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Oscillatory integrals and a multiplier
problem for the disc*

by

LENNART CARLESON and PER SJOLIN (Djursholm, Sweden)

Dedicated to A. Zygmund

Abstract. Let 0 < a <} and let m(z) be defined for ¢ R* by m(z) = (1—|=])®,
2| < 1, and m(z) = 0, |z| > 1. The problem of determining all values of p for which m
is a multiplier for L?(R?) is treated by means of a study of certain general oscillatory
integrals.

Introduction. Let a be a positive number and let m (x) be defined for
ze R* by m(z) = (1—|2/% Jz| <1, and m(z) =0, |z| >1. Define the
operator T on L*(R?) by setting (Tf)" () = m(x)f(x), v R, where f
denotes the Fourier transform of f. We say that m is a multiplier for
IP(R?) it |Tfll, < Ol fllp, fe I? nIL*(R?). We shall study the problem of
determining all values of p for which T is a bounded operator on L”(R?).
T can clearly be written as a convolution operator, Tf = m*f, and it
is wellknown that m(z) = 0. .(|z])|e}"*"%, where ¢ is a constant and
J 1., denotes the usual Bessel function of order 1+ a. From the asymptotic
expansion for Besgel functions it follows that

thi(2) = Ocos(fal +a)la| =" +0{a| =}, o] - o0,

for some constants ¢ and a. If o >1/2 then me L'(R*) and hence T is
a bounded operator on L?(R*) for 1 < p < oo. For a = 1/2 E.M. Stein [3]
has proved that 7 is bounded on L(R?) if 1 < p < co. The corresponding
result in odd dimensions was obtained by Calderén and Zygmund [1].
To study the case 0 < a < 1/2 we introduce the kernels K, and operators
T, defined by K,(z) = @ |z|™ z<R% and T,f = K,*f, 3]2<i<2.
These operators have been studied by C. Fefferman [2]. Fefferman observed
that if y is the characteristic function of the set {ze R*; |#| < 1/10}, then
T,xe L?(R?) only if p >2/.. Hence a necessary condition for T, to be
bounded on ILP(R? is 2/2<p <2/(2—2). Fefferman proved that if

* This work has been supported by the Swedish Natural Science Research
Council.
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4>15/3, then this condition is algo sufficient. We shall here prove that
the above condition is sufficient for all A>3/2. The same condition
with 1 replaced by 3/2-+a will then be necessary and sufficient for m
to be a multiplier for L?(R?) in the case 0 < a < 1/2. During the prepa-
ration of this paper we have learnt that Fefferman has also obtained
this result.

The estimates for the operators T, will be a consequence of our study

1
of oscillatory integrals of the form S%f(w,y) = N'2[ &Vrban s g
0

(@, y)e D, fe L(I), N > 1, where I is the interval [0, 1] and D is a square
in R%. For example let D = I x[2,3]. Assuming that ¢ is real-valued
and belongs to C°(Q), where 2 « R® is an open set containing I x D,
and that the determinant

0% 0%

0tox 0ty
J =

0%¢p 03¢

0t20x 020y

is different from zero on I x D, we shall prove that

18%F 2y < Cllfllzzny
and
1) [18%f oy < O N |If oy s >0,
where ¢ depends only on ¢ and C, on ¢ and e The proof of (1) in the case
p = 4 is the main difficulty in our study of the operators 8% and we shall
now describe how this estimate can be obtained. Since J is continuous
there exists a square D', which has the same center as D and is larger
than D, such that J does not vanish on IxD'. Let we 0*(R?) be non-

negative and have its support in D’ and assume that w(z, y) = 1 for
(%, y)e D. We have

8% ey < [ [ 185F (@, 9)*w (w, y) dody

B
= ¥ [[ [ F@)f () Fa)f(Ba) x
I

2<p<4,

% {fzf 6W(¢(a,w,v)+w(ﬁ,m,M)—w(upw,ﬂ)—fﬁ(ﬁl,z,u))w(m, ) dmcly} dadBda,dp,.
B

We set F(e, 8, oy, B; ,9) = ¢(q, %Y+ o8y %,9)—play,, ¥)— (b1, %, 9)
and let grad F' denote the gradient of F with respect to (@, y). We shall
prove that for most choices of (a, B, ay, ;) We have N-1 ¢ lgrad 7'} on
D' and that the higher derivatives of F can be majorized by a constant
multiple of |grad F|. It follows that we can get good estimates of the
inner integral above by performing repeated partial integrations with

icm
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respect to one of the variables  and y. These estimates can be used to
prove (1) for p = 4. The proof is contained in Section 1. )

