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The method of Grothendieck—Ramirez
and weak topologies in C(T)

by

S. HARTMAN (Wroclaw)

Abstract. In [11] Ramirez used the Completion Theorem of Grothendieck (quoted
below as (CT)) to characterize Fourier transforms {exactly Fourier—Stieltjes transforms)
of meagures on a locally compact abelian group and their uniform limits. Our aim
is to develop this method by applying it to restrictions of Fourier transforms and
their limits, as well as to problems which arise if some conditions like continuity
(ie. vanishing on points) are impesed on the measures under consideration.

It may be added that characterizing B(G") or B(G")~, B(E) or B(E)~ (see
notations below) is to a large extent an open problem, as not even the idempotents
of B(Z)~ are known. A _considerable progress is due to Drury [3] who proved that
the characteristic funetion of a Sidon set is in B(Z)~ (compare 4.).

Further on, we are going to investigate and to compare several topologies and
several notions of weak convergence in the space C(T) of complex continuous funec-
tions on the cirele or in some of its subspaces defined by special assumptions about
the spectra. It turns out that the method mentioned in the title or some results derived
from it can be effectively used for this kind of research.

0. Notations. We denote

by f*,u" the Fourier (Fourier—Stieltjes) transform of a function,
a measure,

by G~ the dual (i.e. character) group for an abelian locally compact
(LCA-) group &,

by C(X) the algebra of (complex) continuous functions on compact X
with sup-norm,

by C,(@) the algebra of continuous functions on LCA-group @, vanishing
at infinity; Co(@) = C(G) for G compact,

by Cp(X) the algebra of bounded continuous functions on X, with sup-
norm,

by C%(G) the space of continuous functions on (abelian) compact group @
with spectrum in E < § (with sup-norm),

by A(G") the algebra of Fourier transforms of integrable functions on G
with norm induced by L, (&) {4(6¢") = L, (&),

by A (E) the algebra of restrictions of elements of 4(G") to the set B < ¢,
with quotient norm,


GUEST


182 8. Hartman

by M(K) the space of finite complex regular Borel measures u with
earrier in K < @ and with norm Juj = sup | fzp )du ()] where ¢
runs over (@), Ieleo<t ) ‘
by M (K) (MK )) the subsPace of I (K) consisting of continuous (discrete)

measures,

by B(G") the algebra of Fourier— Stieltjes Atransfmms of elements of
(@) with norm induced by M (G) (BSG ) = M (®),

by B.(G"){Ba(G")) the subalgebra of B(G") consisting of transforms of
contmuous (dlscrete) measures,

by B(H)(B.(E), ( 0)) the algebra of restrictions of elements of B(G")

( B,(6"), By(G")) to the set B = G, with quotient norm,

by B(E, E) (B.(B, K), By(E, K)) the subspace of B(H) (B.(®), B;(E))
consisting of restrictions to  of transforms of measures (continuous
measures, discrete measures) with carrier in K,

by B(E)", B.(F)” etc. the uniform (j.e. sup-norm) closure of B(H),
B.(B) ete.

bY @lx, ulx the restrictions of functions or measures to the set K.

1. Characterization of B,(G"), B;(G@") and their closures. Avoiding
a generality beyond our need we reproduce the Complemon Theorem
in a specialized form as follows: -

(OT) (Grothendieck, see [9], p. 271). Let (X, Y) be a dual system of
two locally comves linear spaces, i.e. X ¥, Y c X', {m,y> =0 for
each y implies x = 0 and {x,y> = 0 for each x implies y = 0. Weak to-
pology in X (in Y) will mean the topology induced by ¥ (by X). Let K,
(1< m< o) be convex centered sets in X, weakly bounded, weally closed
and such that \J K, = X. Let further Y denote the completion of ¥ in the

m

topology of umiform convergence on the K,,'s. Then ¥ consists precisely of
those elements of Y which are weakly continuous on K,,'s.

Putting I'=G", for a non-discrete LCA-group &, X = M (I,
¥ = M(&), or equivalently B(I"), {1, p> = [p dd = [2"du(ie M(T), ue M (G))
r G

and K, = B,, = {4: |A| < m}, it is easily proved (see Lemma 1 below)
that, for a sequence u,<¢ M (@), the uniform convergence on B, (and then
on every B,,) is equivalent to the uniform convergence of the Fourier
transforms g, on I'. So we infer that a necessary and sufficient condition
for a funetion feCy(I') to belong to B(I")~ is that for a net A, in M (I")
with |4l <1 the following implication holds

(i) if i,u‘ (w)d2,(x) — 0 for every we M(G) then ff(m)dla(;a) - 0.

I instead of B,, the balls B, = {Ac M(I): |A"|ln < m} are used, (OT)
can still be applied. It turns out (Lemma 1 below) that the uniform con-
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" vergence of a sequence {u,} on B,, is equivalent to the norm convergence

in M (G). Since this space is complete we see that a necessary and suffi-
cient condition for a function feC,(I") to belong to B(I") is that (i) holds
for nets A, such that i, |, < 1.

