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Invariant systems of conjugate harmonic functions
associated with compact Lie groups

by

Ronald R. COIFMAN and Guido WEISS (St. Louis, Mo.)

Abstract. Conjugate systems of harmonie funetions, anologous to Riesz systems,
are defined for compact Lie groups. The corresponding H? spaces theory is sketched
as well as a generalization of the F. and M. Riesz theorem.

1. Introduction. Tt is well known that the theory of functions of
a complex variable plays an important role in Fourier analysis on the
line or on the circle. There are several ways of associating a theory of func-
tions with Fourier analysis on FEuclidean space R" = {z = (1, @,
-+ @) @; Teal for § =1,2,...,n}. One of these ways can be described
as follows: Given a function feL?(R") we consider the (n—+1)-tuple

F(xm ) = (Zlo(l'o, @), Uy(Z, x), ey U (g, 'Z‘)}
defined on the upper half-space R™" — {(zo, ): xeR", r, > 0}, where

T
g (g, ) = ¢, ff(‘” —¥) —,"ﬁgv,lﬁ dy
o (Y +x;) '

is the Poisson integral of f and

Y
(%o, @) = 6 | flo—y)——t—dy
o an (ly P ag) s 7

Jj=1,2,...,n, are the n conjugate Poisson integrals of f. The function
F can then be thought of as a generalized analytic function. Indeed,
it is easy to see that the components of I satisfy the equations

du;  ou, SR
(11 7Y 9% ang " _ o,
Oy, Ou; v 0u;

Js% =0,1,...,n, which reduce to the Canchy—Riemann equations when
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n = 1. Stein and Weiss [10] have developed a theory of H? spaces for
(n+1)-tuple valued functions F' satisfying (1.1) and the condition

(1.2) [1F (@5, @)Pdw < 0 < oo
RY

for all ©, > 0. The chief feature of this theory is that results on the boun-
dary behaviour of F (as z, approaches 0) can be obtained for certain
p < 1. The basic tool used in order to do this is the fact that if ¥ satisfies
(1.1), then [F}? is subharmonic for p > (n—1)/n. This is a consequence
of the following simple fact about matrices (see [10]): suppose M = (my),

4,§j=0,1,2,...,,n, is a symmetric real matrix with trace 0 then its
operator norm MY} and its Hilbert-Schmidt norm [[[M]] = (3 my)"
satisfy
(1.3) DR < —— A2

n-+1

It is our intention in this paper to show how equations similar to
(1.1) can be associated to a class of Lie groups in such a way that a sub-
harmonicity result can be obfained which permits us to obtain an H?
space theory analogous to the classical one. We do this in the next section.
In Section 3 we indicate how the H” space theory can be developed. We
then apply it to obtain an extension of the theorem of F. and M. Riesz.
We also indicate how the operators corresponding to the M. Riesz
transforms

(B;f ) (@)

= lim (%, %)

Tg—>0

can be used to obtain results coneerning Jacobi polynomials by examin-
ing more closely the special case @ = SU(2).

2. Invariant Riesz systems of conjugate harmonic functions. Let G be
an n-dimensional Lie group and ¢ its Lie algebra (the left invariant deriva-
tions). We assume that & is endowed with an inner product (, ) satis-
fying

@1 (X, ¥],2) = — (X, [X, Z)).

This equality implies that ¢ is the Lie algebra of a compact group (see
Hochschield [5], p. 142). In fact, if @ is a semi-simple compact group
we can choose the inner product to be the negative of the Killing form.
When ¢ is abelian (and not necéssarily compact) obviously any mner
produet can be chosen.
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Let us choose an orthonormal basis {X,, X,, ...
then define a Laplacian 4 for @ by letting

, X,} of 4. We can

=%

=

It is easy to see (using (2.1)) that 4 is bi-invariant.