The results for the operators 7', follow from the estimates of the
oscillatory integrals in the following way. The inequality (1) with ¢ (z, @, ¥)
={#—1)+4*}'"* and p = 4 will be used to estimate the operators §%
defined by

Sf(@) = [ N, (N (z—8)f(§)d¢,
2
Using interpolation we shall prove that if 4 <p < 2/(2—21) then there
exists a number 4 >0 such that ]]vaf”,‘pw)< CN-8|f lzpz2) - From this
it will follow that convolution with the dilatation N>K,(Nx) of K,(z)
is a bounded operator on L?(I*), 2/1 < p < 2/(2— 1), with a norm which
is uniformly bounded in N. By a change of scale it then follows that T,
is & bounded operator on L”(R?) if 2/ < p < 2/(2—2). The details are
carried out in Section 2. We stress that our method is limited to the case
of two dimensions.
In the case @i, #,y) = {(z—1)*+4*}** the method for estimating
8% which we described above actually gives a result which is stronger
than (1), namely [[S%fllzyp) < Cog¥)4|/flizsy, N> 2, for some con-
stant 4. This estimate can be used to prove that if m is a function on R?
which is infinitely differentiable for |x| < 3/4, vanishes for |#|>1 and
~k

weD, feI'(P).

1—lz|
for L?(R?), 4/3 < p < 4, provided % is large enough.

1 -
A particularly simple case of integrals of the form N2 [ ¢™*t:=U £ (1) dt
[

satisfies m(z) ={1og } for 1/2 < |@| < 1, then m is a multiplier

arises when (i, o, ¥) = @t+yyp(t) for some function ¢ on I. For N =1
this integral can then be regarded as a two-dimensional Fourier transform
of a measure on the curve {(, u)e R*; te I, w = y(f)}. For instance let
p(t) = #* and set

1
Pyfla,y) = N [N D5 0 as,  feIND), N> 1.
o

Then the inequality

@ Pwflrsary < ON°Ifliztmy, >0,

corresponding to the estimate (1) for p = 4, can easily be obtained in
the following way. Performing a change of variable ¥ = t-+s, v = {282
we get

Puf@, 9P = [ [ eﬂm(t+s)+ya2+%)}f(t)f(s)dtds =

= [[ de1(t)5(s) [t — 5| dud,
U
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where in the last integral ¢ and s are functions of « and » and U ig the
region {(u, 0)e B*; 0<u<2, w2<v<u} The Hausdorff-Young
theorem and another change of variable yield

{ ff |Pof(, f‘/)|4+2‘dwdy}”(2+ﬂ)
R

of [f O 17()P 1t = dudn] "~
U .
- o{flf FOE 17 () e~ 5|7 atds}"* ™" where 0 <8 < 1.

P-ejt—s|™***ds, teI, we know from the

1
Defining H by H(t) = Df 1f(s)

theory of fractional integration (see [4], ch. X1II) that |H||z2 < O] f*~)| ey
Schwarz’s inequality combined with this estimate yields:

||P1f|]L4—L°£(REJ 0{”|f|2 d”LZ(I)HH“L-(I)}IIP < Ollf”L‘*—Zﬁ(I)

and hence
(3) 1P:f llza+emey < Cllflleam, e >0.
(2) now follows from this fact and the relation Pyf(z, )
by a change of scale.

Inequalities of the type (3) were used by Fefferman in [2] to estimate
the operators T, and their analogues in higher dimensions. He then con-
sidered the operator R defined by Rf = (fd6)", where fe L*(§"~1), n > 2,
and 6 denotes the surface measure on 8"~ '. Among other things Fefferman
proved, using a method similar to the one which gave (3), that ||Bf||zs+emy
< Ollfllzysy, & >0. We remark that the technique Whlch gave (3) can
also be used to study the operator R and that for » > 3 it yields the result
| Rf lzsmry < Cllf lz2¢sn-1y, which is best possible for » =3 in the sense
that L*(R°) cannot be replaced by I?(R?) for any p < 4.