A more detailed analysis leads Ramirez in [11] to other character-
izations of funections in B(I")~ or in B(I'). In particular, he proves that
feB(I)™ is equivalent to the implication

if 4,(t) >0 (1<n< ) for every te@, [il<
and feB(I') to the implication

if 4, (1) -0 (L<n< oo) for every te@, i, llo <1, then [fdl, — 0.
For compact @ in both implications the point-wise convergence A, (f) — 0
can be replaced by uniform convergence (compare Theorem 6 below).
Thus owing to his dealing with convex sets in some adjoint Banach
spaces he can dispose of nets and express the required characterizations
in terms of simple (i.e. conntable) sequences.

For the sake of completeness we prove the announced Lemma 1.

1, then [fdi,—0

Lemma 1. The uniform convergence of « sequence {tt} (pn e M (&)
on the balls B, is equivalent to the umform convergence of [,. The wniform
convergence of {un} on the balls B, is equivalent to the norm convergence,

The first part of the Lemma is proved at onee by taking for 1 one
point measures. To show the second let

lim ASUP 1Ay g — <45 iyl = 0.
7, k00 [Aoof <1
Since those elements of C,(@) which are of the form A~ (ie M(I')) make
a dense set we have sup [ [27 (1) ap, (®)] = lual, so the above Cauchy con-
12~ oo

dition is equivalent to norm fundamentality, hence to norm convergence.

It can be easily seen that the system (M (D), Mc) (M, stands for
M, (@) is still & dual system. In fact, since 4 (I") N Cy(I") is dense in Cy(I")
it would be even enough that {4, x> = 0 hold for all absolutely con-
tinuous measures g to have A = 0. The balls B,, and B,, are obviously
bounded in the weak topology induced by M, since they are bounded
in that indueed by the whole of M(&).

2. The balls B,, and B, are M weakly closed.

Proof. Let ji4,] < m and (A, uy — (A, x> for every ue M,. One has
to show that ||| < m. Suppose this is not the case. Then we have |A]
> m+ 6 for a suitable 8 > 0. It exists a function feCy(I") such that lpllo<<1
and |[fdA] > m+ 6. Since the transforms p° of absolutely continuous
measures are umform.ly dense in Cy(I") there is a ue M, with [ fu d]] >
m+ 6 and |u” | < 1 everywhere on I' — a contradiction sinee [(J,, u)! gm
for every a.

LevmA
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Let now [ o < m and Ay, @) = {4, u> (me M.). One has to show
that 4" ll, < m. If not, we have |i" ({)] > m on an open set U = @. If
# is & positive measure with carrier in U arid total variation J]y[l =1
then [|2”(#)|du(f) > m. Hence, for dv = ¢~*"* (‘idﬂ it follows [A" ()dw(t)
=[1A" ()|du > m, but since [p]| <1 we have [[As dv(2) < m which is im-
possible if x and so » are continuous.

THEOREM 1. 4 function feCy(I") is in B,(I')™ if and only if, for A,/ < 1,

(i) the net convergence [u” (x)dd,(w) =0 for every pe M, implies [fdA, - 0.
r

THEOREM 2. A function feCy(I") is in B.(I') if and only if, for A, | < 1,
the implication (ii) holds.

In view of Lemma 2, both theorems are a direct consequence of
(CT), applied to B,’s or B,’s respectively.

Following Ramirez [12] we now turn to discrete measures, i.e. ele-
ments of M, = My(@). We consider the system (M (I'), M) and state
again that it is a dual system: If 1 - 0 then we can choose a compact
F so that [A](I'\F) < }|Al. The Fourier transforms of discrete measures
are uniformly dense in the space of almost periodic functions on I
Hence, for every feC(F) and > 0 there exists a we My(G) such that
Jle” 17 —Flleo < &. S0 there is a discrete x such that (1" < 1 and |f 4" @2 > 3IiA].
Henece we have [u"di # 0. #

I

Levma 3. The balls B,, and B, are Mzweakly closed.

Proof. Let [[A,]<m and (A, > = (A, p) for every peM,. If we
suppose |4}l > m+- 6> m we can choose a function f as in the proof of
Lemma 2 and a compact F < I' such that [A|(I'\F) < 14. Then we have
gfd/l] > m+ 45, We can find a pe My with |[p” dA| > m-+16 and 1" |, < 1,

b

80 Lf u dll > m. This leads to a contradiction like in the proof just quoted.

To see that the balls B,, are Mweakly closed we rewrite the second
part of the proof of Lemma 2 choosing u discrete which is obviously
possible. Then » is also diserete and the same contradiction appears.

Hence, in view of (CT) and of the fact that B;(I")~ comsists precisely
of almost periodic functions we have the known theorem

TEmOREM 3 (Ramirez, [127). 4 function feOy(I") is almost periodic
if and only if, for 2, ll<1 '

(ilf)  the net convergence [A; (1)du(t) - O for every ue M, implies Jfdi, 0.
é 7

It is nearly obvious that the net convergence [1, (t)du — 0 for every
ne M; is equivalent (in view of |4] (#)]<1) to the net convergence

4 () = 0 everywhere. So Theorem 3 can be formulated as follows:
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THEOREM 3’ (see also [12]). 4 function feC,(I") i¢s almost periodic
if and only if for every ¢ > 0 there is a 8 > 0 and a finite system of points
by oney tye@ such that A <1, A7) < 6 (L<j< N) implies |f[fdi] < e,

Remark. The second part of this theorem (,,only if*’) is nearly trivial.
In fact, if fis a character <@ we have [fdi = 1" ( —t) and the implica-

. I

tion in question becomes taumtologic. Tt holds then obviously for trig-
onometric polynomials and so one has just to apply the approximation
theorem for almost periodic functions.

