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Singular integrals and spherical convergence -
by
‘“VICTOR L. SHAPIRO* (Riverside, Calif.)

Dedicated to Professor Antoni Zygmund on the occasion
of his 50th year of mathematical publication

Abstract. With K (x) designating a spherical harmonic kernel of Calderén-Zyg-
mund type and letting f(x) be in L' on the N-torus, thiz paper studies the connection
between the convergence of the singular integral [f(z—y)HK (y)dy and the spherical
convergence of the multiple trigonometric series 3’7" (m)K” (m) eilm:z),

1. Intmduchon» Let f(x) be a real-valued Mpperlodm funetion in
I'[—=%, =), and for m an integer, set f~ (m) = (2=)* [f aa)e"'mtlw Also,

let K(x) = 2%, and let K" () demgnate its prineipal- valued Fourier trans-

form. In particular, K~ (0) =0, and K~ (m) = —i(sgnm)/2. Suppose that
at a fixed point % there exists a positive constant 4 such that for m = 0
@) S E (e (—m) K (—m)e™ > — A fm].

Then Hardy and Littlewood showed in [3] that a necessary and sufficient
condition that
(1.2) Tim vf (ME" (m)é eme® — a,

R Im)<R

where a is finite-valued, is that

(1.3) ]Jm Y fe— @) K(w) ]_>a "as e—0.
e<|z|<R
Motivated by our recent paper [4], we intend to show here that
a similar situation prevails in Euclidean N-space, Hy; N > 2, when K (x)
is a spherical harmonic kernel of the Calderén-Zygmund type.

From now on. & = (#,...,2y), (2,¥Y) = &Y+ ... —2yYn, T,
={r: —=<ay< =, j=1,...,N} and i
(1.4) f"(m) = [ x)a”(’"’)dm
. - T

*This research was partially supported by the Air Force Office of Scientific
Research, Office of Aerospace Research, USAF, under Grant No. AFOSR 69-1689.
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where m is an integral lattice point and f is & real-valued periodic function
of period 2= in each variable which is in IMNTy).
P,(x) is called a spherical harmonic of order my n 21, if P, (2) is an
homogeneous polynomial of degree n which is harmonic in Hy. If K (x)
(@) /|a[N+", K (%) is called a spherical harmonic kernel of Oalderdn—
Zyg'm.und type. Throughout this paper, K(v) will designate a kernel of
this type. K~ (y) will demg'na,te the principal-valued Fourier transform of
K, i.e., with B(y, R) = {&: ls—y| < E},

K" (y)=Tlim lim (27)~
&) R—~>00 B(0, R)—B(0,¢)

K (z) e~ =0 gy,

In particular, we have that
(L.5)
and from ([5], p. 69) that

KE"(0)=0

(1.6) K" (m) = y(n, N)P,(m/m])

where y(n, N) = (—4)*T'(n/2)[2Y '[(n - N)/2]=V".

We note also that f real-valued implies that [f” (m)E " (m)e'™® .
+f (—m)E" (—m)e~™=] is real valued. Consequently, we see that an
N-dimensional version of (1.1) is the following:

There exists a positive constant 4 such that for m £ 0

I (m)E" ()™ 7" (—m) K" (—m)e~ ™) > — 4 [|m|".
Using (1.7), we intend to establish the following N-dimensional
generalization of the Hardy-Littlewood result:

TeHEOREM 1. Let f(x) be a real-valued fumction which is of period 2w
in each variable and which is in I'(Ty). Let K(x) be o spherical harmonic
kernel of Calderén—Zygmund type. Suppose that the condition (1.7) holds
at z° Then a mecessary amd sufficient condition that
lim ' f (m)E" (m

B0 <R

for m 0

(L.7)

yeima) — o

where o is_finite-valued is that

[]im @)

Lim f(w“——w)K(w)dw] —a as e—0.

B(0, R)—B(0,¢)

Comparing (1.2) and (1.3) with the corresponding statements in
the above theorem, we see that this theorem is indeed an N-dimensional
generalization of the Hardy-Littlewood result.

It turns out that condition (1.7) actually is not needed to establish

the necessary condition of the above theorem. In particular, we shall
establish the following result:

icm°®
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THEOREM 2. Let f(x) and K (z) be as in the hypothesis of Theorem 1
(with condition (1.7) not assumed. Suppose that

lim (m) K (m) g —
R0 Imé;f e ¢

where a s finite-valued. Then

[lim @m)~¥

f(m"—m)K(w)éw] —a as ¢ —>0.
R>co

B(0, R)—B(0,¢)

2. Proof of Theorem 2. With no loss in generality, we ean assume
#® =0 and f (0) = 0. Also, since Theorem 2 is true in the special case
when f is a trigonometric polynomial (see [5], pp. 44-45) we can assume
with no loss in generality that = 0. Consequently with K (z) =P, (2)/|z|**¥
for & = 0, it follows from (1.6) that

im 3 f"(m)P,(m[jm]) = 0.

