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1 — 0 1 ;0
(3.11) J O Z f 1ﬁ;(a:; :—I\—T—Zi: Zaia )

From (5.10) we see that ﬂ,,-/a,- —1 a8 1 — oo, and hence for all large ¢

(B — ) oy < 210g (B ).
From (5.10) and (5.11) we now deduce that f——< oo. Hence

s _ co, and therefore
C(x)
1 ¢ de
=z = 09,
O@)+Ka ™ 2 J O(x)

80 that (5.9) holds. This completes the proof of the lemma and of Theorem 4.
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Spherical convergence and integrability
of multiple trigonometric series on hypersurfaces

by
M. J. KOHN (Minneapolis, Minn.)

Abstract. Let T be a trigonometric series in % variables and let I' be a subset
of EF of k—1 dimensional character. We investigate conditions on the coefficients
of T and on the structure of I" so that T converges spherically a.e. on I and can be
formally termwise integrated over I. We apply our results to i improve a k-dimensional
vergion of Riemann’s Theorem for formally integrated series.

Z’c gne
n

be a trigonometrie series in % variables, and let I' be a subset of E* of
Hausdortf dimension k¥ —1 (e.g., a hypersurface). We investigate conditions
-on I'and on the coefficients ¢, of (1.1) so that the series converges spherically
almost everywhere on I" and can be integrated formally over I. We apply
our results to improve a theorem of Shapiro, [5], on Riemann summability
of multiple trigonometric series.

The results of this paper form part of the author’s Doctoral disserta-
tion. The author wishes to record his debt to Professor A. Zygmund, under
whose direction the dissertation was written.

1. Introduction. Let
(1.1)

2. Notation. We denote points of Euclidean space B* %> 2, by
@ = (#y, ..., @) and integral lattice points by n = (n,, ..., n,). We write
NB =@+, and o] = (2} ... Faht. We put T% = {weE*: |z;]
<mi=1,..., k.

For the series (1.1) we write

20 gne

In]<R
and we say the series converges spherically at 2 to sum s if

Iim Si(z) =s.
R0
We denote by H, (I') the Hausdorff measure of order § of a set I
We are concerned with sets of Hausdorff dimension % — 1, that is, sets I
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such that k—1 = inf{f: Hy(I") = 0}. We will say a property is true almost
everywhere on such a set I if the set of points of I" at which the property
does not hold has Hausdorff % —1 measure zero.

3. Statement of results.

TagoreM 1. Let I' be a subset of B of Hausdorff dimension k—1 and
let the coefficients e, of (1.1) satisfy

D Inlle,f? < oo

n

(3.1)

for some a> k—1. Then (1.1) converges spherically almost everywhere
on I

Theorem 1 was proved for the special case when I'is a circle in the
plane, under stronger conditions on ¢,, by E. M. Stein in a letter to
A. Zygmund.

Now let I" be a subset of E* with H,_,(I") < co. For zeE" we define

H, (S
D*(@, I) = limsup el 8@ 7))
=] (2r)*

where 8 (x, #) is the ball in #* with center  and radius ». D*(x, r) is called
the upper Hausdorff-(k—1) density of x in I

This notation, for k¥ = 2, is due to Begicovitch [1], who proved that
if I' is any linearly (i.e., Hausdorff- —1) measurable set in the plane,
then almost all points of I'have upper Hausdorff- —1 density equal
to one.

However, our results limit us to surfaces for which D*(x, I") exists
as an uniform limsup for all ze I, That is, the ratio defining D*(», I')
is uniformly bounded in @ as # tends to zero. If I" is reasonably smooth,
for example if

I‘={$‘Eh: Ty, =f(9717 -"7wlc-1)};
where
of \* ar \*
(o) =] <

then this hypothesis is satisfied. ,
Given I" which has finite, positive Hausdorff-(k—1) dimeusional
measure we define a mass distribution on E* by
u(8) = Hyy (81,
We then define

[f@)ds(z) = [f(@)aua).
r Bk -
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THEOREM 2. Let 1< p < oo, and assume

Dl loyl* < oo

(p—1)k+1

where o> and a>k—1. Let I' be a subset of E* with

H;_(I') < oo and such that there is a number M with Hk_l(l’ n(8 (a:,'r)))
< My* for all wel” and v > 0. Let

S* — L’“ in-r'.
() = sup |I MZ;R 6|
Then,

[ 8* @y as(@) < co.

I

4. We first establish the following lemma, whose proof is similar
to the proof of similar results in [6], Chapter 1.

Lmyvs. Let k—1 <y < k. Then there is a number C, such that for
lz] <1, and for all B> 0,

(41) | D e < 0, oy,

<R

Proof. We define 0 functions y(f) and b(?) satisfying

0 for i<1/2,
(@) ={
1 fortx=1,
1 fori<o
v - | =0
0 fortx>1,

let by(t) = w(£)b(t—N), and define

Fy(@) = {lo] by (i)} -
We assert

(4.2) |Py(®)] < O, e for all N and all |z] <1,

(4.3) [Fy(@)] < C,lw™*  for all ¥ and all |z|> 1.

