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Some applications of Zygmund’s lemma to non-linear differential equations
in Banach and Hilbert spaces

by
T. M. FLETT (Sheffield)

Abstract. This paper deals with existence theorems for the differential equation
9’ = f(£, y) where the solution y takes its values in a Banach or Hilbert space Y.
A new proof is given of the theorem of Wazewski that the conditions of Kamke’s
uniqueness criterion imply local existence of solutions. The argument covers also
monotonicity conditions, and a generalization of a theorem of Browder of this type
is given.

1. In this paper we consider existence theorems for the differential
equation

(1.1) ¥ =f, 9,

where the solution y takes its values in a Banach or Hilbert space Y.
If Y is finite-dimensional, then the continuity of f alone implies the local
existence of solutions, but this is no longer so when the dimension of ¥
is infinite (see, for example, Dieudonné [3], p. 287, Exercise 5). It has
been proved by Wazewski [12] that in the infinite-dimensional case
the conditions of Kamke’s well-known uniqueness theorem imply, local
existence, and we give 4 new proof of this result. We also prove a result
involving a monotonicity condition that is the ‘one-sided’ analogue of
Wazewski’s theorem. : )

Ag in Kamke's theorem, we compare the differential equation (1.1)
with a scalar equation
(1.2) o = g(t, a),

and in our first two theorems we suppose that

(A) g is a continuous function from the rectangle o, to—+alx[0, 1
in R? into [0, oo with the properties that

i) g, 0) = 0 for all telty, ty+al,

(ii) for each tye 1ty, to+al, x = 0 is the only solution of equation (1.2}
on iy, t,] satisfying the conditions that

[
2(te+) =0 and that lim 740 =
ity + t"—‘to

0.
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For completeness, we state both the uniquencss and existence results.

TrmorexM 1. Let ¥ be a complex Banach space, let (to, Yo)e R XY, let
B be the closed ball in Y with centre y, and radius ¢ > 0, andlet f: [tg, to+alx
« B — ¥ be a continuous function such that for all (£, 9), (8, 2)elty, to+al X B

1.3) 17, vy —f (@t )< g (B, Iy =21,

where g satisfies condition (A) with 8 = 2¢. Then equation (1.1) has at most
one solution  on [Ty, t,+a] satisfying the condition p(ty) = Yo. If in addition
f is bounded, M = sup |f(¢, y)l, and 1 = min{a, o/ M}, then equation (1.1)
Thas exactly one solution on [Ty, t,-+n] taking the value y, at t,.

TrroreM 2. If Y is a complex Hilbert space, condition (1.3) in Theorem 1
can be replaced by the condition that for all (t,9), (% 2)elty, to+al XB

(1.4) 2ref(t, y)—f(t, 2), y—2> < g(ty Iy —2IP),

where ¢ satisfies condition (A) with § = 40

Here the uniqueness part of Theorem 1 is Kamke’s theorem (see [5],
p. 31), while the existence part is the result of Waszewski [12] mentioned
above(').

The uniqueness part of Theorem 2 is essentially known (for a similar
argument, see [5], p. 35, Exercise 6.8), while the existence part appears
to be new. We also obtain global theorems of similar type (Section 5.
Theorems 3 and 4), which include results of Murakami and Browder,

2. Following G4l [4], we say that a property P(t) holds nearly every-
where in a set B < R, or for nearly all te B, if there is a countable set H < ¥
guch that P(t) holds for all te E\H. We also use J, here and later, to denote
the closed interval [Z,,%,+a].

The following well-known lemma of Zygmund (see [10], p. 204)
plays a fundamental role in our arguments.

LevyA 1. Let MR, and let ¢: J — R be a continuous function whose
lower right-hand Dini derivative D, satisfies the inequality D @ (t) < M
for mearly all teJ. Then

plto+a) —o(ty) < Me.
We require also some further lemmas.

(*) It has been shown by Olech [8] (see also [6], i, p. 50) that the results of
Theorem 1 are implied by the corresponding results in which g satisfies the simpler
conditions of Perron’s uniqueness theorem. However, this simplification is not available
for Theorem 2, and since our proofs of Theorems 1 and 2 are closely similar, we prove
Theorem 1 directly.