THEOREM 4. A function feCy(I') is in Ba(I') if and only if, for |12 llo < 1
the implication (iii) holds; equivalently: if and only if, for |A; |l <1,
1, (t) >0 everywhere on G implies [fdd, — 0.

2. Spectra with appropriate compact. We now admit that for a diserete

set B < I' there exists an appropriate compact K in G. This means that

there is a constant ¢ > 0 such that for every trigonometric polynomial
N
P(t) = Y a,,(t) with spectrum in F (i.e. x,<F; they are called H-poly-

n=1
nomials) one has sup |P(t)| > ¢ sup |P(t)|. There are classes of sets known
teX 1@

to have appropriate compacts, e.g. Sidon sets (see further in this para)
or the so-called harmonious sets on the line (see [10], p. 9). It is obvious
that an arithmetic progression has an appropriate compact. The canonic
isomorphism P — P|x between the normed space PT(H) of E-polynomials
in 0,(6) and the normed space of their restictions to K (a linear sub-
space of C(K)) induces an isomorphism between their dual spaces. Thus,
to every bounded linear functional ¥ on the first space corresponds
2 measure u on K such that, for every Pe PT(E), F(P) = [P(t)du(t)
N -4

= Ya,u" (2,). So, every bounded linear functional on PT(E) is represen-
n=1

ted by a class of measures the Fourier transforms of which coincide on ®
and this class contains a measure with support in K.

We are going to consider the dual system (M (E), B(E, K)). B(E, K)
is a quotient space M(K)/J with J = {ue M(EK): u" () =0 for t<E}.
To prove that it is really & dual system we assume first that for a ue M (K)
we have (A, u> = [p di =0 for all Ae M(E). Taking for 1 one point

B

measures we see that ueJ. Suppose now that (A, u> = [1" (H)du =0
K

for all ye M(K). Since K is appropriate to ¥, the restriction f — f|g is an
isomorphism of the space of almost periodic functions on G with speetrum
in B. So we have 1™ (t) = 0 everywhere in ¢ and finally 4 = 0.

Let B}, and B'7; denote the balls {ie M (B): |l < m} and {1eM (B):
12" lzllo << m}. They are bounded in the weak topology induced by B(E, K)
sinee this is the same topology as that induced by M (G).
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TmMuaA 4. The balls BE and B"E are weakly closed.

In fact, if we had 2, eBE, {hgy uy — {4, ) for every we M(K) and
1Al > m -+ 6 then we would eonstruct as in the proof of Lemma 2 a measure
pe M(G) such that [ju” flo <1 and [K4, u| = [ [u" @i > m+ 8. But there

is & pe M(E) with p° =g, on E. So ]<l,,u1 S| > m+ §; this leads to
a contradiction since [{A,, p)| < m.

To see that also B'Z are Weakly closed we must proceed in an ob-
vious way: If HA Il = supm @) <My oy > — <Ay ) (pe M (K)) and

2@ >mata pomt teK then choosing for x a suitable one point measure
at t with jjull =1 we have (A, up>m — & contradiction.

Lemva 5. The uniform convergence of a met (i) (4 Iz B (B, K)) on
the balls BE signifies the uniform comergenee of pe on B. The uniform
convergence of a net (ug) on the balls B E signifies the convergence of p, with
respect to the quotient morm in B(H, K)

In fact, if sup|<A, g = 0 then suplu, () >0, by taking i one
A<t zel

point measures, whereas the converse is obvious. Further, since the
functions 1” |z with AeB"¥ make a dense set in the unit ball of the space
CF(K) consisting of restrictions of almost periodic functions on @ with
spectrum in F the expression

up (€1 w3 = sup | [ (0 t] = s [ wane)

is the norm of u, considered as a functional on (F(K) and thus equal
to inffj|| with respect to all ue M(K) such that " = u, on H. Hence
the second part of the lemma follows.

If we apply (CT) to the dual system (M (E), B(H, K)) and to the
balls BEZ and B"Z and if we use the completeness of B(H, K) for the
quotient norm we get the following

THEOREM 5. A function feCy(H) (i.e. a bounded function on B) is in
B(E)Y if and only if, for A, e M(E), Al<1

(i) the met conmvergence f,u (®)dAs () > 0 (ue M(Q)) implies [fdA, — 0.
i

The function f is in B(E) if and only if, for |4, o <1 (i) holds.

In the second part of this Theorem we have replaced the ball B"¥ by
{he M(B); |A; llo < 1}. This is allowed since the compact K is appropriate
to F and so the norms JA"|, and 12" 1zllo are equivalent for Ae M (B).
It is also without importa,nce whether we use B(E) or B(H, K) for the
same reason, since f 4 (®)dA, () depends only on the values x~ assumes

on E. Thus we eould eliminate the compact K from the above statement.
Esgential is only the fact that the set E does have an appropriate com-
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pact. Actually, this is essential only for the second part of Theorem 5,
a3 we shall see in the sequel.

Evidently, in the case G compact we may take for E an arbitrary
set in I'. This ease will be treated separately in 3.

