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Abstract. Let & be a locally compact, infinite, amenable group. It is shown
that there cxist many invariant means on L®(G). If & is compact, its Haar integral
is therefore not the only invariant mean on L*®(@). If G is not discrete, it follows that
there exist bounded linear operators on L™ (G) which commute with translations but
do not commute with convolutions by continuous funetions with compact support.

I. Introduction. It is part of the folklore of harmonic analysis that
(roughly speaking) every linear operator ¥ that commutes with trans-
lations is convolution with something (a measure, an integrable function
of some specified type, or a distribution) and that ¥ therefore also com-
mutes with convolutions, i.e., that

(1) F*¥g = ¥(fxg)

for all g in the domain of ¥ and for all snitable f. The present paper exhibits
two situations in which this “theorem™ fails.

To be more specific, let @ be a locally compact group (not necessarily
abelian), and define left and right translation operators L, and R,, for
every se @, by

2) (Lef Y (@) = flsx), (Bf) (@) =flxs) (@)
if f is a function with domain @, and by
(3) (Lsp)(E) = p(sE), (RB.p)(E) = p(Es)

if u is a measure on . A space X of functions or measures on G is then
said to be invariant if L, X = X = R, X for every se¢ @, and an operator ¥
on X is said to commute with translations it

(4) LY =YL, and R,¥Y = ¥R,
for every se(@.

* This research was partially supported by NSF Grant (P-24182.
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For many of the invariant spaces X that oceur in harmonic analysis
it has been proved (especially when @ is abelian) that any bounded linear
operator ¥ that satisfies (4) also satisfies (1), essentially for all f for which
the convolutions make sense for every ge X. See, for instance [4] or ([2],
Chap. 16); also ([8], pp. 161-162, 197-198).

But when X = L™(@) (the space of all essentially bounded Haar-
measurable functions on @, modulo those that vanish a.e.) and also when
X = M(@) (the space of all regular complex Borel measures on @), the
implication (4) — (1) has so far been in doubt, even in the case in which ¢
i the unit circle. These problems are discussed in ([2], § 16.2.6) and in
([4] p. 125, p. 130).

For M (@) it is, however, very easy to see that (4) may hold without
(1), it & is omy non-discrete locally compact group: Bvery ue M (@) has
a unique decomposition

{5) b= gt
where u, is discrete and g, is continuous. Define

(6) Yu = pg.

It is clear that ¥ is linear, that ||| =1, and that ¥ commutes with
translations. If @ is not discrete, there exists & continuous Ae M (G) such
that 1> 0 and A(G) =1, Then A*y is continuous for every pe M(G)
([3] Th. (19.16)) so that ¥(A*u) = 0. But if ue M(G) is chosen so that
#g=> 0 and p;(G) =1, then 1% ¥y = 0.

For L*(@), the problem is not quite so easy. A negative answer is
obtained below (Theorem 4.1) for non-discrete G which are abelian or,
more generally, for those that are amenable (Definition 3.2) although
I suspect that the same-negative result holds for every infinite compact G.
It is also shown that no restriction on the range of ¥ can force a positive
answer, since the operators ¥ that give the counter examples have one-
dimensional ranges. They are therefore essentially invariant means on
L2 (@G). :

I shall now introduce a class of sets which is useful in the construction
of such means, and which may be of some independent interest.

II. Permanently positive sets.

DErINITION 2.1. Let G be a locally compact group. A Borel set < G

is said to be permanently positive (PP, for brevity) if all intersections of
the form
(M M =By,
i=1

have positive Haar measure, for

every natural number #» and for every
choice of @y, ...

1%y Y1y ooy Yy In G
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A PP-filter is a nonempty collection 2 of PP sets, with pﬁe following
two properties:

(i) ¥ A¢Q and Be 2 then A NBe 0.

(i) If Ae®, 2@, ye@, then zdye Q.

ExAMPLES 2.2. (a) Dense open sets are PP. The collection of all dense
open subsets of @ is a PP-filter.

This is true because the intersection of any two dense open sets is
dense, and since nonempty open sets have positive Haar measure.

{(b) If E is PP and if Q is the collection of all intersections (7), then Q
is a PP-filter.