We remark also that Olech [9] has given an extension of Theorem 1 involving
conditions of ‘Carathéodory type’.
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LemMaA 2. Let (p,) be a sequence of continuous functions from J into R
converging uniformly on J to a function ¢. Let also B be a set in R* containing
the graphs of ¢, (n =1,2,...) and of ¢, let h: B — R be continuous, and
suppose that for each n

‘D+¢n(1’) < h(t1 (Fﬂ(t))
nearly everywhere in J. Then for all teJ”
Dplt) < h{t, p(t)-

Let ¢ > 0 and let teJ°. Since & is continuous at (¢, ¢ (7)), ¢ is continuous
at ¢, and ¢, — @ uniformly on J, we can find a positive number 5 and an
integer g such that seJ° and |h(s, p,(s) —h{i, ¢(1))| < ¢ Whenever fs—¢|
< n and n > q. Hence for each n > ¢

Dygn(s) < h(t, ‘P(t))+8
nearly everywhere in [¢, t+7], and therefore, by Lemma 1,
Pu(5) —ull) < (s—)(R(t, @ (1)) + 2
whenever se [, t-+%]. Hence also
p(s)— (1) < (s—)(k(t, o (8) + ¢,
so that D, g(8) < h{t, @(H)(2).

LeMMA 3. Let M > 0, let 4 be a-class of uniformly bounded conlinuous
functions yp: J — R with the property that for all s, ted

lp(s)—p(@) < Mis—ti,
and let ¥ = supy. Let also B be a set in R* containing the graphs of each
pi |

(2.1)

wed and of ¥, let h: E — R be continuous, and suppose that for each ped
Doy(t) < hit, p(2)
nearly everywhere in J. Then for all s, ted

(2.3) [P (s) - (1) < Ms—t

(2.2)

(so that W is continuous), and for all teJ°
D P < h{t, P(1).

We remark first that if v, ..., y,ed and v = max{y, ..., Pi},
then v satisfies (2.2) nearly everywhere in J. Here the case k¥ = 2 is almost
immediate (consider separately the cases where p, (f) > va(1), 21 (1) < 9(f),
p,(t) = a(t)), and the general case follows from this by induction.

() Indeed, DFo(t) < k(t, p().
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Next, from (2.1) we obtain (2.8), and this, together with (2.1), implies
that for all wed and all s,ted

0 < P(t)—p(t) < P(s)—p(s) +2M[s—1[.

From thié it follows easily that for each pos_itive integer » we can find
a positive integer %, a partition of J into & subintervals of equal lengths,
and % functions i, ..., yped such that in the jth subinterval

0< W(t)—v;(t) < 1/n.

Let ™ = max{y,,...,v}. Then 0 ¥(Y) —ypM (@) <1jn for all ted,
so that the sequence (y™) converges uniformly to ¥ on J. Also D, ™ (1)
< hlt, ™ (1)) nearly everywhere in J (by the remark above), and the re-
quired result therefore follows from Lemma 2.

LEvmA 4. Let g satisfy condition (A) of Section 1, andlet w: J — [0, f]
be a continuous function such that w(l)) = w'(t) = 0 and that

D+w(t)<g(t7 w(f’))

for nearly all teJ. Then w = 0.

This is the differential inequality that underlies the proof of Kamke’s
uniqueness theorem (see, for example, [5], p. 31, or [11], p. 45).

LevuA 5. Let ¥ be o complex Banach space, let (ty, yo)e R X ¥, and let
B be the closed ball in Y with centre y, and radius o > 0. Let also f: J xB - Y
be continuous and bounded, let M = sup|f(t, y)l, and let I = [t,, &+l
where 1 = min{a, o/M}. Then for each &> 0 the equation y' = f(t,)
has an s-approximate solution y on I such that y(t) = y,. Moreover, p can
be chosen so that for all s, tel

lp(s) —p @Il < Mis—1.
This is proved, for instance, by Cartan [2], Theorem 1.3.1.

