**(X)
for which g,(4%) -0 as A — 0. Thus, it generates a homogeneous norm
llzlf, in V*?(X) defined by

(*) X[}, = inf{e>0: g (x/s) <1}, weV*(X).

Similarly: o, (#(:)) is a convex modular on V3% (X), g,(Ax(:)) 0 as
4 -0, and a norm {z(:)Iz* may be defined analogously as above for
V¥ (X).

The considerations in 2-2.2 yield the following theorem:

2.3. The space V*?(X) is a linear subspace of 40(X); V*(X) pro-
vided with the norm }i-]} is isometric to the space V.5 (X) equipped with
the norm ||-|2. Under this isometry each z(-)eV**(X) corresponds to
the set function z(:)eVa%(X) associated with z(-).

24. If 2 V*(X) and the associated set function has a representation
x(e) = [y(t)du for any measurable set e, where y(-): T - X, is measurable,
e

then the integral
£e8,,

[ oAy (1)) e,
r
is finite for some 1> 0,
[o(ely@)])an = my(£,0), ol = supmy (£, o) ((71)-
T E.'_‘.o

2.4.1. Spaces I'"(X) and V*?(X) may be considered as special cases
of spaces of vector-valued set functions. The former ones regarded as
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space of set functions over the ring N, of finite sets of positive integers

for which #({n}) ==,, » =1,2,..., the latter ones as spaces of set

functions over the algebra & of measurable sets (or over .#) on which the

n

set functions z(:) associated with () are defined. The sums 3 a,,,

o 1

D a;x(e;), respectively, are nothing else but [f(¢)u(dw), (the integral in

1 T n

the sense of Dunford), where fif a simple function Ya; Loy €€ Ny OT 6,6 £(F),
1

respectively. Therefore Theorem 1.2 is paralleled by the following theorem
which may be proved similarly (note that (a) = (b) is contained in 2.2).

2.5. The following statements are mutually equivalent:
(@) @(-)eV*(X);
(b) there exists a constant 1> 0 such that
. @y (Az) < 1;
(e) if

{+) g ()

- sup(l\ﬁamal)i )

where the supremum is taken over all collections of disjoint intervals
n

8, ¢ =1,2,...,n such that Y o¢*(|a;])u(s;)

1y () is finite. 1

Remark. If n,(s) < oo then «(-)edC(X) and if we define a su-

premum analogously as in (c), replacing §; by measurable sets e;, #(-)
by #(:), we get the same lowest upper bound N ().

<1 and over all 7, then

2.5.1. The functional n,(z) 48 a homogencous norm on V**(X). The
space V*®(X) provided with thv,s norm is a Bamach space, the inequalities
lallp < mp (@) < 21y Rold (comp. [7], [47).

2.5.2. If 9 V*(X), 0(Af) < co for every 2> 0 (if, e.g., feI', p*
satisfies condition (4,)) then the integral [f@t)dz exists, and Holder's
inequality z

) I J103] < n@15.
holds.

The hypotheses in 2.5.2 make possible an application of Theorem
5.2 from [7].

2.5.3. If the integral f F(t)dz emists for every feL*™ then zeV*(X).

Define g(f) = = sup Il ff(i-)-dm |} A is eantty seemr varz < oo. Tiet |f, — Fllex

—0 as n —>oco. Set en = {t. [fa(©)=F(t)} > ). Since f, converges in measure

icm°®
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to f we have the relation ule,) -0 and consequently ‘[ff t)da|| -0,
L fedr— ff(i)d.r1~>0 But z‘ ffn(tdm ff Yzl <

il
~n

9avarm, thus

olfy) = f f(tyde H —Zevare,

T—
liminfo(f,) > o(f). Since po(f) is & homogeneous and subadditive func-

tional on L™, we obtain o(f) << k|fi«. Setting a simple function for
f and applying 2.5 we infer xeV**(X).
The existence of integrals (*) [f(f)dz for feI**, x< V™ (X), depends
T

either on conditions imposed on ¢* or on V*(X), that is on ¢ and X.
A counter-example [7], p. 323-324, shows that for each ¢* which does
not satisfy condition (A,), and for X = ¢, the integral does not exist
for certain feL'". On the other hand, if #(-) satisfies e.g. the Lipschitz
condition |w(t+h)—2x(t)| < Kkik], t,i+nhel, the integral (*) exists, no
matter whatever be . More generally, the same remains true if the norm
lfe]z> of the set function associated with z(-) is absolutely continuous [7].