This is obvious, from the definitions. It follows that every PP set
lies in some PP-filter.

(c) If @ is compaet, it is clear that every PP set is dense. This is not
true in general. For instance, if @ = R (the real line) and if ¥ is any union
of intervals of unbounded lengths, then E is PP. One can also remove
open sets of very small measure from these intervals, and thus produce
2 PP setin R which is closed and nowhere dense. This is in marked contrast
with (d):

() Suppose @ is compact, 4 = @ is PP, Bc @ is dense and open.
Then ANnB is PP.

To prove this, put B = 4 NB, and note that (7) is the intersection
of 4" and B’, where

(8) 4" = Naz;dy;, B = (M x; By;.
i=1 i=1

Since G is compact, finitely many translates of B' cover @. If it were true
that m (4 NB') = 0, the intersection of some finite collection of trans-
lates of 4" would have measure 0, which is impossible if 4 is PP. Thus
m(4" N B') >0, which proves that E is PP.

However, even in compaet groups it is not true that the intersection
of any two PP sets is PP:

THEORENM 2.3. Bvery infinite compact group G contains a PP sef whose
complement is also PP.

Proof. Let § be the collection of all Borel sets in @, modulo sets of
Haar measure 0, metrized by
) A4, B) = [ |54~ ypldm,

é

where y,4 and yp are the characteristic funetions of A and B, respectively,
and m is the normalized Haar measure of G- It is then easily verified (and
well known) that § is a complete metric space.
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For n =1,2,3,..., define @, to be the collection of all Fe § such
that

n
(10) m(_ﬂlmiEg/i) =0
1=
for some choice of x4, ..., #,, Y1, ..., ¥, in G, and let @, be the collection
of all E¢ S whose complements E° belong to @,.

We shall prove that each @, is closed in § and that @, has empty

interior. .
Once this is done, the same is true of @, since the mapping & - B°
is an isometry of § onto S. By Baire’s theorem, some Ee S belongs there-
fore to no @, and to no @,. Any such F satisfies the requirements of the
theorem.

Fix FeQ,. By the regularity of m, and Theorem 2.4 below, there
exist dense open sets V;, > H such that d(EB, V,) <1/k, for & = 1,2,3,...
Each ¥, is PP, hence lies outside @,,. The interior of (), is therefore empty.

Finally, suppose A< § lies in the closure of @,. Choose & > 0. There
exists Fe @, with d(4, B) < ¢/n, and there exist #;y Y; 50 that (10) holds.
The inequality

n n 7
(11) AN 4iy B < Da(4;, By,
= = i=1
valid for arbitrary 4;, B;e S, follows easily from (9). Now (10) and (11)
imply that

n

m(N#;4y;) = d _

i=1 1

Nesdys, Na:By) < ) d(x; Ay, 2,8y,) = nd(4, B),
=1 =1

=1

so that

(12) m((\ o Ay;) < e.

i

The left side of (12) is a continuous function of (Bryeony By Yiy oeony Yo
on the compact space G*", the cartesian product of 2n copies of G. By
(12), the greatest lower bound of this function is 0. By compactness of
", the value 0 is attained. Thus Ae@,,Q, is closed, and the proof is
complete.

THEOREM 2.4. Suppose G is locally compact grouwp which is not discrete
and which is generated by one of iis compact subsets, m is a left Haar measure
on @, and € > 0. Then G contains a dense open set B with m(B) < &.

Proof. Since @ is not discrete, its identity element has neighborhoods
. U,, with ecompact closure, such that m(U,) < 1 fn. It follows from ([3],
Th. (8.7)) that ¢ has a compact normal subgroup ¥ < N T,,, with m(N) = 0
such that G/¥ is separable. The union of some countable collection of
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cosets of N is therefore dense in @. The regularity of m shows that these
cosets can be covered by open sets of small measure, whose union % has
m(E) < e’

1. Tovariant means.

DzriNiTIoN 3.1. Let B(&) be the vector space of all bounded complex
functions on the group &. Let X be an invariant subspace of B(@) which
contains the econstants. A linear functional M on X is then said to be an
meariant mean on X if

(i) ML, = Mf = MR,f for all fe X and sc@,

(i) ML =1, and

(iil) [Mf] < suplf(x)], for all fe X.

xelF

A familiar argument (see [7], pp. 109-110) shows that (ii) and (iii)
imply

(iv) Mfz01if f>0 and fe X.