= N'2P,f(Nw, Ny)

1. A theorem on oscillatory integrals. Tn this section we shall gtudy
the operators 8% defined by

(#,9)e D, f€L1(1)7 Nz=1.

S5f(0, ) — 2 [ oSebangig a,
]

The following theorem will be prox}ed
THEOREM 1. Assume that g 0°(2), where Q < R® is an open set con-
taining I X D; and that the determinant

s az(p
dtdw 0t6_/‘

J =
| 0°p 0%

010w 012y |
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does not vanish on I X D. Then

18%f 2y < Clif llz2y
and

18%f o) < ON* |flzmgys 2 <p<4, £>0,

where C depends only on ¢ and e.

‘We shall first prove a lemma which will be needed in the proof of
Theorem I. Choose D.' and w as in the introduction and set & = (a, 8, ay, £1)
and

Fla,y) =F(&2,9) = ela,z,9)+ 9B, 2, 9)— loy, 2, Y)— (1, 2, ),
Eel*, (#,y)eD.

Also let Iy(&) = f f 8““”””’)@0(0: ydzdy, EeI*, N>1. Assuming that

¢ satisfies the same conditions as in Theorem I, we shall prove the
following lemma.

Lemma 1. Suppose s >0. There exisis a number & >0 such thet if
B < I is a measurable set and diamFE < d then

[ Iy(8)dE< ON~**mB,
Bt

where C depends only on ¢, £ and w.

Proof. Let I be a large positive number. We shall prove that outside
a set of small measure Iy(§) iy majorized by ON~% Let A, = {&e I*;
loy—fil < la—p| and max(lo;—af, |f—p)<max(la,—pl, [pi—d )}
Because of the symmetric way in which a, 8, a, and g, enter in F we have

[1Iy(8)
Et

Now set m = max(la;—al, |f1—p]), let M be a large number and
define A, as {&e¢I*, m < M|a—p|}. We also set B, = F'nAd;n4d, and
E, = (B*nA,)\ E,. We shall first estimate the integral of |Iy(£)| over B.

From Fubini’s theorem it follows that

[1IxoNas< [fg(a, )
£ B

lag<0 [ |Iy()lde.

E‘nAl

dadp,

where

ga, p) = [[ 1Iy(&)daap,,

4(a,B)

A =4,n4, and a, B) = {(a, B1); £ 4A}.
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We claim that for (e, f)e B

(e gla, B) SON~*%|a— g7, |a—p] > N1
and

(12)  gla, H<ON - la—pl+ONT,  |a—pl< NP
Set

P(a f) = {(az; Pr) e Aley ); m < N7 Ja— 7 Jat f—ay = fu < N7}

It is easy to see that the measure of P (e, f) satisfiey the same estimates
ag ¢(a, f) in (1.1) and (1.2). Hence (1.1) and (1.2) will be proved if we can
show that

(L3)  [Iy(OI<ONT if (a1, fa)e Alay fNP(a, B), (o, B)e B

To prove (1.3) we study the function F in the formula for Iy(&). We
set 0 = (a+p)/2 and expand ¢(e, #,y) in a Taylor series ¢(a, 2, y) =

a 1 g
oo, 4, )+ (9; @, Y)a— o)+ — (0 w;y)(a——e)2+3(a> 2, %), where

2 6i2
0
Bla, 2, y) = — f (a— ata (s, ®, y)ds *and m denotes differentiation
with respect to the first variable. Using the same expansion for the other
terms in F' and setting o' =a—g, f' = f—g, oy = a;—pand f; = f;—p,
we obtain F(as, y) = H(w, y)+ B(z,y), where

9

2 6t2 (Q’ ,9) (a’2+ﬂ,2_a12 IZ)