Remark. For ¥ having an appropriate compact we can follow
more closely Ramirez’s method which enables us to simplify the charac-
terizations furnished by Theorem 5. Namely, we can consider each
Ae M(E) a3 an operator on ¢(K) defined by 1" (t)e(f) (p<C(K)} and thus
introduce in M (F) the strong and the weak operator topology. Repeating
Ramirez’s reasoning we find firstly that the weak continuity of a feCy(EB)
on the balls BE or B E, referred to in (CT), is equivalent to the weak
operator continuity, and secondly that that the strong and the weak
continuity on these balls coincide. The first statement is nearly obvious
since the weak operator eontmmty of f on. BE or B"E means the following
implication: Tf 4, <1 resp. |4, |<1and [4; (t):p(t) du(t) — 0 for every

i

ue M(K) and @peO(K) then [fdi, — 0, whereas in the definition of the

- weak continuity determined by the dual system (M (B), B(E, K)) the

funetion ¢ is just replaced by 1. The second statement follows from the
fact that for convex sets (here BEZ and B"Z) the weak and the strong
operator closure coincide. Now, using the strong operator topology we
can confine ourselves to sequences and so we geb

THEEOREM 6. A bounded function f on B is in B(E)~ (B(F
only if for A, M(E), IhI<1 (A,e M(H))
(i) HmiA,ll, = O implies Lim [fd4, = 0.

N—>00 n~—~00

W i and

E c I is a Sidon set (EeSid) if every bounded function on F can
be extended to the transform g~ of a ue M(G). Every Sidon set in a. met-
rizable LCA-group I' has an appropriate compact and even every compact
in ¢ with a non-void interior is appropriate to every Sidon in I' [2]. On
the other hand, it is known that if the compact K i Is appropnate toHcR
then ¥ is a Sldon set provided the restrictions u’ |z (ye M(K) or M (R))
are uniformly dense in C,(E) [6]. Thus, on account of Theorem 6, we get

THEOREM 7. If a set B = R has an appropriate compact and if for
any feCy(E), A,e M(B), Al <1 (L < n < oo) (ii) holds then E is Sidon.

Conversely, if # is Sidon then (ii) holds for every feC,(F) as can
be seen by putting f =~ since then [fdA, = [4, du.

r ¢

COROLLARY. As to Sidon sets in a discrete group I, it is trivial that
they have an appropriate compact, ¢. Hence, on account of Theorem 7,

(*) A set B in a discrete abelian group is Sidon if and only if, for
iye M(E), |4,]| < 1 and any bounded f on B (ii) holds, and if and only if (ii)
holds for X,e M(E) and any bounded f on E.

6 — Studia Mathematica XLIV. 2
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That the restriction J4,]|<1 is unessential, follows not only from
Theorem 7 but also directly from the equivalence of the norms [IA]] and
14"l for ie M(E), which is valid for Sidon sets in any LCA-group and
can be taken as a definition of a Sidon set in any discrete abelian group [13].

The reason for which we could pass from the characterizations by

nets to those by sequences rests upon using the system (M (#), B(B, K )) '

where all measures on K, i.e all functionals on C(K), are involved.
This enabled us to replace the weak topology by the weak operator topolo-
gy and then to go over to the strong one. But this would have been impos-
sible if only discrete or purely continuous measures had been used; in such
a case there would be no hope for a characterization by means of sequences.
But even if we tried to use nets like in paragraph 1, there would be a serious
difficulty in treating the spaces B.(E, K) or B,(E, K) as members of
the dual system instead of B(E, K). Namely, we do not know whether
for any continuous measure ux on G there is a continuous measure u; on
K or, may be, on some bigger but fixed compact such that u, (#) = 4" (2)
for z<F, nor we are able to answer the analogous question for discrete
measures. It seems to be an open problem. Without this knowledge
we_could not prove that the balls BZ or B'Z are weakly closed.
However, if we resign from using B"Z (and thus from characterizing
elements of B(E) or B,(H) or B;(E)) we can dispose of the existence of
an appropriate compact for F and obtain nevertheless a net character-
ization of B(E)~, B,(E)” or B;(F)" and in case @ ¢-compact even a se-
quential characterization for B(H)~, as will be seen in the next paragraph.

3. Characterizing of B(E)~, B.(E)~ and B,(E)~. We consider the
systems (M (E), B(E)), (M(B), B.(F)) and (M (E), B4(E)). They are dual
systems because {1, 4> = 0 for every element u of B(E) or B,(E) or By(E)
is equivalent to (4, u) = 0 for every ue M(G) or M (@) or M;(@) respec-
tively and this is sufficient to have 1 =0 even without the restriction
“ea;rrielj A < B”; as stated in 1. To see that the balls BZ are weakly closed
in each of these systems we may apply Lemma 4 with an obvious change
(actually a simplification) resulting from using the whole of @ instead of
K. Hence, (CT) leads to the following theorem:

TEEOREM 8. A necessary and sufficient condition for a function fe<C,(B)

to be in B(B)™, B,(E)" or By(B)~ is that for every ¢ > 0 there be a 6> 0

and a finite system of measures p, ..., yye M (@), M (G) or M, respeciively

such that de M(B), | < 1and |[2" () dpu| < 6 (1< i< N)implies |[faA] <e.
F

The first pa:l’:ﬁ of this theorem . (for B(E)”) in-the case & compact
can be proved also by means of a theorem sbout the so-called y-linear
funetjmna.ls in two-norm spaces [1]. Putting X = 6%(@) n A(G) we
introduce there two norms: || |, and Il llo- Then the y-linear functionals
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on X are those distributive functionals & for which the convergence
M, —2 | —0 together with A,eM(B), Il )]s = [4]<1 implies
(&, > — (£, A7), and by [1] they can be identified with uniform limits
of plg(ue M(G)).