Our purpose will be to study harmonic functions on R, x@
= {(®y, ¥): 2@, 3, > 0}. Following Stein [9], this means that we shall
study twice-differentiable functions u(w,,x), defined on R, xX@, satis-
fying :

62
Au:( ,,—l-A)u-——().
O

We shall write X, = 0/dx, and, thus, 4 = 2 X3, We also extend the

inner product to the direct sum Ro% by 1eqmrmg { Xy Xy oeony Xt
to be an orthonormal basis. It will be convenient to identify (n-1)-tuples

F = (f4, fi; ---1 f») with the elements f = 3 f;X; of Ro%.
=0

b
‘We can now present the extension of the generalized Cauchy—Riemann
equations (1.1) to the case obtained when R™ is replaced by ¢. We shall
say that a funetion F = (f,, fi,...,f,) mapping R, x@ into R™' is
a (left) invariant Riesz system if it is differentiable and satisfies the
equations

l(&) Xfi—Xifs = (X 31, F) = ay(F) = ay

for 4,7 =0,1,...,n;
(b) Z f, =0.

An example of such an invariant Riesz system is obtained by choosing
a4 harmonic function % on R, xG and forming its “gradient:”
F=(Xyu, X u,..., X,u).

PROPOSITION 2.3. If F' = (fy, f1y .-+, fu) 18 am invariant Riesz system,
then each of the components fy, fi, ..., f, is harmonic(?).

(*) The method used by Coifman and Weiss [2] to obtain the existence of ap < 1
for which theorem (2.4) is true can also be employed here once this proposition is
established. .
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Proof. Using (2.1), the identification R™ with R®% we made above
and (2.2), part (a), in that order, we have:

kZ[Xj, Xl = LZ D (X, [X;, X)X,
=0 =0 $=0

I
(%

(X )], X) Xy, = D) Xy([X, X1, F)
=0 =0

e=0 %

=
o

E]

=2 L Xif;—X,f,) = Afi— D X, X,f,.

=0

But, by (2.2) part (b),

n n n 3
%IXinfi =X EXz'fH-Z[Xi, X1fy = “Z[ij X 1fe-
= = i =0
Thus,

n n
n
Af; = 4:_3 X, X+ k_§o [Z,, X lf = 0.

(7

This proves the proposition.

Now consider a C? function s defined on a domain @ R, x@ such
that 4s > 0. By repeating the usual argument it can be shown "chafo such.
@ function restricted to a compact set K « Z attains its maximum on
thel boundary K. From this it follows that if % is a harmonic function
defined on a neighborhood of K such that > s on 0K, then h > s on K.
We use this last property of s in order to define the notion of a subharmonie
function as is done for the ordinary Laplace operator (see Rado [6]).
Obsgrve_that a_decreasing limit of subharmonic functions in subhar-
monie. '

The main result of this paper is the following one:

_ THEOREM 2.4. Let F be (left) invariant Riess system; then s = |FP
18 subharmonic for p > (n—1)/n.

We shall red i i : A
lemma,! uce this result to mequg;hty (1.3) by establishing the

Leyma 2.5. Suppose M is an nxn real mairie with trace 0 and F

@ column vector satisfying (MM —IN)F — = " g
PN g ( ) AF =0, where M is the transpose

(2:6) B
RF S g IR e

icm°®
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Proof. Let | =M—14. Then N is symmetric and has trace 0.
Thus, by (L.3), IR [r/(n+1)IIRN][12 Since MF = RNF, inequality
(2.6) will follow if we can show that [||9t|}|12< [[|M]]|> But

NP = te(@R) = tr(M—34) (W —34")
= tr () + Ltr (4 A")+ L {tr(MA) — tr (AM)}
= [JIO11* 4 AP+ §{tr (AI) — tr (AT}
= I+ AP — $tr(44") = NME— AP < WP
In order to apply this lemma to obtain Theorem 2.4 let s,= (| F|*--
46?2 for £> 0. Tt suffices to show that 4s,> 0 for » > (n—1)/n. An

elementary computation, taking into account the fact that the components
of F are harmonic (by Proposition 2.3), shows

s, = p(PF+&)02[(p—2) 3 (F- TP+ (FP+) ) ILEP]

$=0 i=0
> p(FF+8) 92 [(p—2) Y (B X BV + (] 3 |1 XF.
i=0 =0

When p > 2 it is clear that the last expression is non-negative and, there-
fore, s, is subharmonic. If p < 2 the last expression is non-negative if
and only if

n

. 1 . n -
Nxrn) <= 7 ;[l‘-lﬂl )

i=0

@.7)

But the matrix M = (my), where my = X,f;, j =0,1,...,7, and the
n-tuple F satisfy the conditions of Lemma 2.5. The fact that tr3t = 0
is the assumption that (2.2), part (b), is satisfied. While, using (2.2),
part (a), and (2.1) we obtain

faﬁwm - (ﬁfj[x,-, ), F) = ([%;, F1, F) = — (X, [F, F]) = 0.