2.6. For ¢(u) = v, a>1, denote by |z, if @ <l**(X), and by

l2ll,, if 2e 7*°(X ), the respective norms jlz- [|;, llz]i; . It can be easily checked
n

that lo* [}, = p(Z E(@)", loll. = sup (2 ez o)l u (o) u(8))", whe-
e 5, a, e 1

re intervals 6 eorrespond to a pa.rtiti?)n a =t <ty...,<t, =b The

complementary function to g(u) =" is ¢*(v) = (e—1)a"?+*, where

1/a+1/8 = 1. By definitions 1.2 (+*+), 1.3, we obtain fja~ |5 = k”ﬁna s

ng(x~) = k" |jz~ |, where k = (a—1)a™?. Hence the Holder mequa11ty
2.5.2 (*) assumes the familiar form

s

Il
-

(*) 1Y s < oo s

1
here the series Y a;x; is convergent for every z-<l*(X), a~ el
o0 1
:(le‘ia,.;ﬂj”ﬁ. Analogously [Iflic.
reV*(X), and
(*#)

e~ ls
= B2l i feIf, no(@) = k¥ fal, it

I Tf Fda|| < izl s

here the integral [ f(t) da exists for every we V°(X), feI?, ifl, = ( [If @) Fdt).
T T

3. Assume that {p;} is an orthonormal system of scalar funetions on 7..
In this section we shall deal with the orthogonal series of the form

(*) 101 () + a9 (1) + - ...
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where »; are elements of a Banach space X. It is known that the theory
of series of such kind differs in some points from the more simple, clas-
sical case X = R. The difficulties arise already when attempting to give
an adequate formulation of the Riesz—Fisher theorem. Having thig in
mind, we will base our considerations on the fact that one forms the
Fourier series (*) for vector-valued absolutely continuos funetions
2(-) only, defining their Fourier coefficients as

@, = fqan(t)dm for n =1,2,...
vy ’

In any case, if zeV*(X), then @, makes sense, by Theorem 2.5.2.
() is a scalar function, its Fourier coefficients reduce to the common
Fourier coefficients.

3.1. For any o~ = {&;} <l (X) the series

() a(t) = D a; [ pi(e)de
=1 a
is uniformly convergent on T.
Indeed, the series } ai(¢), where a,( f @;(r)dz, is known to be
1

_ uniformly convergent on 7. Since for a* = {a,;}elz, llasll, = (Zai)”z, we
get, by 2.6 (*), for sufficiently large m, n, i

Héwm(t) |<toi( Saof<e ter.

=m

-

32, If @~ = {m} <l (X) then the fumction =(-) defined by 3.1 (*)
belongs to V*(X), its Fourier coefficients are w;, and the following inequality
holds

fleelle < Iz [l
Let &y, sy ..., 0, be consecutive intervals corresponding to the

partition & =i, <i <...,<t, =b. Set g(t) =au(d) i ted;,
i =1,2,...,n Then, for fe5,, the inequalities

~ e [swwma< (2” £@)” ([ swa)”

=1 i=1 T i=1 T

i

n

a;
1

M=

- uaruz(

J
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imply
(> (=) m) <l
= (0
Hence ze V(X), llzf; < &~ Jl;. Similarly we have
) flomlle < 2 fay

where ,,(t) w_vwl f ¢;(v)dv. By Holder’s inequality 2.6 (**) and by (i)

i=

the inequality
(i) | [ 1@ =) || < le—aalalfls < 21l Ifls
T

u
is satisfied. Sinee (dm = &, (1) —@p(a) -z (w)—a(a), for any simple

funetion s (1) = Z‘a s, (1) the relation

(iif) ff(t)dmm-» [f)ae  as m —co
T T

holds. But the set of simple functions s is dense in 7 so, by (i), relation
(iii) holds for any feIL®. Substituting f(¢) = ¢;(¢§) and remarking that
Jf(t)dz,, = x; for m =i we see that z; = [¢;(1)de.

T L

3.2.1. If xeV?(x) then the sequence x~ = {x;} of Fourier coefficients
of «(-) belongs to *(X) and the Bessel inequality

flz~Jla < flwlle
holds.