3. Consider now the proof of the existence part of Theorem 1. Let
f, g satisfy the hypotheses of Theorem 1, let I = [{,, {,+»], and let (e,)
be a decreasing sequence of positive numbers with the limit 0. By Lemma
B, for each positive integer n we can find an e,-approximate solution y,
of the equation y' = f(t, ¥) on I, satisfying v, (%) = ¥,, with the property
that for all s,ftel

Let 0 n(t) = 9w () —p,(f)], where tel and m > n > 1. Obviously
Opmalte) = 0, and for all s,iel

(3.2) 1, (5) — O (B)] < 2 |5 —1.
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Further, for all except a finite number of points of T
(3.3) Dy 03, (8) < I (8) =¥ (D)1
<[ £(ts wm(®) =5 (6 D] + 2mt-2n
< g(t, Um,n@)) +2£ﬂ,'

For each positive integer n let w, = SuPop,p- Then w,(t,) = 0, and,
m>n

by (3.2), (3.3), and Lemma 3 (applied to each compact subinterval of

Téos totD)s
lwn (8) '_'wn(tﬂ < 2M1S - t]

for all s,tel and
(3‘4) D+ (l)n(t) \<\ g(t} wn(t)) +2€n
for all teI° The sequence (w,) is therefore equicontinuous and uniformly
bounded, and hence it has a subsequence (o, ) converging uniformly
on T to a function w, and clearly o(t) = 0. By (3.4) and Lemma 2,

D, o(t) < glt, o (1) +28,
for all teI°, and therefore also

Do) < g(ti w(t))-

We show nexﬁ that o' (%) = 0. Since f is continuous at (tos Yo), given
&> 0 we can find 8> 0 such that |f(f, ) =S, vl < & whenever t, <1
<tp+8 and [y —yll < 3. Let A = min{, §/M}. By (3.1), lun(t)—¥oll < 8
for all n and all te [fo, to+A), and therefore

[1£(ts (D) =F(E, va ()] < 26
whenever m > 1> 1 and te[ty, {,-+A]. By the penultimate inequality
in (3.3),
Dy Opn(f) < 28+28,

for all bub 2 finite number of points te i, t,+ A[, and hence, by Lemma 1,
0 < Opn(t) = Oy () — Oy lle) < (28 +282) (E—t)
whenever te [fy, to4-2]. This implies in turn thab
0 < w, () < (26+28,) (E—1o),

and so also
0 < o) < (2e+28,) (E—1),
whence o' (t,) = 0.
From Lemma 4, we deduce now that @ = 0, and this implies that the
sequence (p,) is uniformly convergent on I. The limit of this sequence
i then the required solution.
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4. The proof of the existence part of Theorem 2 is similar. We choose

the sequence (y,) as before, and we define O‘m,n(t) = H%n(t)—%(t)l[2 (so )

that 6, ,(f) < 4 M*5%). Then for all but a finite number of ¢el

T (1) = 200 (P (8) =90, (2), Pn (D) — 90 (1))
= 2re{f{t, pu (1) =St va (D), Yu (D) —¥u (0> +
21y, () —f(t, v (D) —vu () +{E v (D) v D) = (1))
< 2re <f(t7 1/)m(t)) —f(ty P (t))7 Yo (8) =1, (8) +4(3m+5‘n)-‘w’7
< g(t, o'.,n,“(t)) 8¢, M.

If now w, = Ssupo,, ,, then exactly as before we sec that there exists
Mm>n
a subsequence (e, ) of (»,) converging uniformly on I to a function o,

and that w(i,) = 0 and

(4.1)

Dyt <glt, o(0)

for all teJ°. The first inequality in (4.1) shows alse that o’(f,) = 0, and
the proof is then completed as above.

5. We consider next global analogues of Theorems 1 and 2, and here
we suppose that :

(B) ¢ is a continuous function from 1t,, ~[ X[0, oof into [0, oo with
the properties that

() g(z,0) = 0 for all > t,,
(f) foreach t, > &y, y = 0 is the only solution of the equation

(5.1) a' = g(t, x)

on by, 1,] satisfying the conditions that

2(t)

5.2
(5.2) Py

lim
teslg

2(o+) =0 and that

=0,

(ii) for each compact subinterval [ty, ty] of 1ty, oo[ the function ¢ given
L7 de
by C(@) =sup{g(t, u): , <t<t,, 0< u << o} satisfies f -—6—(~)~ =
. ; x

We remark that condition (B) implies that, on each compact subin-
terval [4;,%,] of Jt,, oof,.the zero function is the only solution of (5.1) on
[t:, ;] taking the value 0 at ¢, (for if there is a non-zero solution 2y on
[£1, 8] with ,(f,) = 0, then this, together with the zero function on
Ho, t,[, provides a non-zero solution y on 1t,, t,] satisfying (5.2)).