Invariant means on L*(@) are defined in the same way, except that
the sup in (iii) is replaced by the essential supremum.

DEeFINITION 8.2. If there exists an invariant mean on B(@), then G
is called amenable.

In [6], von Neumann showed (generalizing earlier work of Banach)
that all abelian groups, as well as all solvable groups, are amenable; on
the other hand, if G contains a free subgroup with two generators (for
instanee, if @ is the group of all rotations in R®), then @ is not amenable.

Frequently, amenability is defined in such a way that only one half
of condition 3.1 (i) is assumed. But then there exists a (possibly different)
mean on B(&) which satisfies the full condition. See ([3], Th. (17.11)).
Section 17 of [3] eontains a good introduction to invariant means.

Remark 3.3. If @ is compact, then & need not be amenable, but
nevertheless there is always an invariant mean on Z*(@), namely the
Haar integral; on C(@), this is the only one. The point of Theorem 3.4
below is that there are many others on L®(@), at least when G is
amenable.

Relatively little work seems to have been done on invariant means
on I”?(&); see [5]. For infinite amenable groups it is known [1] that there
are at least 2° invariant means on B(6), where ¢ is the cardinality of the
continnnm.

It fe (@), Z(f) will denote the set of all we & at which f(z) = 0.

TrEOREM 3.4. Suppose that G is a locally compact amenable group,
and Q is a PP-filter in G. Then there exists an invariant mean M on L™ (G
with the following property: if fe I*(G) and Z(f) contains some member
of Q, then Mf = 0.
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Thus M identifies any two functions in L*(@) which coincide on
some member of £. o

Proof. I®(G) is a commutative Banach algebra, with respect to
pointwise multiplication. Let J be the set of all f e_L""(G) suc].l that Z_( kD)
contains some member of Q. Since Q satisfies 2.1 (i), J is an ideal. Since
1¢J,J is contained in a maximal ideal, and is thergfore (by thei Gelfand—
Mazur theorem) annihilated by some homomorphism % of L*(G) onto
the complex field. ) .

The amenability of ¢ implies that of the direct p_roduct @ x @& ([3],
Th. {17.14)]. Hence there is an invariant mean A on B(G x6G).

Since ||hj] = 1, the formula
(13) (D) (@, y) = h(L.Ryf)
associates with each fe L®(@) a function @fe B(G x &), and one can there-
fore define '
(14) Mf = ASf  (fe I*(&).

Since Q satisfies 2.1 (ii), L, R,fe J for all &, y « G if fe J. Hence Mf = 0
if fed.

Since k(1) =1 and A1l =1, we have M1 = 1

Since [j4] =1, we have |Mf] < ||fl- o

It remains to be proved that M satisfies 3.1 (i), i.e., that
(1) ML,R,f = Mf
or all se@, te@, and fe L*(G).

The relations
(16) LyLy = Ly, L’II;RH = R,L,, R, R, = E,,
follow directly from (2). They imply that

(DL R fY(w,y) = h{L, B L Rif) = h(Ly Byf) = (Pf)(sm, yt)
for any s, t, @,y in G. In other words, using self-explanatory notation,
amn DL R,f = Lo Ry Pf,
where ¢ is the unit element of G. Since 4 is an invariant mean on B(G x @)
(17) implies that
MLRF = ADPLRf = AL o Ry Of = ASf = M.

Thus (15) holds, and the proof is complete.

IV. Some consequences.

TEBOREM 4.1. Suppose G is a locally compact group which is amenable
and not discrete. Then there ewists a bounded linear operator ¥ on L®(G)
such that

® ©
Im Invariant means on L™

o]
g
ot

(i) ¥ commutes with translations
(i} each ¥f is a constant function, and
(ili) for some ge L™(Q) and some continuous f with compact support,

(18) F*¥g = P(fxg).