H(w,y) (0; 2y + B —a— B+

and
B(2,y) = B(a, 5, y)+B(B, 5, 9)— Blay, w,9)—B(py, »
We set 6, =a Tﬂ’—al B, 0y = a'2+ﬁ'2 af— B and § = (61, 2)e
TUsing the fact that o and f] are solutions of the equation
(¢ +BYar+a ﬁ +0( lé; =0

we can easily prove that :
(1.4) mla—p| < C|9).
It follows that
ot I

(1.5) Y <O, 2<iti<ifs+2,

and [grad R < Om|a— B> on the square D'. Since

0H *p Py
. (z,9) = Fi00 (Qyma?/ 61+ 2(”23 {0, %, ) 6,
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and :
0H lid 1 3¢
_a’:“y“(wy y) = 'é%‘(@y z, y)al'{“?"gg_g‘a‘?]‘(@; Z,Y) 0y

and since the absolute value of the determinant
62 @ 62 @
| 0tdx Otoy
33 6397
!atﬂam ooy
is bounded helow, we obtain |8 < C|grad H| and using (L.4) m]a—B|
< C|grad H]|.

From the estimates of grad R and grad H it follows that if diam®
and hence |a— | is small enough, then

(rey [9] < Clgrad F|

on D', From (1.5) and (1.6) we conclude that there exists a positive number

y, depending only on ¢, such that if » is a square contained in D' with

oF

oz Jy

on o. We now choose ¢;, j =1,2,..., K, such that g;e C°(R?), > ¢; =1
1

side length less than y, then either [6] << C on w or |8 C

on D' and the support of each ¢ is contained in a square with side length
less than y. We have

N ,
In(8) = D) [[ 7 Nn(w, y) oy (e, y)dwdy
1

oF
and to estimate the jth term in this sum we may assume that [§] < O T

on the support of we;. Performing % partial integrations with respect to
2z we obtain
‘ E

ff N o, dndy —jf ”"F{ *;} 7 dzdy,

where ¢; is a linear combination of functions of the form

¥ (wpy) 7y 0%F (OF .
ox° L] o |0z | ' °

<ip<k+1, 0<s,r<k.

Choosing k = [l/s]—.‘—l and using (1.5) we obtain |[Iy(&)| < C(N|8])~5
From (1.4) and the fact that (e, B1)e A(a, B)\NP(a, B) it follows that
N 0]8] and hence |Iy(£)] < O(N°)~%< ON-L This proves (1.3) and
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the proof of (1.1) and (1.2) is complete. ‘We have
f (8] dE < f{ fg(a, ﬁ)da}dﬁ
B B B

and from (1.1) and (1.2) it follows that the inner integral is less than

N-Yete 1

CN-lte f ydy%—CN"z“E f 'y"ldy+GN*’,
0 N—124e

which can be majorized by ON~***. Hence [ |Iy(&)|dé<< CN"***yp
B

" It remains to estimate [ [Iy(£)|dé. Let &e E2 We may assume without
;)

loss of generality that m = la;—al. We set
Fa,y) = K(2,y)+L(»,y), where K(2,y) =2{p(a,,y)— (o, ,y)}
and

~ole, 2, y)— @b, o
i+5
'—75‘3—

< Cla—B| on the square D'
‘We have

Lz, y) = ¢, o 2 Y )t ola, 2, 9).

It is easy to see that <O0m, 2<i+j< 1/e+2, and |grad]

0K 0 0
’%(wyy) = 2{72‘(“, w:?/)_”a%(aly w:(’/)}

2

=25 (e, @, 1) (a— ) +0 ()

and

o @9 =2 {3050 -, 00}

o

iy (> 9)(a—a) +0(m?)
and from the fact that the determinant J does not vanish it follows that
62 62
max (l (’)t(;pw , 5% ) is bounded below and hence m < C|grad K| on D'.
Since &e H, implies m>M|a Bl we conclude that m < C|gradF|
on D', Set By = {£e Hy; m < N~'*%}. Then the measure of B, is less than
N=**%mE and for f¢H,\F, we can use repeated partial integrations
as above to prove that |Iy(&)] < ON~'. Hence f|lN JldE < ON ¥ pp.
This completes the proof of Lemma, 1.
‘We shall now prove Theorem I.

icm
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Proof of Theorem I. We first prove the I? estimate. We have
1857 2y < f f 18%1(@, 9)Pw(o, y)dwdy =

= fof (a) F(B) {ff 6’NG("’”’”’”)w(w,y)dmdy} dadp,
o B2

where G (o, f; 2, 9) =G(2,9) = ¢, 2,9)—¢(f,»,y) and E = {wel;

f(z) # 0}. Without loss of generality we may assume that diam B is small.