It is known, for instance, that if

g, @) =y(t—t))a,
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where y is & continuous function from ]0, oof into [0, oof, then g satisfies
condition (B) if and only if

1
1igwiff{tf p(s)ds +logt) < oo

(see [5], p. 33, Exercise 6.3). In particular, the case y(f) = 1/t corresponds
to Nagumo’s uniqueness criterion.

THEOREM 3. Let ¥ be a complex Banach space, let (ty, y,)eRXx ¥y
and let f: [t;, co[ X ¥ — Y be a continuous function such that for all t> to
and y,ze¥Y .

W@, ) =7, < g, ly —2h),

where ¢ satisfies condition (B). Then the equation

¥y =fty)

has a unique solution on [t,, ool taking the value vy, at t,.

THrOREM 4. Let Y be a complex Hilbert space, let (ty, y,)e R X ¥, and
let f: [t,, o[ XY — Y be a continuous function mapping bounded sets
onto bounded sets such that for all t > t, and y, 2¢ ¥

2re{f(t, y)—f(t,2), y—2> < g(t, ly —=2[?),

where g satisfies condition (B). Then the result of Theorem 3 holds.

Here the case of Theorem 4 in which ¢(f, z) = z/(t—1,) is a result
of Murakami ([7], p. 155; see also [6}, ii, p. 246), while the case where
g(t, z) = B(t)z, where g is continuous on [0, oco[, is a result of Browder
([1], Theorem 3). We mention also that Wazewski [11] has given a global
extension of Theorem 1 different from Theorem 3.

To prove Theorem 3, -we note first that, by Theorem 1, there exists
a, unique solution of (5.3) on some non-degenerate interval [{,,,] with
@(t)) = y,. We prove that this solution can be extended to [t,,t,] for
every i, > ty.

Let ¢, > t;, let y; = @(t,), and let 4 be the supremum of [|f(¢, ¥,
for t, <t<t,. I A =0, then f(t,y,) =0 for all te[t;;t,], and hence
t+— vy, is a solution of (5.3) on [f;, t,] which continues ¢ to ¢,. We may
therefore suppose that 4 > 0.

- If y is a solution of (5.3) on some interval [2,, {,] = [, ?,] satisfying
p(ty) =y1, and x(t) = lp()—yil, then y(4) =0, and for all fe]h, tf

D@ < lly' O = 17, w@)l
< If(E, () —f(, g+ IF s gl
< gty () +4 < O(z(1) +A4,

(5.8)

(5.4)
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where ¢ is defined as in' (B) (iii). Since 4 > 0, the differential equation
{5.5) o = C(z)+4

has a unique solution @ on [#;, cof taking the value 0 at ?,. Indeed, this
solution is given by

z 4
du
‘(56) Df m == tf ds = i—1y.
1

By (B) (ili), [(C(«)) 'dz = oo, and sinee C is increasing, this trivially

implies that [ (C(x)-+A4) 'dzw = oo. Hence for each t> 1, equation (5.6)
has a unique solution z = &(#), and @ is the required solution of (5.5).
It therefore follows from (5.4) and a familiar differential equality (see [5],
D. 26, or [6], (i), p. 15) that for all te [, #5]

1< O < Pts) = o, say,

and here ¢ is independent of ¢;.
Now let B be the closed ball in ¥ with centre y, and radius 2¢. Then
for te[t, %],y B,

{8.7) £, I < NF s 1) —F (& gl -+ IF G, )l
<g ly—yl)+A< 0(20)+4 = M, say.
By repeated applications of Theorem 1, we can thus continue the solution
@ of (5.3) through successive intervals of length # = min{t,—1,, o/M},
and hence we can continue ¢ to i,.
In the case of Theorem 4, we again reduce the result to the case where
A > 0, but here we take y(f) = [ly(¥)—v,|*> Then x(¢,) = 0, and for all
Te ]ty ta[
28 = 2re(y' (1), (1) —y = 21’6<f(t, "P(t))’ p(1) _?/1>
= 9Te<f(t: "/)(i)) —f(, y1), (W) =y F2re (f(E, y4), w () —y1>
< g(t7 x(t)) +2 “f(ta yl)”(% (t))*
< O(x(0) +24 (z ().
‘We now have to consider the maximal golution of
(5.8) x = O(m)244F,

Where 22> 0, and ¢ = 0 when ¢ = #;. Any solution of this equation (5.8)
is increasing, and hence either is identically zero, or is zero on [t, ]
for some ¢* > ¢; and non-zero to the right of t*. For a solution of the latter
type, we can set # = u® when ¢>>1t*, so that 4 = 0 when ¢ = t*, and
for ¢ > t*

w = C(u®)/(2u)+ 4.