The third part of Theorem 8 (i.e. for discrete measures) can be restated
ag follows:

THEOREM 8. 4 necessary and sufficient condition for a function
feCy(B) to be the restriction of an almost periodic function on I' is that for
every s> 0 there be a 6 > 0 and a finite system of poinis ty, ..., t, ¢ G such
that de M(B), <1 and A" ()] <8 (L<i< N) implies |[fdd] < e.

B

Theorems 8 and 8 are straightforward generalizations of Theorems
1,3 and 3’, which appear after putting E = I'. Like in this case we may
notice that the necessity of the condition in Theorem 8’ is nearly obvious.

Remark. Had we used the simple sequence convergence instead of
the net convergence, Theorem 8 and 8’, as well as 3 and 3’ would become
false. In fact, in the third part of Theorem 8 it would then be claimed
that f is in B(E)~ provided that for any sequence {1} with 1;¢ M(E),
14l < 1 (1< i< oo) the convergence 1; (t) — 0 everywhere on @ implies
[fdi; — 0. However, if we take ¥ = I' (like in Theorems 3 and 3') we
E

see from Ramirez’s result (compare 1.) that this implication holds for
every f belonging to the space B(I)~ which is obviously larger than
By(I')~. We do not know whether the second part of Theorem 8 (for
continuous measures) or at least Theorem 1 (it means the case B = I)
remain true with sequences instead of nets. For the first part of Theorem
8 (arbitrary measures) the séquential characterization, announced at the
end of 2., is possible. We have but to use once more Ramirez’s argument,
sketched in the remark following Theorem 5. This time 4 must be considered
as an operator on (y(@). Once more, the weak operator continuity on
the balls BZ is shown to be equivalent to that induced by the dual system
(M (E), B(E)) and, on the other hand, the weak and the strong operatory
continuity coincide on BZ. But the strong operator convergence on these
balls means here the uniform convergence on compacta. As G is o-compaet,
this convergence is metrie. So we get

THEOREM 9. If G is o-compact then a necessary and sufficient condi-
tion for a function feCy(E) to be in B(E)~ is that l,e M(H), {4, <1 and
2, (1) = 0 uniformly on every compact in G imply [fda, — 0.

E

We add few words about the characterization of I-sets. A set B
in I'" is called I,-set or Ryll-Nardzewski set (see [5]) if every bounded
function on F is extendable to an almost periodic function on I. Theorem
8’ yields the following Corollary:
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COROLLARY. An isolated set B < I' is an Iyset if and only if, for every
bounded function f on B and every & > 0, there is @ 6 > 0 and a finite system
of points ty, ..., tye G such that Le M (B), M < Land (2™ (%) < s (1 <i< W)
implies |[fdi] < e.

i

The condition formulated in the Corollary means that for a net
{%.} with Ji3,] <1 the point-wise convergence 1, ({) ~0 on @ implies
[fda, - 0. It is not possible to weaken this condition as a sufficient one
by writing the above implication for sequences only. This follows from
two facts; 1) there are Sidon sets (in R or in Z, e.g.) which are not I, [7],
2) for any Sidon set ¥ the conditions A,e M (H), |4,]<1 (L < n< oo)
Lim4, (£) = 0 (te@) implyEf fd, — 0 for every bounded function f on B

as is seen by putting f = u”:
[far, = [ a7 B du(t) -0
B (e

on account of Lebesgue bounded convergence theorem.

In view of Theorem 7 the last implication is also sufficient for a set
to be Sidon provided it has an appropriate compact. On the other hand,
aset H 1} is Sidon if and only if («) there is a positive constant B such
that st1€1£ [°(#)] = BIA|l for every Ae M (F) with finite support and §) B

hag an appropriate compact. In fact, () means that ¥ is Sidon as a subset
of the discrete real line, i.e. of the group which is dual to B~ — the Bohr
compagctification of R (compare [13]); in other words, for every bounded
function f on ¥ there is a measure x on R~ such that u" = f on E;now,
() allows to find a measure » on R (actually on the approppriate compact)
such that +~ = 4" = f on F, so F is Sidon a § subset of R with natura
topology (,,un Sidon topologigue’”). Thus, firstly, the implication

Ane M(B), A <LA <0< o0), lima, (f) = 0 ({eR) = lim [fdA, =0
n "

for every bounded f on E together with the existence of an appropriate
compact fully characterizes the Sidon sets in R; secondly, if instead of B
we admit a diserete I', this implication is characteristic for Sidon sets
without any further restriction (we notice that this stands explicitely in
]:ll]) and it can be considered as a modification of the condition given
mn (*) (see 2.)