B0 1<iml<R

(2.1)
Next, we set for ¢ >0, n a positive integer, and » = (N —2)/2,

(22) () = [ Ton(r)friar
i
where J,,,(r) is the familiar Bessel function of the first kind of order
y+n.
For B >0, we set
S(R) =

2:3) D I (m)Py(m]iml)

i<im|<R

and observe that for B >1

D £ m)Pa(m]im]) g, (Iml?)

Iim|<RE

N .
= [ Znn (r)@s (r)

R
+17 [ 8 T,un(rt)r=tar.

1

= 8(R) £n,, (BE) +

Sinee g, ,(t) is bounded on the interval (0, o), it follows from this
last computation and from (2.1), (2.3), and well-known properties of
Bessel functions that for ¢ >0

lim 3 £ (m)Py(m/Im]) sy, (Im]?)

B 1<im[<R

(2.4)

o0

=17 [ BT, pn(rt)r ¢ Vdr.

1
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Next we set for s >0,

f(aa, 8) — E]c” (m) ei(vn,m)ewlnl}{

m

(2.5)

Tt follows from well-known facts (see [6], p. 56) thatb

—f@)dr =0 for 0<es<R< oco.

(2.6) lim [ If@,s)
=0 B(o, R)—B(0,¢)
Observing that the series in (2.5) is absolutely convergent, we have
vsing ([7], p. 368) and ([5], p- 5) that .

@n @™ [ f(—s K@
! B(0, R)—B(0,2)
—if* X'f" (m)Py(m]im]) 6™ [, (1] €) = Za,, (] ).
m#=0
Next, we set
(2.8) gty =lm(—i)* > f"(m)P,(m[|m]) 7, (iml?)

R0 1< <R

and observe from (2.4) that ¢(¢) is well-defined and finite for ¢ > 0. Passing
to the limit as s -0 in (2.7), we obtain from (2.6) and (2.8) that

(2m) =P J(—@) K (x)dy = g(e)—g(R).
B(0, B)-B(0,¢)
Now from (2.4) and (2.8) and the fact that S(R) -0 as R - 0,
we have that ‘
{2.10)

where ¢ is a constant.
‘We conclude from (2.9) and (2.10)

(2.9)

lg(R)] < eR=C+2.

(2.11) lim (27) V2

Ro0 B(o,R)—B(b,e)

It follows from (2.4), (2.8),'and (2.11) that the proof of the theorem
will be complete if we show
(2.12) Wmi™ [ 81,4, (1)~ = 01 -
>0 i i

To establish (2.12), we recall that S(r) = o(1) as # — co. Next, we
note since # > 1, that IJ,M (8)] < es’ ! for 0 <s<1 whele cis a constant
Consequently, )

1t t

[ S(7‘)J,+n(n)¢“(”+”dr[ <tf o()

1

dr =o(l) ast—0.

icm°®
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Also,

@1 | [ 800, n:)r-f'“}dr]

l/t

L ¢t f o(L)r ¥ gr —o(1)  as ¢ —>0.
t

(2.12) follows immediately from (2.13) and (2.14
the theorem is complete.

Before passing on to the next section, we would like to point out
that a close look at the proof just given will show that in dimension ¥ > 4,
spherical convergence can be replaced by higher orders of Bochner—Riesz
summability, (see [6], p. 49). For example in dimension 4, Bochner—
Riesz summability of order 1 will work. We shall deal with this and
related matter in a subsequent paper.

3. Proof of the sufficiency condition of Theorem 1. We first need the
following Tauberian lemma:

LuEMMA 1. Suppose that for m # 0, a,, is real-valued and that a,, = 0(m’)
as im] — oo for some non-negative infeger j. Suppose furthermore that there
exists a posv,twe constant A such that a,, > —A[\m¥ for m s 0. For £ >0,
set I(t) = D Gy e '™ and suppose also that Um I () = o where a is finite-

mF=0 t—=0

valued. Then lLim a, = a.
R0 1<|m|<R
To establish the above lemma, with no loss in generality we can

assume 4 = 1. Consequently, we have

), and the proof to

{3.1) I(t) is in clagsC* for ¢ > 0;
(3.2) EmI() = a;
10
(3.3) PIjar> — > e ™ m¥2  for t>0.

msE0
Next, we observe from the familiar Poisson summation formula
{[1], p. 32), that for >0 )

imi _ BNZ t[tz_i_]zmmlz}-(N+l)/2

m

(3.4) e~

A
m

where By is a constant. It follows from (3.4) and L’Hospital’s rule that

—gm:tl'z,m'EN—ﬁ

(3.5) Lm# Y'e

exists and is finite.
=0 pmzo ’

We consequently have from (3.3) and (3.5) that there is a positive
constant By such that
(3.6) aI(t)jar =

—Byt™ O0<i<l.
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But then it follows from (3.1), (3.2), (3.6) and ([2], p. 158) that
(8.7 Hm#dI(t)/dt = 0.
ts0

Since .A = 1, we have by hypothesis
(3.8) ]+ im|"F V=0 for m #0.