@ ©
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Tt is now obvious that we obtain the maximal solution of (5.8) by taking
#* =t,, and that this maximal golution is given by

fu-—-—h—dﬁ-——-—*fd =1—1
PACICOTCOR S A

We can therefore complete the argument as before (?), provided that we can
show that the integral

o

dv - _ > dz
f 0 (v%)/(20)+A —f O(2)+24Vz
is divergent. This is less trivial than the corresponding result for
1
O(m)+A4
and we give the proof in the following lemma.

Lmvma 6. Let 0, D: 10, co[ - ]0, oo[ -be continuous functions such
that O is increasing and that D(z) = O(x) as © — co. Then

7w - dx
f —  and f —_—
O (=) O(@)+D(2)
converge or diverge together.

Tt is obvious that if the second integral diverges, so does the first.
Suppose then that the first integral diverges; we have to show that the
second integral diverges. Further, we can find K, k such that D(x) < Kz
for all &>k, and since then C(z)+D (@) < C(2)+Kx for all 2> k, it is
enough to prove that

5

~ dz
—_— = ©

f O(z)+Kax
Let B = {z: O(x) < Ko}, F = {&: C(»)> Ka}. It is easily verified
that if either B or ' contains the interval [1, oo[ for some 1, then (5.9)
holds. On the other hand, if both ¥ and F meet every interval [4, oof,
then F is the union of a sequence of disjoint open intervals la;, B;[, with
a; increaging to oo, such that C(z) = Kz for » = a;, f;- If now the integral
of 1/(C(x)+Ka) over ¥ is finite, then

B
dx 1 dx 1 dz
5 B \ —
(5-10) °°>Ef 0(w)+Kw/2KEf o EL ) @

a
1 if
_ﬁZIOg(ai).

(3) In place of (5.7) we use the fact that f maps bounded sets onto bounded sets.

(5.9)
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Also 5

1 — 0 1 ;0
(3.11) J O Z f 1ﬁ;(a:; :—I\—T—Zi: Zaia )

From (5.10) we see that ﬂ,,-/a,- —1 a8 1 — oo, and hence for all large ¢

(B — ) oy < 210g (B ).
From (5.10) and (5.11) we now deduce that f——< oo. Hence

s _ co, and therefore
C(x)
1 ¢ de
=z = 09,
O@)+Ka ™ 2 J O(x)

80 that (5.9) holds. This completes the proof of the lemma and of Theorem 4.
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Spherical convergence and integrability
of multiple trigonometric series on hypersurfaces

by
M. J. KOHN (Minneapolis, Minn.)

Abstract. Let T be a trigonometric series in % variables and let I' be a subset
of EF of k—1 dimensional character. We investigate conditions on the coefficients
of T and on the structure of I" so that T converges spherically a.e. on I and can be
formally termwise integrated over I. We apply our results to i improve a k-dimensional
vergion of Riemann’s Theorem for formally integrated series.

Z’c gne
n

be a trigonometrie series in % variables, and let I' be a subset of E* of
Hausdortf dimension k¥ —1 (e.g., a hypersurface). We investigate conditions
-on I'and on the coefficients ¢, of (1.1) so that the series converges spherically
almost everywhere on I" and can be integrated formally over I. We apply
our results to improve a theorem of Shapiro, [5], on Riemann summability
of multiple trigonometric series.

The results of this paper form part of the author’s Doctoral disserta-
tion. The author wishes to record his debt to Professor A. Zygmund, under
whose direction the dissertation was written.

1. Introduction. Let
(1.1)

2. Notation. We denote points of Euclidean space B* %> 2, by
@ = (#y, ..., @) and integral lattice points by n = (n,, ..., n,). We write
NB =@+, and o] = (2} ... Faht. We put T% = {weE*: |z;]
<mi=1,..., k.

For the series (1.1) we write

20 gne

In]<R
and we say the series converges spherically at 2 to sum s if

Iim Si(z) =s.
R0
We denote by H, (I') the Hausdorff measure of order § of a set I
We are concerned with sets of Hausdorff dimension % — 1, that is, sets I
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