. Now we confine ourselves to the case G compact. We want to
discuss some topologies in ¢ (@) and 0%(@). What was said about & having
an appropriate compact applies here cl early for every set ¥ < I'. Moreover,
we are released from the Ediﬂl’culty mentioned after the Corollary to
Theorem 7 and 80 we can use (CT) for the dual systems (M (B), B (7))
and (M (E), B4(E)) thus obtaining the following chamcterization’s: '
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THEOREM 10. A function feCy(E) is in B,(E)~ (By(E)7) if and only
if for l.e M(E), |4, <1 the convergence [i, du — 0 with respect to the
dual sysiem (M (B), B.(B)) (M(B), By(B)) implies [fdA, 0. A function
feCy(E) is in the closure B,(E)~ of B,(E) (in the closure By(E)~ of Bs(E))
with respect to the quotient norm in B(E) if and only if the above implication
is valid for A, llo << 1 dnstead of |4, < 1.

The first of these propositions is just a partial reproduction of Theo-
rem 8.

" 4. Kaufman sets. We call 2 set B c Z a Kaufman set or a Ka-set
(EeKa) if ther eis a measure pe M, (= M,(T)) and a 6> 0 such that
" (n)] > 6 on B. It is obvious that every Ka-set has density 0. Every
Sidon set is a Kaufman set. Even more: every bounded funection on
a Sidon set F in Z can be extended to the Fourier transform of a continuous
meagure. This eagily follows [14] from Drury [3] where it is proved that,
for every ¢ > 0, there is & measure ue M(Z) such that x" =1 on E and
|#” | < & elsewhere. On the other hand, a Ka-set needs not satisfy the known
lacunarity conditions which must be fulfilled by every Sidon set [8].

A Ka-set can be characterized by the condition that the function
on F identically equal to 1 (or 1z) belongs to B,(¥)”. The sufficiency is.
obvious. Conversely, if [ |> 6> 0 (§<1) on B for a ue M,(Z) then
we construct a sequence of polynomials w, with w,(0) = 0, uniformly
convergent to a (continous) function with values in [0, 1], equal 1 for
(n) =1 uniformly on F and the measures
w, (u*p*) are obviously continuocus. {(We put u*(4) = ,u(~A))‘

The above characterization implies at once that a set ¥ = Z is Ka
it and only if B,(E)~ = B(E)~. Further we have

THEOREM 11. FeKa if and only if the conditions A e M (E), |4l <1,
[2z @yau(®) -0 (ue M,) imply 2, (1) =0 for every teT.

Proof. 1° Sufficiency. Supposing the above conditions satisfied
we have in particular 1, (0) = [di, —0 and this implies in virtue of
Theorem 10 that the function 1z is in B.(F)~. So Fe<Ka.

2° Necessity. If EeKa then not only the function 1z is in B, (&)~
but also all restrictions ¢™|; of exponentials (i.e. for arbitrary ¢) because
multiplying »~ by an exponential corresponds to a translation of .
So, by Theorem 10, the conditions in Theorem 11 imply > e~ ™,(n)
= o (1) = 0 (tel). nekl

‘We do not know whether in this characterization simple sequences
can be used instead of nets. Further, we are not able to decide whether
the condition |4,/ < 1 in Theorem 11 can be replaced by ||2, |, < 1. Doing
this we get a characterization of those spectra F for which 1 belongs
to B,(H) because B.(E) is a (may be improper) ideal in B(#), so the unit
element of B(F) cannot be contained in its closure unless B, (&) = B(H).
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Hence, the actual problem is to know whether for every Ka-set this
identity holds true.

In [6] it is proved among other results that if B = {ng} (n,> 0)
is a Sidon set then there is a uncountable set of real numbers ¢ such that
the sequence {nt} is not equidistributed mod 1. Modifying and actually
simplifying the method of the authors of [6] we prove the following
theorem which can be considered as stronger from the standpoint of our
present knowledge (after [3] was published): ‘

TaEorREM 12. If B = {n,} (n; > 0) is a Koufman set then the set of
i such that {n,t} is not equidistributed mod 1 is wuncountable.

1y
Proof. If the Theorem were false we had lim — Y ¢™™ = 0 for
N k=1
N

1 N
every t except acoun tabl set and thus lim-zv— kzl Of e~ ™ qu(t) = 0 for
n =
N

1 “
every ue M,. In other words we had IimT\f > u (my) =0 for every
N & k=1
pe M,. But as EecKa there is a continuous measure u, With |, (1)
> 6> 0(1< k< o). Taking u.= uo*uy wehave u” (1) > 52> 0 and we
arrive at a contradiction.

5. Weak topologies in C(T'). Since the space M (T) is dual to C(T)
the question arises what happens when the weak topology of C'(T) (i.e. the
topology induced by M (T')) is made still weaker by using M, or M, ingtead
of M in its definition. What can be said about sequences which converge
with respect to these topologies? What are the relations between such
convergence of sequences or nets and the convergence everywhere on
T or the uniform convergence or that of L-type (i.e., for example,
figntdu -0 for some u’s)? The same problems may be posed with
respect to the subspaces CF(T).

In the sequel we will write ¢, () to indicate a net of functions and
¥, to indicate a simple sequence. If we write ¢,, it means that either
a or » has to be put as index according to the need. We introduce the
following conditions for bounded sequences or nets in ¢ (T) or in O%(T):
(C) [e.tydu(t) -0 for every ue M,

(D) [e.(0)du(t) -0 for every ue M.
We shall investigate the following implications:
(I) If (C) then (D).
(II) I (C) then [lp,(8)du(t) — 0 (ue M,). :
(II,) If (C) then f lp.(t)|dt — 0 (dt = the differential of the Lebesgue
measure).