Also, we have from the (3.5) and L’Hospital’s rule that there is a constant
By such that

(3.9) limt 3 6™ /im¥ 1 = By

>0 M0

Tor R>0, sebt S,(R) = 3 [m|ag+|m| @Y and 8,(R) =
o< m|<R
= |m|~®-Y, Then we observe from (3.9) that
o<imi<R
(3.10) lim?¢ f 68, (r) = By
0

and from (3.7) and (3.9) that

(3.11) limi [ ¢S, (r) = By-

=0 ¢

Consequently, it follows from (3.10) and ([2], p. 156 that

(3.12) B D w7 >y as R oo
o<|m<R

and from (3.8), (3.11), and ([2], p. 156) that

3

(3.13) R 2 ] G+ [m]~F0 > B as R - oo.

o<imi<R

We conclude from (3.12) and (3.13) that
(3.14) im R~ D' |m|a, =0.

B0 ISimI<R

Next, we set §3(R) = > |m|a,, for R >0 and observe that

o<|mi<R
D [l—em]

o<imi<R
R ®
=R'8(R)[L—e B —1¢ f S () et ar 4 f Sy (r)[L—e ™ ]r 2dr.
1 1

We conclude from this computation and (3.14) that

(3.15) ©lm 3 gu[1-e™] =0,
0 poimi<i—!

©

@
lm . Singular integrals and spherical convergence 259

Next, we observe that

N g™t = ~:S'3(R)R‘le‘m—}—tf &(r)e‘”’r“dr—}—f Sy (r)e "r~2dr.
& &

d
R<jm|
‘We conclude from this computation and (3.14) that
{3.16) lim 3 a6 ™ =0.
0 1 m
Since by hypothesis, Iim Y’ a,,6™"™"* = a, we obtain from (3.15) and
(3.16) that 0 meo

lim /V‘ a, = a,

P
=0 goimi<i—!

and the proof to the lemma is complete.
‘We now proceed with the proof of the sufficiency condition of Theorem
1. If we can show

3.17) lim Z'f“ (m) K" (m)gmeD g=imit — ¢

850 g
we are done. For
2 ()K" ()i gmime
Tl DT (K (m) ™D L f7 (m) K7 (—m) gm0,
m#*0
Consequently it would follow from (1.7), (3.17), and Lemma 1 that
Im > N (m)E (m)e)

B 1<imi<R

=1lm27 ' [f(mE (m)ém tf (m)E (—m)e ] =a

R igimi<R

and the sufficiency condition of Theorem 2 would be established.
(3.17) however follows immediately once the following two lemmas
are established.

LevyA 2. Let f(x) and K(x) be as in the hypothesis of Theorem 1.
Suppose
(3.18) [1im(2n)“N f f(w“——w)K(m)dw] ~>a ase—0
R-»00 B0, R)=B(0,5)
where a is finite-valued. Then
(3.19) Lmr=™ [ f(a*—2)|o/¥ K (2)dp = 0.

-0 B(0,7)
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Tea 3. Lel f(x) and K () be as in Theorem 1. Suppose (3.19) holds.
Then
Tim vf" (m)KA (m) ei(m,mo) 6—[m|t
=0 L
m#0

—lim (27)~~

f(mﬂ—w)K(w)dm} = 0.
R-»00

B(0, R)-B(0,1)

(Note that in the above lemmas we are not assuming that condition
(1.7) holds abt #°)

To prove Lemma 2, we let S(0, ) represent the (I —1)-sphere with
" center 0 and radius 7 and we let dS(x) represent its natural (N —1)-dimen-
sional volume element. Then we define almost everywhere for + >0

f fla® — o) K (2)dS ().

S(0,7}

h(r) =

Then  meets the conditions in the hypothesis of ([8], Lemma 7.23, p. 104).
r

Consequently, [ h(#)i¥dt = o(r") as r ~ 0; (3.19) is established, and the
0

proof to Lemma 2 is complete.
To establish Lemma 3, with no loss in generality we can assume
20 = 0. Next for r >0, we sebt .

gy = @)™ [ f(—0) 2" K (@)do
B(0,7)

(3.20)

and observe by assumption that
(3.21) g(r) = o(r™)
Now from ([5], p. 64 and p. 67), we have that

ag r—>0.

R
N mE” (mye ™ = lim [ A (rjyr—~dg(r)
m Rso0 g
where » = (N —2)/2 and
(3.23)  An(r) =T(n[2) f 6T, (8)8°H ds 2V T (n+ N) /2],
. 0 .

