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To A. Zygmund on the 50 th anniversary
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Abstract. The two problems of Riesz-Bochner summability in k-dimensions
for Fourier series and Fourier integrals are considered. In the case of Fourier integrals,
solutions to the summability problem are obtained for values below the critical index
(%9 = (k—1)/2), in particular for values 1> i,—1. In both cases, summability is
obtained everywhere except on exceptional sets whose dimension is not greater than
k-ap, for functions in the Lebesgue classes £5. The main facts, which are proved to
make these results possible, are that functions in £ may be redefined (if necessary)
on a “small” set so that the set of Lebesgne points is thick, and that for every point z
except points in a small exceptional set, integration over the surface of the sphere
centered at z with radius r > 0 is possible for all r. In the second of these results,
the integrals are uniformly bounded in r, for each x possible; but one must assume
a>1.

Introduction. The purpose of this note is to reformulate a problem
investigated by H. Federer in [3] so that some additional results are
obtained. To explain this purpose we introduce some notation. The setting
will be two fold, sometimes we will be considering functions f: R* >R
(the setting for Fourier integrals) and other times we will be considering
funetions f: T — R (the setting for Fourier series). We will use the notation

- 1
f (w) = (27_5))9

f fyye ey
J

where we understand that zis in R* when ¥ — Rforz = n = (Mg o evy M),y

& point in the k-dimensional lattice plane, when ¥ = T*, the k-dimensional

torus. For two points » = (zy,...,x,) and Y = (Y1) ..., %) We write

(@9) =21+ ... +oy, and |2 =22+ ... 422, For the above defi-

nitions we must assume fe I'(¥). We also write iz = (Azy, A%, ..., Mz)-
The Riesz-Bochner means of index 1> 0 are

(11) 2 (1— I;I) f7 ()6 = Sy(f, )
n|<R
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and
212\ )
(1.2) f (1~ Ils;l ) I ()" dy = ok(f, 2).
WI<R '

The basic convergence properties for these means are contained in [1],
[71and [8], for classes of functions which are characterized by integra,bjlity
conditions. In all of these cases, the eritical index 4, = (k—1)/2 plays
a primary role with the effect that in general summability fails for 2 < 2,.
In [3] summability for Fourier integrals is obtained for A >2,—1, for
functions having distribution derivatives which are measures of bounded
total variation.

The point of view here will be to consider the summability of classes
of functions belonging to &% = {f: f = g,*f,, foe L”} (see for example [2]
or [9]) where g, is the kernel of the Bessel potential, which we will describe
shortly. The effect of requiring that f belong to the class &7 is to ask,
in a sense, that f have fractional derivatives of order « in I?. It is here
that we make a substitution for the class of functions considered in [3].
22 is normed by [fll,e = [ifell, Where f = fy*g,.

One of the basic features of the result in [3] is that the complement
of the Lebesgue set of the class of functions considered there is of Haus-
dortf (k—1)-dimension zero. We will instead consider a capacity introduced
by Meyer in [5] and show that the complement of the Lebesgue set of
a function in &7 is of capacity zero. This capacity has a similarity to the
Bessel capacity in [5] and compares closely to Hausdorff meagure of
dimension % — ap. We will obtain summability for points in the Lebesgue
set of a funetion in #Z(R¥) which satisfy an additional property for any
index 2>4,—1. The complement of this set of summability is also of
capacity zero.

§1. The capacity C,, ,,. Here we give an outline of a theory of capacity-
A more complete and more general development is given in [5].

Let k be a positive lower semi-continuous kernel on ¥, which will
be either R* or T* Let M be the space of Radon measures and %} the
space of all non-negative measures in with finite total variation. For »
in #F we write |, for its total variation. By k(v, #) we mean (v, )
= (k*v)(x) = f k(z—y)dv(y). By L% we mean the non-negative functions
in I” and we write k(z, f) = (kxf)(z) = fk(m—y)f(y)dy. In order that
these definitions make sense, we assume ke L, 0 L¥ and [k(z)] < M < o0
for {z| > 1. It will be necessary to assume p >1 for much of the work,
and this condition is assumed to hold unless otherwise stated. We will
consistently write p/(p —1) = p’. )
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Two capacities are defined. First, we define for an arbitrary point
set 4,

Crp(4) = inf |7

where the infimum is taken over all f satisfying Elw,f)=1 on 4 and
fe L% . If no such f exists we write Crp(A4) = +oco. Secondly, we define
for an arbitrary point set 4 = §, (§, denotes the o-field of all sets which
are v-measurable for all ve %)

o,p{4) = sup, bl

where the supremum is taken over the set of v e &5 for which (v, )y < 1.