(IL)  If (C) then [lp.(f)du(t) - 0 (ue M).
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(III)
IV) If (D) then [lp,(8)du(@) — 0 (ue M).

If (0) then [@.j, - 0.

(

(IV,) If (D) then [lp.(f)|dt — 0.

(V) I ¢,(t) =0 (VieT) then (D).

(VI) X ¢,(5) =0 (VieT) then [lg,(8)|dpu(t) — 0 (ue M).
(VL) If @,(t) =0 (VieT) then [lo(8)dt — 0.

(VII) TIf ¢,(¢) -0 (VteT) then [, — 0.

Some of these implications hold true for ¢ = a, some only for ¢ = n.
Some hold without any restriction as to the spectra of ¢’s, some other
require such restrictions. We have the following implications (of second
order):

(I} = (II;) = (IO) = (IL,) = (IV,), () n(IV) = (IL,),
I n (IV,) = (ILy),
(VI) = (IV}) = (IV,),
(VIL) = (VI).

(VI) = (VL)) = (IVy), (VL) = (V),

To deduce some of them one has to observe that ¢,(f) — 0 means the
same as [g,(t)du(t) — 0 (Vue M;). The other are obviuous.

In the table below we indicate which of the conditions (I)—(VII)
are fulfilled and which are not for ¢, in C¥(T) in dependence of B. We
ommit statements resulting from the second order implications just
mentioned and we point out open questions by interrogation mark. We
write (I') and so on if g, in (I) ete. are supposed members of A (T') uniformly
bounded in 4-norm. Finally, we put in frame those statements which
are characteristic for the class of spectra marked at the top of the column.

THEOREM 13. All assertions in the following table are true. Condition
(V) characterizes I-sets among Sidon sets.

' E arbitrary| FEe<Ka EeSid B, E finite
(I) mno (I ?
(L) vyes | (I) yes
t=mn | (VI) yes | (III) 2 (D)—(VII) yes|(I)~(VII)yes| (I)~(VII) yes
(VII') no (VI) yes
(VII) *
@ @ yes [ (@ yes
s = ¢ [@=(VII')no [@) yes| | (IVy) no | (IVy) mo  |(T)~(VIL)yes]
(IVy) mo (V) no (V) yes
(V) mo
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Proof. Observe that 1° I, c Sid c Ka, 2° the statement in frame
in the second column is another version of Theorem 11, 3° for spectra
lying in a Sidon set there is no difference between (I) and (I') and so on
4° it is obvious that all conditions (I)—~(VII)hold for ¥ finite. So it remaing
to prove («) for sequences with arbitrary B (I') does not hold, (IT) holds
and (VI) holds; (8) for sequences with spectra in a Sidon set (III)
and (VII) hold; (y) (V) for nets characterizes I,-sets among Sidon sets;
(8) if (IV,) holds for nets, then ¥ is finite.

The first statement in (a) is elementary. It can be proved by takmg

the sequence
1 N
_ E 1 —int
(pn(t) - 1\7+1 4 " M
n=0

These functions have A-norm equal 1.

For every ue M, one has by Wiener’s theorem f @ (t)du(t) =

7\H—1 2;4 (n) = 0. However ¢,(0) =1 (1< n < oo).

To prove the second statement in () it is enough to consider only
positive measures and real funetions. If only (II,) had to be proved it
would be sufficient to make use of the following statement included in
[4]; if {F,} is a sequence of sets in [0, 1] of Lebesgue measure exceeding

.} such that caud(ﬂ F,) =c
In fact, if f |, ()| dE does not tend to 0, then there are numbers n>0

2 6>0 then there is a subsequence {F,

and >0, a sign(—1)°(¢ =0 or1) and a sequence {n;} such that
(—l)'tpuk(i) > 7 on a set ¥y, of Lebesgue measure > §. Suppose ¢ =1. We

choose & subsequence {Fkl} such that the set ﬂ sz is uncountable It then
(t)dw(t) =

every | which contradicts the assumption. To obtain (II) we need a gen-
eralization of the statement of Erdos, Kestelman and Rogers in [4],
namely we must replace the Lebesgue measure by an arbitrary positive
continuous finite Borel measure x,. Such a generalization has been fur-
nigh(?d by Ryll-Nardzewski. We skebch its proof with the author’s per-
mission:

Let x, be the characteristic function of ¥,. We may admit that the
sequenee {xa} 18 *-wealdy convergent in L, (y,) to a function g, say. Then

ftp (0 dpy >

carries a positive measure ve M, of norm 1. Ewdently, f g (8 5 for

d. We may assume that there is a constant > 0 such that

(p(1 .> a everywhere; in fact, if this were not the case, we could replace
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in the sequel the interval [0, 1] by a closed set F' of positive uy,-measure
on which such inequality does hold; then the sets F, would be replaced
by F, N F. So we have

Hm po (PN @) 2 apo(Q)

for every Borel set @ because uy(F, N Q) —~ f (1) duy. Now, we construct

by induction a sequence n; < 7y <.

or 1) of positive measure u, such that

(i) F,.n...0F, > J A
[CRELA]

(i) Ae..q0 and 4, .. are disjoint and both included in A4,

. a,nd closed sets A, . (5 =10

R

Si..ASk'

As po(F, 0 4, . ) >0 for every m sufficiently large and for all sys-
tems (s, ..., &) and sinece the measure g, is continuous we can find
a My, >y, and, for every system (e, ..., &), two disjoint closed sets
Ay and A, . of posmve yo-measu_re such that (1) and (ii)

be fulfilled for %--1. Since ﬂ B, o ﬂ U 4, the set ﬂ F,, has
power c. F=1(epmrg)

The third statement in («) follows from the Lebesgue bounded con-
vergence theorem.