It then follows as in the last part of the proof of Lemma 1 that |a— g
< Olgrad@| if (o, B)e B*. Setting

Iy(a, f) = [ [ €500 (@, y) dnay

and integrating by parts twice in this integral we obtain
(e, B) < ON*la—B)7%

flf {f

and using the above estimate of Iy(a, f) we can easily prove that the
-expression in brackets is less than Of*(a), where f* is the Hardy-Littlewood
maximal function of f. Hence

“S\rf”LZ(D) CHf”Lz(I)”f “L«(I) C'IlfllL-a)
and the IL? inequality is proved. We shall now use Lemma 1 to prove

‘We have

8% 220y < (B Iy(a, p)|dp} da

the L* estimate. We first prove that if fe L°(I) and B = {ze I; f(z) #~ 0}
then
{1.7) 8% llzcpy < CN*||f lizoory (mEY™,

‘Without loss of generality we may assume that diamF < d, where d
is the same as in Lemma 1. Using Lemma 1 we obtain

8% sy < f f 8% (w, y)*w(®, y) dwdy

—N?ff{fme“” et i) 6) e F (B
=[] Hr @ eie

{ff VTR anbin )y (o, y) dndy | dodfda, df;

) dodf doxy 4By} x

X w(®,y)dsdy

S VS ooy [ 1n(

Bt

£)ldé < ON°||f [[zooqymB,

) follows from this estimate. .

‘7 — Studia Mathematica XLIV
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Let f be non-negative and [[f[zsz = 1. We set
By ={oel; flo) <N 7Y,
F, ={zel; N°'< f(w) < N},
F, = {v<I; f(2) > N}

and let y, denote the characteristic function of F;, ¢ =1, 2, 3. Setting
fi=:f, i =1,2,8, we then have f = fy+fy+fi-

Obviously |[8%fillz¢p) <1 and we can easily obtain the same esti- =

mate for 8%f; if we use the fact that mF,< N~*. We have f, = Yg,,
n

whete g,(0)=fo(0) i weB, = {zcl; 2" <fy(2) <27 and g,(v) =0
otherwise. Applying (1.7) and Holder’s inequality we obtain :

IS5 Fallzmy < ) 8% 9ullzpy < ON* D) 2™ (mB, )
n n
< ON(log N 32" mB,) " < ON* |fyll oy < ON.

This completes the proof of the I* estimate in Theorem I and the IL?
estimate for 2 <p <4 follows from interpolation between this result
and the I* inequality.

2. The operators T;,. We shall prove the following result for the
operators T, defined in the introduction.

TemoreM IL. If 2/2 < p < 2/(2—2) then T, is a bounded operator on
I?(RY.

Before proving Theorem IT we shall prove two lemmas. First define
the operator 8% by

NIz~ |
Sflo) =3 [ L ftaae,

12

weD, fe NI, N > 0.

Lma 2. If 4 <p < 2/(2—A) then there ewists a number 8 >0 such
that 8% S ey < Cp N70|f oz, N > 0.
Proof. We first observe that Theorem I holds if we define ¢ by

@t z,y) = {($_t)2+y2}1127 tel, (»,y)eD.