That is, (M —W)F = AF = 0. Thus, by (2.6), we see that (2.7) is satisfied
for 1/(2 —p) = nj(n+1) or, equivalently, p > (n—1)/n. This proves The-
orem. 2.4.

3. Some applications. We shall first indicate how Theorem 2.4 can
be used in order to obtain an H”-space theory. Let G be a Lie group of
the type we are considering and F: R, x@ — R"*' a left invariant Riesz
system. We say that F belongs to the class H” = H?(@) for p > 0 if and
only if

(8.1) J1F (@, )P do < ¢ < oo
G
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for all z, > 0. The results concerning the boundary behaviour of functions
in the class H”, which were developed in chapter VI of the book of Stein
and Weiss [11] for the case @ = R", can easily be extended to the cage
treated here. The method is essentially the same. The basic tools needed
to carry out this extension, such as the result of Calderén [1] concerning
non-tangential convergence can be found in the article of Widman [12]
(by expressing 4 in terms of local coordinate systems). The same is also
true for the area theorem treated in chapter VII of Stein’s hook [8].
For this reason we will not carry out the details here. '

As can be expected from the classical situation, the theorem of T,
and M. Riesz extends to the case of compact Lie groups by making uge
of properties of functions in H'(G). These properties are easily obtained
from Theorem 2.4 without making use of the local behaviour discussed
above. Let us indicate, briefly, how this can be done.

We define the Poisson kernel associated with @ by letting, as is
done by Stein [9],

Poylo) = 3,67y, (a),
aesl

where « is an index set for all unitary irreducible representations of
@, %, are the corresponding characters, d, = y,(¢) and 1,> 0 arve defined
by Ay, = =4 4,.

We can now state the extension of the Riesz brothers’ theorem:

TEROREM 8.2. Let u = (u,, Biy -eey i) Do a  vector-valued finite
measure on G such that P, *p is an invariant Riese system (%), then u is
absolutely continuous.

Proof. Since 4 is a finite measure it follows that F — P, * ubelongs
to H'(@). Moreover,

(3.8) lim F(z, z) = (#O(G): w(G)y ..., /‘n(G)) =0,

T .
uniformly in #. We now . claim that there exists an f = (fy, f1, ..., fa)
with f;eL'(@), j = 0,1, ..., n, such that

(3.4) F(20, 7) = (P, * f)(a).

Once this equality is established theorem (3.2) follows from the uniqueness
of Poisson integrals.

The first step for obtaining (3.4) it to show that there exists geL? (@),
P =mn/(n—1) > 1, such that )

(3.5) Py * 9) 2 |F (2, 2)|" I = s (a, ).

() If the Riesz h'dusforms are defined as in Stein [9], then pu,

) U oovs iy AT
the n Riesz transforms of 7 "

icm
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Since p > 1 and @ is compact we have, for z,> 0,
/ ip
[ (20, )0 < ([ [s (2o, @) d2)"® = ([ 1Pz, )| da) ™.
G G &
But, since FeH'(G), this means that [ s(@y, 2)de < 4 < oo for all Ty > 0.
@ .
Let s,(2) = s(e, «) and u, (%, @) = (P, * s,) (%), where > 0. We now

claim that
(3.6) 1, (%5 ) 22 (W + &, @)

for all («,, ) e R, X @. This is clearly true for z, = 0. Moreover, the integral
[ s(@,, x)da is eonves as a function of z, since
é

o fs(wo,.r)dw - J“Ag(m‘,,m)dx>0(3).
01’56 P

Th.e fact that this integral is also a bounded funecfion of 2, implies. that
it decreases to (see (3.3))

lim fs(a:a, z)dr = jef* V" = lim s(zq, ).