The functions and measures satisfying the conditions in the above
definitions are called test funmctions and fest measures respectively. Let A4
be any set such that ¢y ,(4) < oo and suppose there is a solution to the
problem: ming|f|j5 where the minimum is obtained in the class of test
functions for A. Such a solution is called a Oy p-capacitary distribution for A,
and k(z, f) is called a O, ,-capacitary potential for A, I A = §,;; then »
is called a ¢, -capacitary distribution, and k(», ) is called a G, p-capacitary
potential for 4 if » is a test measure satisfying

Il = e.5(4).

The following facts concerning these two capacities hold for analytic
sets A: '

(1) op(d) = [Cppn(4)1%,

(i) with k(s f) = [[k(z—9)f(z)d(y)ds, (6, (4))™* = int,sup,k(» f)
= sup,inf, k(», f), where fe L2 with ||fll, = 1 and ve #;, is concentrated
on 4, with |p}; =1 and E(», y)e L”.

(iii) A has a Oy ,-capacitary distribution  different from zero if and
only if the functional %(», f) defined for » and fasin (ii) has a saddle
point (+', ') (i.e. B (', f') < k (3, f') and k (o', f') = k(+', f)) where k{(+', f') > 0.
In this case,

(epA) =k, f), v =6 ,(4)y  and  f =g, (A)f,

where » and f are the respective capacitary distributions.

(iv) If A has capacitary distributions f and » then (Fanpp—?
= (ck,p(A))p*lk(v, ¥) almost everywhere with respect to Lebesgue measure.
Furthermore, » is concentrated on a set B — An{z: k(x,f) =1} and
Gk,p(B) = ck,p(A)'

§ 2. A capacitary weak-type inequality and the Lebesgue set. In this
section we describe more fully the classes #? we will be interested in and
obtain a weak-type inequality for capacity.
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For R* we will consider the kernel g,(z) where

(2.1) da (&) = (2m)TF(L+ &1~
In fact, v
(2.2) ga(m) = bJol 2 Kk— (la)), >0

2~a .
where b, = 22 (I'(a/2))™". The behavior of g, is as follows

(2.3)  go() = 21%"1"(7;/2—0;) {(T(a/2)) e+ 0(|z1*%)  as o >0

) with 0 < a <k,
(24)  Ga(@) =2 (2m)227 (I (af2)) MU ag o] - oo,
(2.5) G 0e@) = byl HeB L E (o).

In general we will ignore the precise values of constants unless other-
wise stated. We will use B or b to indicate constants, sometimes with
subseripts, but not always the same-at different appearances.

We introduce a secondary kernel at thls time which we denote by %k,
and define by :

ku( ) = Sllp ’l"k flga(m :l/)!dy
>0 lyl<r
The following lemma will be useful.

Levmwa 1. (2 )< bk, () where
k(o) = Dlln(lwl""” lwl”k)

Proof. There exists fiumbers 0 <7 <1 <o and constants By, B,
and B; so that i

(2.6) 19a(@)] <B1e*“’°*”' it |a] >ry,
(2.7) | gal@) < Bulal*™* it o] <,
C8) -yl < Bkl i o>, and jy] <AL

All three of these inequalities are evident consequences of properties (2.3)
and (2.4) for g,(=).
We consider % [ |g.(x—y)|dy in two cases.
li<r

Oase 1. (jo| >ry). It [2] >7, and r > |#]/2 we write

[ lae—piagy = [ [ =n+L.
lyl<r lyj<r luj<r '
le—yl<ry  |z—y|>rp

icm°®

Riese—Bochner summability of Fourier integrals and Fourier series 233
Then I,< [ |glo—y)|dy<B, f Wl *du = Br2. Hence r* I,
lm-—y[ ] lul<ry .
B:)k Ia~— .
For I, we have
IL,<B, [ vy B eting Bre.
Z—y|>ry