This follows from the fact that in this case the determinant J equals
y*{(#—1)24-9*}"* and does not vanish on Ix.D. It is easy to see that
Theorem I holds also if we replace 8% by the operator Sy defined by

Nty

1
— N2
$ud(0,9) = % [ (o S8, (0,)e D, e T,

Oscillatory integrals and a multiplier problem for the dise 207

This can be proved in the same way as Theorem I. Hence the above Sy
is a bounded operator from L*(I) to I'(D) with norm not greater than
OF° and it is obviously a bounded operator from L*(I) to Z®(D) with
norm less than N2 Interpolation yields

(2.1) 18 5f lzem) < ONIIHMG‘“T?||fHLP(1)a
We have

‘ . e (a2
Sif(w,y) = N If{Nm i{ mﬂt; u)dt} du

4<p < ool

and using Minkowski’s inequality, (2.1) and the Hélder inequality we
obtain
185 llzroy < NEON SR [ [ |5(0, w)pPat)™® du
1

< ONFAHC-1Rp ) logzy, 4<p< oo,

If p < 2/(2—7) we can choose & 50 small that 2—A+4(s—1/2)/p < 0
and Lemma 2 follows.

We shall now apply Lemma 2 to the study of the operators 7%
defined by

A 9-a [ €
Thf(a) = ¥ 1! o
Ly 3. If 2[4 < p < 2/(2 —2) then | T%f oz < Opllflzrgzy, N > 0.
Proof. First assume 4<p <2/(2-2). If v is a square in R? let
}o denote the square with the same center as o and a side length which
equals half the side length of w. Let Q,, 4 = 0,1,2, ..., denote the set
of all dyadie squares in (—2, 2) x (—2, 2) with side length 2% and let
denote the set of all squares which are the union of four squares in Q,,.
Let fe L?(I*) and set f equal to zero outside I2 If zeI? and # does not
belong to the boundary of any dyadic square let w)(z) be the unique
element of 7 which satisties ze $w)(2), p > 0, and set w*, (z) = (=2, 2) x
X (—2, 2).
For measurable gets § we define A (z, S) by

IN|z—E&

f(&)aé, w2l feII(I*), N >0.

i " 617N|£c—5|
Az, §) = N Sjmm)df, pe I,

and we also set A,(z) = A[x, w)_,(#)\ o, ()], p>0. Defining uy by
27H < N7 274 we have

AN
(2.2) Thf(@) = D A,(0)+ ALz, o} (2)].
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From the construetion of wy(w) it follows that A4, (w) =w§‘4 Az, o)

s (@), where ¥, is the union of squares in 2,,,, with the property that

tiag distance from each square to o is approximately 27 and Ir, i the

characteristic function of F,. Since 3 17, (®) =12 Holder’s inequality
we

M
vields [4,(®)P<C Y A (#, o) x5, (@) and hence
ws!lﬂ

(2.8) [, @Pde<0 Y [|A(@, 0)Pds.
I2

acR, F,

Performing a change of scale we can use Lemma 2 to estimate the last
integral. We obtain

[14(e, 6)Pde < 0, (N2~ [ |f(a){"do.
F, »

A combination of this inequality and (2.3) yields
14dlzoa2y < Cp N 722%(flizoge -

The last term in (2.2) can be majorized by the Hardy-Littlewood
maximal funetion of f and we get

“N
HT;'foLP(ﬁ) < OpN—azyuﬂﬂlLﬂ(ﬁ) ‘|‘0p”f|\L10(129 < Opllf!]L77(]2)'
n=0

This completes the proof of Temma 3 in the case 4 <p<2/(2—12), and
the general case follows from this by interpolation and a standard duality
argument.

Theorem IT now follows from Lemma 3 by a change of scale. This
completes the proof of Theorem IL.

ADDENDUM

Using ideas from this paper the second author has proved that the
above multiplier result holds also if the unit disc is replaced by a general
compact set O in the plane with the property that its boundary 4C is
a simple closed 0% curve which has a tangent with finite order of contact
at each point. In this case the function (1 — |#|%)® is replaced by a function
which equals [dist(z, 90)]* when e ¢ and is close to 9C.

The following result on restrictions of Fourier transforms can be
obtained by a modification of the argument at the end of the introduction.
Let I" be a O™ curve in the plane, for some integer = > 3, which has

positive curvature except at finitely many points. Assume that the highest .
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order of contact of the tangent at these points is n—1. Then, if 1< p,
g< oo and 1/(n+1)p-+1/g> 1, the Fourier transform of a function in
L#(R?) restriets to a function in I?(I"; ds), where s denotes the are length.
If 1/(n+1)p+1/g < 1 this does not hold.

The proofs will appear elsewhere.
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