‘[D_)-D) (43 -TD-)DQ
Hence, ~
Hm (g, z) = fruc(o, r)dr = [ s(e,z)dr
Fog G @
N > lim fs(a:(,,x)dav = lim s(xy, @).
ru»ao G zo»w

Thus, for each 8> 0 there exists a > 0 such that ”e(‘:l"m z)+6 = .?(m0+
+¢, ) whenever x,> a. This and the maximum principle clearly imply
3.6). o )

( The functions s, form a bounded family in Z¥(G). Thus, there ex1.sts
a sequence {g;} decreasing to 0 such that s, converges weakly to a function.
geLP(G). In particular, using (3.6), we have

(P, * 9)(@) > 5(25, )
for each x,> 0. Hence,

g" (#) = sup (P, * g)(2) = s(@,, #).
’ 29>0

But, by Lemma 1 on p. 48 of Stein [9], g * ¢ LP(@). Using the same lemma
and standard argnments we obtain the existence of the (almost every-

where) limits ,
Lim (P:z0 *dp)(z) = (fo(2), fi(2), :fn(w)) = f(2).
rg—=0
- Stei 5 r this equali is not defined we can
3) See Stein [9], p. 50, for this equality. If 43@0,90) is no ‘
appru(xi)mate s (from above) by C? funetions ag we did in the proof of Theorem 2.4. ‘
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Since (¢%)"Pe L' (@) and dominates |F(z,, )| we can apply the dominated
convergence theorem of Lebesgue to obtain the L'-convergence of F (@, *)
to the function f. From this, (3.4) and the fact that du(x) = f(x)dr follow
immediately and Theorem 3.2 is established.

Many other results connected with H?-space theory also admit similar
exfiensions. For example, the theory involving the Lusin area function, as
developed in chapter VII of Stein [8], ean be carried out in this situation ag
well. In this connection see also the results of Fefferman and Stein [4], [7].

The Riesz transforms alluded to above arve defined in Stein [97,
where a proof is given of their boundedness as operators on L7 (), 1 < P
< co. These Riesz transforms add a novel feature to the harmonie analysis
on semi-simple compact groups that does not appear in the commutative
case. When @ = SU(2) there exist linear combinations of these transforms
that are “shift”’ operators with respect to a “canonical” basis of M@
(see Coifman and Weiss [3]). The extension of the Riesz brothers’ theorem
obtained here implies a corresponding theorem for expansions of some
Jacobi polynomials (which are eonnected with the elements of this basis).
That this phenomenon is more general is evident from the fact that there
exists a root-space decomposition of the associated Lie algebra.
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On regular temperate distributions

by
Z, SZMYDT (Warszawa)

Abstract. There are given some conditions which imply that a locally Lebesgue
integrable function u defines a temperate distribution (%, o) by the relation (u, ¢) =
= [u(z)o(z)dr with the integral converging absolutely for every function rapidly

RY
decaying at infinity. It is shown that the assertion included in [1] about the
necessity of one of these conditions is not true.

1. Basic notations. The variable in the n-dimensional real Euclidean
space R™ will be denoted by # = (24, ..., #,). By a we shall denote multi-
indices, that is, n-tuples (e, ..., a,) of non-negative integers. We set

0
D* =D ... Dpp with D; = Fr Similarly we write 2 = a{1... 2%,
T

A complex valued function ¢ defined in R" is said to be a €™ function
if it possesses continuous partial derivatives of all orders. By €% we denote
the set of all functions in C* with eompact support in R™

By 8 or S(R") we denote the set of all functions ¢eC™ such that

1) sup [2° Do (2)] < oo

for all multi-indices o and f. The topology in § is defined by semi-norms
in the left-hand side of (1).

A continuous linear functional (u, o) on § is called a temperate distri-
bution. The set of all temperate distributions is denoted by &'

We denote by I1°°(R™) the space of locally Lebesgue integrable func-
tions, i.e. Lebesgue integrable on any compact subset of R™. We identify
every function ueIL°°(R") with the distribution = defined by:

@) (w,9) = [u(@p@ds for g<0F(R").
RBR®

A temperate distribution % is called regular if there exists a funection
we I°°(R™) such that

(3) (,0) = [u(@)o(@)dz for oeS(RY

RN
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