Proof. Let m be a left Haar measure on @. Let f be a fixed continuous
function on ¢, with compact support, such that f> 0 and

{19) [fim =2.
[
Then there exists 6 >0 such that
(20) [fim <1 whenever m(B) < é.
s B

The support of f generates an open subgroup @, of @. By Theorem
2.4, G, contains a dense open set B, with m(H,) < 4. Pick one point u
in each coset of G, let F be the union of the corresponding translates uE,,
and put 4 = EnE™"

This gives us a dense open set A. Since 4 is PP, Theorem 3.4
shows that there exists an invariant mean M on L®(@) such that

21 My, =1,
where g4 is the characteristic function of A. Define ¥: L® - L® by
22) (F9)(2) = Uy (2¢6, pe I2(6)).

Then ¥L, = ¥ = ¥R, because M is invariant, and L,¥ = ¥ — RY¥
because every Yf is a constant. Thus ¥ commutes with translations.
Put ¢ =1—y,. By (21) and (22), ¥g = 0, so that

(23) f*¥g =o.
On the other hand,
(Fr9)@) = [ w)dm(y) = 2— [f)1a(y " 2)dm(y).
G G

Since 4 = 47}

2a(¥7'2) = g4 (@7'Y) = 2.4(9),
so that

(24) (fxg)(@) =2— [fim (zc@).
x4

Since m(Gom(xA)) < 4, it follows from (20) and (24) that
(25) (f*9)(x) >1 (2 @).
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Consequently,
(26) P(fxg) =1,

because M is a mean. Now (18) follows from (23) and (26).
THEOREM +.2. Suppose G is a compact group. Let ¥ be the subspace
of I™(@) that consists of all finite linear combinations of the fumctions

(27) ¢—Lyg and ¢—Ryp (sc@,peL®(@),

and let C be the space of all continuous complex functions on G.
If G is amenable, and if A is a PP set in G with m(A4) <1, where m
is the normalized Haar measure on @, then
(a) esssupg(z) > 0 for every ge Y, and
xed

(b) x4 is not in the L*-closure of O+ Y.

. Proof. By Theorem 3.4 there iy an invariant mean M on L*(G}
such that My, =1.

If (a) were false, there would be a ge¢ Y for which g(z) < —1 a.e.
on A. Hence M, < —1. But the invariance of M implies that M, =0
for every ge Y. This contradiction proves (a).

If feC, then Mf = [fdm, by the uniqueness of the Haar integral.
Hence, for any ge Y,

2lta ~f— > M (ga—F~9) = [(xa—F—g)dm|

@

Myg— [ gadm| =1—m(4),
G

which proves (b).

Remarks 4.3. There are several ways in which one might try to
prove Theorem 4.1 for compact groups that are not necessarily amenable.

First, the functions &f that occur in the proof of Theorem 3.4 might
be Haar-measurable on G X &, in which case the mean 4 could be replaced
by the Haar integral over G x@. This would give Theorem 3.4 (hence
also 4.1) without amenability. )

However, this approach does not seem very promising. In fact,
I am unable to decide whether

(28) * = h(L,f)

defines a measurable function on the unit cirele T, for every fe L*(T),
if & is a complex homomorphism of L®(T).

Secondly, it is conceivable that there always exists an invariant
mean on the subspace ®(L7 (@) of B(G x &). This again would be enough
to prove 3.4 and 4.1.
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A third possibility is to try to prove Theorem 4.2 (b) directly, and
without using amenability. In fact, it seems quite likely that the L®-dis-
tance between y, and Y is 1, at least when 4 is dense and open. In that
case, the Hahn-Banach theorem would give a linear functional 37 on L=,
of norm 1, which vanishes on ¥ (hence is invariant), and which satisfies
My, = 1. This M would give Theorem 4.1.

Postscript (added September 24, 1971). F. P. Greenleaf’s book
“Invariant Means on Topological Groups” (Van Nostrand, 1969) came
to my attention after completion of the present paper. In the terminology
used there, my Theorem 4.1 implies the existence of means on L*(@)
which are invariant but not topologically invariant. That this phenomenon
does not happen on the space of all uniformly continuous bounded functions
on @ is proved on p. 27 and on p. 101 of Greenleaf’s book.
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