Again r~*I, < Bo¥|z|*.
Continuing case 1, we now consider |z| >7, and r < lz]/2. Using
(2.8), lyl <r<l|2|/2, we have

™ [ gz —y)ldy <

lyi<r

Byr o™ [ @y = Blo|".

lrl<r

Case 2. (g} < ry). If o] < r, and 7 > |2]/2 we write

[loe—pigy= [ + [ =d+4,.
lyn<r li<r yl<r
!t—-yl<% m<|x vl
Ji< 19a(z—9)idy < B, lul**du = B|z|".
lz—vyi<|z|/2 lul<z|/2
Hence 'r“"JlsB]wl" k. Since |z—y| > |z|/2 it is easily seen that 7~*J,
<r*B, w]“"kf dy = Blz[** ‘
lyl<r
Finishing case 2, we consider’ lz| <7, and r < |4]/2. Then
: [ e—9)ay< B, [ lo—yl*ay.
fy<r wi<r

Since |z —y| > |o| — |y| >
Bla*k,
Combining case 1 and case 2 completes the Lemma.
We remark that %, is integrable to the p’-th for ap > k. -
Analogaus to %, we introduce a second kernel %, which we define by

|# —r > |2|/2 the integral is less than or equal

Lo 1 .
Kl =sw o= [ 1rgw—ylay.
Iwi<r _
For this kernel one can prove in 2 manner similar to the proof of Lemma 1
the following lemma.
LEywa 2. k. (2) < bk,(1); where 1 < o < k.
‘We now recall the maximal operator of Hardy-Littlewood. Suppose
that f is at-least loeally integrable. Then M7 is defmed_ at o by :

Mf(m) = sup

r>0 Wy

[ 1@+ unay

lvl<r
where w; is the volume of the unit sphere in %-dimensions.
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We consider the following set E(f, ) = E; = {#: Mf(x) > 2} and
we have the following theorem.
TrmoREM 1. For f in Z2 and & = &, we have

ck’p(El) <b. Mﬂ%{

where the constant b does wot depend on f or A

Proof. Since F, is a Borel set, it is analytic. We may assume ¢, ,(E,)
< co. It not, we would truncate in a sphere of large radius and pass to
the limit. Let » be the ¢ ,-capacitary distribution for E,. We then have,
using the saddle point property of (iii) With f also the function in (iii)
that 1 = k(»,f). We also have with fe %%, writing f = fy*g,

Mf(w) =sup — [ [(forg) (@ -+9)ldy

w, ‘i‘
>0 k wi<r

[ [latory—2ifs)aedy<b [E @2 1fo(e)] 2o

ly]<r

< sup
r<0 ’wkrk

Using this we have

1plB) = f v <= f uf@ i@ < [ [ Ea—2)lio)] deds(a)
b (o Ifd
=GRl ) = R r1 ”p)nfoup
b
SR,y =5 Wl = Wl

Theorem 1 has an immediate corollary concerning the Lebesgue

sets of functions in the class 2. We write
B(f) () =tmsup o [ faty)dy
0 ll<r
and
Dfe) =timint — [ flo+y)ay
o Wt wi<r

Clearly Df(z) > Df(x). We call the set where Df(z) = Df(x) the Lebesgue
set of f and write for it A(f). For its complement we write A’ (f).
THEOREM 2. If fe 22 then A'(f) has ¢ -capacity zero.
Proof. As usual the proof of this Tesult relies on approximation by
funetions g for which A’ (9) is empty. If f = f,*f, then we can approxi-
mate fo in I by a continuous g, in I”. Then g = Fo* ks approx1mates f
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in %% as g, approximates f,. Since g is continuous, A'(g) = . We may

write f = g+h where g is continnous and |[lj,, < e Then if F,(f) =

{w: Df(x)— Df(z) > 1} we have F,(f) = F,(h) < {x: |Dh(z)] > Al2}v

{:1Dh(x)] >2/2}. We call these two sets F, (h) a,nsz(h) respectively. Now
2¢eb

Fi(h) = Byp(h) and 50 6, (Fo()) < 5,0 (Bya(h) < nhnm =

2eb
latly ¢, (F,(B)) < <— - Using the subadditivity of capa01tles, we obtain

= };{)Fl(f)

and using the subadditivity of the capacity we obtain the result.
Hence if fe 7, f is equivalent to afunction fwith A’ (f) of ¢, ,-capac-
ity zero. From this point on, we will use f to mean the function satisfying

ff(x+:z/)dy,

lyi<r

. Simi-

o (F2(f)) = 0, since & is arbitrary. Again noting that A'(f)

{(2.9) flz) = lim

r—0 er
where the limit exists. An easy argument shows
{2.10) limr™ [ |F(z+y)—F(2)ldy =0,

0 lyi<r

¢r,p almost everywhere.