From ([5], p. 64), we also have that

(3.24) 0 4,1 forr>0

and

(3.25) Anm < (Y for 7> 0.
Next, we set .

(3.26) A (r) = dAy(r))dr

icm
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and observe from the fact that |J,,,(s)] < ¢* that |45 (r)] is majorized by
y2I(nf2) [ e"s¥ ds|T'[(n-+N)/2]. Consequently,
0

145 ()] < 7V 0w 2) TN +11/T[(n -+ N)/2].

Integrating by parts and using (3.26) we next obtain the following
formula:

(3.27)

Ty
(3.28) [ Anrmyrag)
gy [ gl Y N A (e = A )

We conclude from (3.28), (3.21), (3.24), (3.25), and (3.27) that
i 13
[ A ftyr—Ndg(r) = o(1)+o(1) [ % ¥dr = o(1) as t - 0. Consequently
0 0

we have from (3.20) and (3.22) that the proof to the lemma will be com-

plete once we show
R

lim { lim [ [4s(r /) — 1]V dg(r)} = 0.

>0 "R

(3.29)

To establish (3.29), let >0 be given. Using (3.21), choose 650
such that ’ .

(3.30)

Next from ([5], . 55), we see that there is a constant b, , (depending on n
and ») such that

(3.31)
Consequently, we have from (3.20) and (3.31) that

g < ¥ for 0 <r<é.

142, () —1] < b,,r ™ for = 1.

R
(3.32) ] lim | [A;(¢/t)~1]1"Nclg(r)I
L <t [ f(—olE @ .
Exn—B(0,9) .

But the integral on the right hand side of the inequality in (3.32) is finite.
Therefore the expression-on the left hand side of the inequality in (3.32)
is o(1) as t —0. We conclude from this fact, (3.24), (3.28), and (3.30}
that (3.29) will be established once we show

é
(3.33) h'msupi f g (1) =N (VLA (r 1) — LIr~ — A5 ()} | < g
-0 i '

where ¢ isa constant independent of 4.
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From (3.30), we have that (3.33) will follow once we show both

(3.34) limsup [ |4 (rft) =17~ dr < oo
0}
and
(3.35) limsupt™ [ |4} (#/1)|dr < co.
=0

4
From (3.31), we have that

[ sy —1rtdr < b, [ 5~as,
¢ 1

and (3.34) is established. -

‘We next establish (3.35). From (3.23) and (3.26), we see that for
n>>2, A2 (r) is a constant multiple of A%} (r)/r% But then from (3.24),
we have

(3.36) |42 ()] < constantfr?  for n>2.
On the other hand, for » = 1, we see from (3.23) that 4%’ (r) is a con-

o0
stant multiple of [ ™77, (s)s*+2dsr2. We conclude from ([7], p. 386)
that 0

(3.37) | 4%’ (r)] < constant/r.

(3.35) follows immediately from (3.36) and (3.37), and the proof of

Lemma 3 is complete.
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The range of a random function defined in the wumit disk

by
A. C. OFFORD (London)

To Anioni Zygmund

Abstract. This is a continuation of the investigation begun in ‘The distribution
of the values of o random function in the unit disk’, Studia Mathematica 41 (1972).
A family of domains is defined such that all members of the family are congruent
and have the following properties. Each point ¢ on the unit circumference is the
apex of a member Z(f) of the family and the closure of 2(6) less its apex lies entirely
within the unit disk. It is then shown that almost all functions of the family considered
have the property that in every 2 their range at the apex of 2 is the complex plane.

§ 1. Introduction. This paper like an earlier one is concerned with
the behaviour of a power series whose coefficients are random variables.
As in the previous paper [3] we shall for the most part restrict ourselves

to the Steinhaus family

eznwn(m) anzn

{1.1) f(z, 0)) =

e[\ﬂ 8

where the 9,(w) are independent random variables uniformly distributed
on the unit interval. We suppose that

(1.2) limsup (Ja )™ = 1
and -
(1.3) 2 [a,? = oo.

In the last paragraph we shall discuss various extensions of our results
to other prohability distributions:

Tt was shown in [3] that almost all funetions of (L.1) take every
value infinitely often in every sector of the unit ecircle. This result can
conveniently be expressed in terms of the notions of cluster set and range
(cf. [1] pp. 1 and 7). The cluster set of a funetion f at a point 2, is defined
as the set of valnes ¢ such that to each [ there exists a sequence {z,} such
that f(z,) tends to ¢ as 2, tends to z,. The range of f ab 2, is defined as
the seb of values ¢ such that to each { there exists a sequence {,} such
that 2, tends to 2, and f(2,) = {. It follows from the above result that

5 — Studia Mathematica XLIV
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