To obtain the second statement in () observe that the space CE(T)
with B Sidon is isomorphic to I,(E); this follows from the equivalence
of the norms | [, and || |, in C¥(T). Since the assumption of (VII) for
a bounded sequence means the weak convergence and since in I, the
weak and the strong convergence of a sequence coincide, we have
lpalle — 0, indeed.

Ag (I') holds for Ka-sets and so (I) holds for Sidon sets, we obtain
the first statement in (f) owing to the fact that (III) is an cbvious con-
sequence of (I) and (VII).

Lot now Eely, g.c0%(T), g <K (50 [y <L) and g,(f) —>0
(teT). It pe M(T) then, ac001d1ng to Corollary to Theorem 8 (with f(n
=u" (—n)on B, 1,(n) =@, (n), whence ||2,|< L), we have 5’% (n)u (——n)

a8

—> 0 but this can be written as f oo (1) du(t) — 0, 50 (V) holds for nets if Hel,.
Further, suppose that F iy Sidon and (V) holds for nets in CF(T).
For any bounded functlon fon E there is a measure p on T such that,
for nel, f(n) = u” (n) or else f(n) =» “(—n) with » = p* If q)aec’ (T)
H%lm\K (50 again p,lly <L) and ,(1) >0 (t<T), then 3 9. ()" (—n)

= — 0. Thus 2 f(n)g. (n) — 0 for every feCy( E), and applying
(¢ (8) dv (1) %a
718

Corollary to Theorem 8’ in opposite direction we see that Eel,. So (y)
is proved.
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Finally, we must prove (8). Before doing this we insert a lemma.

LEMMA (Ry]l—Na.rdzewski). Given any finite set @1, ..., @p of elements
of I, and any ¢> 0 there is an element xel, with ||, = 1 such that

pila) < e (L<i<E) but oly =——-
V2

Proof. If g, = {d’}(1 <n < o), we choose a sequence of integers
0 < ny < my ... such that the sequences {a{’} converge. Taking j sufficiently
large we have la,‘f;?ﬂwa,(g] <e(1<i<k). We put 2 = {8,} where g, — 1,
Brjyy = —% B =0 for n # ny, my,, . Then @ satifies the assertion.

Let now F be infinite. We may suppose E to be Sidon. If (IV,) held
for nets then, for every bounded net, (D) would imply f lpq(t)[2dE — O
since, for a Sidon spectrum ¥, the L;-norm and the L,-norm are equiva-
lent in C¥(T). Instead of [lp,(1)[2dt we may write Ylp. (n)2, using

B

. 5 5 ne.
Parseval equation. Putting ¢,(5) = 3, (n)e™ we have [, (¢)du(t)
nel

=n,§gla (n)u” (—n) and _E;Jla(n)l < L. 8ince u” (—n) can be any bounded
sequence, our assumption means that in the unit ball of I, (%) the norm
to}lsology induced by I,(F) is continuous with respect to the weak to-
pology, i.e. that induced by the dual system (I,,1.). This howe -
tradicts the Lemma. o) v oo

.Rema,rks. 1. Theorem 13 holds also for bounded sequences or nets
c.cmmsting of B-measurable functions. Evidently, only positive proposi-
tions need to be verified. If all spectra are in a Sidon set there is nothing
tf) prove because every bounded function with Sidon spectrum is con-
tinuous. So it remains to look at (IT) and (VI) for sequences with arbitrary
speet-raj. But then the proofs (see the second and third statement in (a))
remain valid without any change.

2. The boundedness of the sequence of continuous functions (not
that qf a 1.1et!) needs not be required in condition (C), and a fortiori in
(D), since it iy implied by the convergence assumed in (C). Here is the
argument: ¢,’s may be treated as linear functionals on M,(T), {p,, u>
= Jou(®au(t, with norm Ig,] = sUplp, ()] = L. Tn fact, nequality

Lin]< l'ifn“m is obvioqs and the converse inequality holds too because
im; ;11(311 bma,ss ajb & point £, where |, (%) = llo,ll, can be weakly approx-
" ted by contmuogs measures. So the functionals are uniformly bound-
ft c;n;l g;e]; noz}rlnsé ];11 virtue of the Banach-Steinhaus theorem. Besides,
een that boundedness was i
statoment, 10 (o) not used in the proof of the second
I ¢, are B-measurable and i i
I possibly not continuous then (C) does
Dot imply boundedness of the sequence {pa}. Example: ¢, (1) (=)0 for

* ©
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1
t irrational and g¢,(f) = n otherwise. Obviously feadu =0 for every
0

we M,. However, (O) then implies that the sequence {ps} is bounded
besides a countable set; this follows again from the Banach-Steinhaus
theorem since g, as functional on M, has norm inf sup |g, (t)] where D runs
over all countable sets. D IND

3. It would be interesting to know whether there are other spectra
that Sidon for which the point-wise convergence of a bounded sequence
in OF(T) implies the uniform convergence(!). Especially, have Ka-sets this
property? (see the table in Theorem 13).
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