‘We now need to prove a result whose proof resembles that of Theorems
1 and 2 almost in entirety. To do this we recall some facts concerning
the spaces £2. A good source for this material is [9] chapter V. The Sobolov
spaces LZ(RF), are the space of functions belonging to ILP(R*) having
distribution derivatives of orders < # which are also funections belonging
to LP(R¥). If a« = n, a non-negative integer, and 1 < p < oo, then .#2(R¥)
= L2(R¥). For a < B we have %7 c Z%. Eventually we will need the

1

Sobolev inequality which states that if fe #2(R¥) then fe I? if 0 <?
1 .

with [|ffl, <

Aplifllpe) Ay depends on p and o only.
£2, f has distri-

a
?;
We consider ¥ > a > 1, and p > 1. Consequently, if fe

|2
bution derivatives which are in Ij,, and we can discuss Vf ={ Bi} .
: i) i=1

Since we consider o >1

f Fl@o+

+ry’)dy’ where X = {y: ly] = 1}. Since fe L., we have that fz (r)
exists for almost every r >0. We can now apply ([4], Theorem 4. 5 9;
also see [3] page 139) to see that for s >7 >0 we have

frg(8) =Sy (M) <77 [ Vf(@)lde
< T—T)| <8

V<A [ @)l

r<le—-zp|<s

If f =fo*g. it is evident that Vf =fy*Vg,.
we have Vfe Lj,.. We fix a point z,¢ R* and consider f; (r) =

and that
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T

[rra,vifl<

P o<|z—zp| <T

|V (w)| das.

Having established this notation we state
THEOREM 3. For ¢ -almost all points zy, and 0 <o <7 < oo there
s a constant M, , depending on o, only, such that

B [P, (Vi (f)) < My < 0.

'

(2.11)

Proof. We simply notice that

T

B[P (Vo) <77F [ If()lde

G ]z—zo|<1

<7 [ 1ol *#1Pgul (@) ds < (1ol %50 (@0) < B(Ifo] *Ed) (@)

l@—zgi<T

One can now obtain a weak-type estimate for capacity ¢, as in Theorem 1
for

M'f(@) = supr'~* Jra, (Vi)
that is ) 0
hpf@: WS@) > 7} <y
From this it is clear that M f(s) =

and (2.11) follows.

§ 3. Convergence of Riesz-Bochner summability methods. We are now
ready to prove convergence for Riesz—Bochner summability methods.
For the first of these theorems we have:

" THBOREM 4. Suppose fe 22 (RF)NI'RY. For a point where f(x)
s defined as in (2.10) we have
where 2> L, and a>0. Hence (3.1) holds oy ,-almost everywhere, with the
kernel k = k.

THEOREM 5. Suppose fe L% (T). For a point where F(x) is defined as
in (2.10) we have

(3.2)

oo only on a set of ¢, ,-capacity zero,

(3.1) as R — oo

Sg(f, @) = (@)

where >4, and a >0, and hence o -almost everyihere.

as B - oo

icm°®
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The proof of either theorem depends basically on the existence of
Lebesgue points. We do not reproduce the ﬁroof here since it can be found
in many sources; for example, in [6].

In Theorem 5 one may interchange %2 for other spaces. One natural

choice is the space of Riesz potentials; that is,

L2 = {f: f" () =f; (0)-In|™": fe L7}
‘With this change none of the essential character of the theorem is lost.
See [11] or [9] for details on the spaces LZ.

We now apply both Theorem 2 and Theorem 3 to obtain

THEOREM 6. For ¢, almost all points z,,

O?R(fywo) ~ f{z,), k—ap >0, a>1, p>1, i>}—1.

Proof. The argument of [3] goes over in total (by using (2.10) and
(2.11) in place of (2) and (3) on page 139 of [3]) and hence we have
ok (f, @) = f(z,) where ever (2.10) and (2.11) hold.