In view of 2.6 (*x) we have Hé?a.iw,-“ = [U{;%%(t))d@““ < @l lla~ [l for

every a~el’, m =1,2,... whence z" <l*(X), and |, = sup (Y& ()"
< [lels- fesp 1
If the orthonormal system {g;} is complete in I?, then it is complete
with respect to V*(X). Indeed, if [¢;(t)dz =0 for i =1,2,... then
@

[f(t)dz = 0 for any feI?, by the Holder inequality, for, orthogonal poly-
o

nomials are dense in I Setting f,(¢) = x¢su(f), Where a<u<b, we
obtain # (%) = 0. Thus, as a corollary to 3.2, 3.2.1 we have the following
analogue of the classical Riesz—Fischer’s theorem;

3.2.2. If the orthonormal system {@;} is complete in I*, then there is
a bijective mapping between V(X)) and V*(X). such that the sequence

= {w;} l?(X) corresponds to the function x(-)eV*(X) with the Fourier
coefficients x;.
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The Parseval’s identity
' llz=lla = ll2llz,
holds for amy pair of corresponding x”, x(*), so that this mapping is iso-

metric. no i
3.2.3. Denote s,(*) = Zmiftpi(r)dr, n=1,2,...If 2~ l*(X) s regular

in F(X) and x(

Hl\/‘s

¢
= Y, [o;(z)dv then

{*) 18—l =0 a8 % —oo.

If 2 VH(X), ; = f o;(7)dx and the relation (*) is satisfied, then the
sequence x° = {xi} of the Fourier coefficients of x(-) is regular and the
series S‘g% Ydo f @i(v)dx is perfectly convergent in V*(X).

1

The sta.tement follows immediately from 3.2, 3.2.1 and the definition
of the regularity in I*(X) of a sequence {#;}.

COROLLARY. Assume that the orthonormal system {g;} is complete in L*
If any sequence in P(X) is regular, in particular if U*(X) is séparable, then
he espansion 3.1 (*) any functions in V*(X) is convergent to () in V*(X)
and the convergence is perfect.

If for any z<V*(X) the ezpansion 3.1 (*) converges to =(-), then any
sequence in B(X) is regular; in particular if X is separable then I'(X) is
separable.
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On the best values of the constants in the theorems of
M. Riesz, Zygmund and Kolmogorov*

by
S. K. PICHORIDES (Chicago)

Abstract. Let f be a real 2rn-periodic function and f its conjugate. Then; (i) The
least value of the constant A, in M. Riesz’s theorem (||fllp < Aplifily, p > 1, feILP)
is tan(x/2p) if 1 < p < 2 (and hence cot(x/2p) if p > 2). (u) ‘The only possible values

of the constant 4 in Zygmund’s theorem (ﬂf[l1 < A(1/2% )(f]fl logt ifi}+ B, feLlogT L)

are those > 2/r. (iii) For non-negatwe functions the least value of the constant B
in Kolmogorov's theorem (]]f]}p < Bplfi,p< 1, feLl) is (cos(pm/2))~ V2. (iv) The
constant 4, in (i) is also best possible for real non-periodic functions in R* (instead
of the conjugate function it is now considered the Hilbert transform). The proof of
these results makes use of a refinement of the inequality on which A. Calderdn’s
proof of the theorem of M. Riesz is based (see A. Zygmund; Trigonometric Series,
Ch. VII, section 2, Cambridge Un. Press, 1968).

1. Introduction. The purpose of this paper is to examine the constants
appearing in the theorems of M. Riesz, Zygmund and Kolmogorov ([4],
Chapter VII, Section 2). In Section 2 we examine the case of real functions
which are non-negative and 2=-periodic and we obtain sharp estimates -
of these constants. It turns out that the above mentioned theorems can
be considered as instances of the same inequality (see Theorem 2.4 and
the remarks following it). In Section 3 we consider real 2r-periodic funec-
tions of variable sign. Although the results are not as complete as in
Section 2, we are able to prove that the least value of the constant 4, in
M. Riesz’s theorem (Hf[]p KA, flp, 2> 1, feLP) istan(n/2p) f 1<p < 2
(and hence cot(n/2p) if p >2). The proof of this result (theorem 3.7)
is based on a refinement of the device, due to A. Calderon,
used in [4] for the proof of M. Riesz’s theorem (only the Theorems 2.4
and 2.12(c) from Section 2 are needed for the proof). T. Gokhberg and
N. Krupnik have obtained the same result for special values of p(p = 2%,
#n =1,2,...). They have also proved that 4, > cot(n/2p) for all p=>2
and conjectured that this estimate.is best.possihle. (see [l-}}. In-Seetien-
4" we discuss some related results concerning non-periodic funections,

* This paper has been submitted to the Department of Mathematics of the
University of Chicago as the author’s dissertation in candidacy for Ph. D.
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