At this point, we will make some remarks which help to clarify the
role of the ¢ ,-capacity and allow an insight into the case » =1, a >1.
We use notation from [5] Let o,(,) = {#: jz—u| < g}, 0,(0) =0,
and ¢(g) = 6,(0,). Then ¢ is a positive increasing function of ¢ >0;
in fact, there exists constants b, and b, such that

b < p(0) <bd*®, Ek—ap>0
and -

biloge™) ™ < ple) < by(loge™) 7,
For an arbitrary set A, the Hausdorff ¢-measure of 4 is H,(4)

=ap; 0<po<1.

o
=lim({inf } ¢(o;)) where the infimum is taken over all countable cover
70 i=1

ings of 4 by spheres o, (z;) such that o;<<7. When ¢(g) = ¢* we write
H,(4A) = H,(4), and when ¢(p) = (logg‘l)l‘p (0 < o< 1) we write H,(4)
= Hjogp—n{d). We restate the following propositions from [5] (given
there for Bessel-capacities) for ¢, , where & = k. o

ProrosiTION 1. If 4 is a set for which H_ (A) < oo then ¢, ,(4) = 0.
If k—ap >0 then H, can be replaced by H._,, and if k—ap = 0 then H,
can be replaced by Hpopi—p.

PROPOSITION 2. If Hp ypi.(4) >0 for s >0 then ¢ ,(4) > 0.

The supremum of numbers s, such that H (4) >0, is called the
Hausdorff dimesion of the set 4. For k—ap > 0 these two propositions
indicate the relationship of k¥ —ap to the Hausdorff dimension.

Suppose that 1 < a = a;+a, where a, >0 and a; > 1. If fe £ we
may write f = fo*g, where foe I'. By (2.1) it is easy to see that f —

. . . 1
(fo*a,) *ga,- By Sobolev’s inequality we have fy*g, ¢ L¢ with— =1 —
- q
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_f;ci(see [2], page 36). Hen(j,e feZ% and Theorem 4 applies and we

have

(8.10) % (fy @) = F@)  orp  ae, f>A—1.

The “dimension” of this capacity is <k —a,9 = E(k— o) /(£ — a,). We let
a,—>0 and see that the ““dimension” of the set where (3.10) holds is not larger
than k—a.

Remark. The problem of Riesz—Bochner summability for Fourier
series below the eritical index for exceptional sets remains open. For
almost everywhere results in Lebesgue measure see [7] and [8].

Remark. In Theorem 6 it is not necessary to assume fe L', as in
Theorem 4, provided one uses as the definition of ¢%(f, ), the Bochner
integral representation (see [6]) instead of (1.2).
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Some remarks on interpolation of
operators and Fourier coefficients

by
YORAM SAGHER (Rechovot)

To my teacher, Antoni Zygmund

Abstract. The weak interpolation theory is applied in this note to problems on
Fourier coefficients of some special function classes which, in general, do not form
linear spaces.

Introduction. The connection between the weak interpolation theory
and theorems on Fourier coefficients is well known. In fact the theory
of L(p, ¢) spaces, the cornerstone of the weak interpolation theory, was
motivated by the classical theorems of Hardy, Littlewood and Paley on
Fourier coefficients. }

Recently, we have shown [7], that the theory of weak interpolation
can be generalized in a way which permits application also to problems
on Fourier coefficients of special elasses of functions.

In the first part of this note some results on interpolation are presented
in brief, to make the exposition reasonably complete. We then present
some applications of the theory to problems on Fourier coefficients.
The use of interpolation and L(p, ) notation make the statements and
proofs of the theorems more conceptual. In most cases the theorems are
also strengthened. We have therefore included theorems proved elsewhere,
but by a different technique.

I. Interpolation.

DEFINITION 1. Let 7 be a vector space. A subset @ of 7 is called
a quasi-cone (QC) iff Q+Q < Q. It is a cone if also @ < @ for all 0 < A,

DEFINITION 2. Let 7 be a vector space. A quasi-norm on « is a fune-
tion || |: o7 — R* satisfying:

(a) llai =0 iff @ = 0.

(b) For all Ae C, ae o, |Za]| = |1] |ja]].

(e) A number & = I(

iy + aal] <

.517) exists so that

k(o +llasl)  all ai, aye o7,
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