Put u = $(k—2) and denote by J,(¢) the Bessel function of order u.
We recall the following estimates:

(4.4) W, (0 <C, forall t> 0,

(4.5) @ <0, for 0<<t<<2.
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We first prove

(4.6) jan-ﬂ | w(t)t‘”*kJﬂ(ZnRt)dt‘g 0,R'*
0

for 0 < R<1.

2x R fw p(@)tHET (2n RE)dt = HnR—”[If/RJr fm ] = A+B.

0 0 1/R

We use (4.5) to evaluate 4.

1/R 1/R
A< 2=R™ [ ¥ @ Retdt = 0, [ A< 0, R,

0 ]
To estimate B we integrate by parts, using the fact that t"“JH(t)
d .
= 217 {WTIJ;‘H(t)}?

B =2zR™* f {t"""y‘(2ﬂRﬁ)""“1(2nR)“1}-{27:Rt)"+](ZWR)JM(ZTrRt)}dt
1/R

o0

— - —y+ik —p— - d
2R ﬂu l{ @R T @R R) Y = {(@n R,y (2m R}

=C, BT (2 RY) [ +0, R4 [ty @n Ry .
1R
Using (4.5),

IBI< C, B +0, R~ [ 4=r+¥-lgy — ¢ gr,
1/R Y
Thus (4.6) is proved.
We now establish (4.2). By Lemma 3, Chapter 1 of [6],

Fy(@) = 2nB~* [ 4774y (1) ], (2 Ret) ds.
[}

We treat separately the cases when R(N
+1) < 1 and wh B
I R(¥V41) <1, using (4.5) hem B 2 -

- N+41 N1
< —~p —y+ik
w@)<2mR™ [ ik or R — ¢ [ g g,
0

0
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If R(N+1) =1,
N
[Fy(@) = 2nR™ [ p(t)i~" 7, (2nRe) @ +
. 0

N+1
2R [ 47Dy (1), @R dt = P+Q.
N
N+1 1/R
RI<O,R™ [ @< O,R™ [ 177+ ¥d = O, R,
N []

To estimate P we consider first
2r R~ j 7R (27 Re)dt.
N

Integrating by parts as before,
(47)  pmR7 i t“’“"’Jy(.?nRt)dt]

N
= |0, R OB [ 4, 2n R @
N

< 0.,.13"“"—{- G?R—F»IN—V—HR‘
= C,R"*.

Hence,
N

1P| = |22 R [ p()t 7T, (2n Re) @t
0

lor b [ 14 loeps [ st
<|2nR "af.|+lzﬂ13 f‘vflgoyzaf

by (4.6) and (£.7).

This completes the proof of (4.2). The proof of (4.3) follows from
equations 1.38 to 1.41 of [6]. We comment only that for fixed j,t he
derivatives of order j of by(z) are bounded in z independently of N.

Having established (4.2) and (4.3), the Lemma follows immediately
upon application of the Poisson summation formula to Fy(x).

5. Proof of Theorem 2. Fix N. We will prove
[ 8% (@) ds(z) < M,
7

where
S%(@) =sup| ) o,6™ ).

R<N <R
Since 8% (x) increases to §*(«) for all #, Theorem 2 will follow upon appli-
cation of Fatou’s lemma.

4 — Studia Mathematica XTIV.4
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Write
(31) I= [Sh@rds(z) = { i) ()28 (2) = [ 180 ()|” s (),
r !4
where dyp is the mass chstmbutmn on E* with u(8) = Hy,_ ((8SNI, for
8 = .

By the converse to Holder’s inequality there is a function V() with

(5.2) fk [P ()| dpu () = 1
A
such that
P = [ 8@ P
Efk ap ().

Since D |n]|ey]2 < o0, 3 n|*?¢, 6™ is the Fourier series of a function
n

F(z)e L2 (T"). Wnte
— Z‘ m[—u/" uxz
[n|<RR
Then
Tin _£ ()] (2m)~* f F(z)Gnm(w—z)dz}dﬂ(m)
B

Tfk F(z) { f () Gy (9 —2) ()} e

= 2)7F [ F(2)J (2)d,

where J(z f V(@) Gy (6 —2) dpu ().

Applymg Holdel s inequality,
e = @n)7t] [ |P@)Pa]™] [7 ()" az]™
7k ok

= @0 X mpe " [T @ra]
fJ 1/2' :

The proof of Theorem 2 will be complete when we show

Tkaz dz < o0,
(8.3) fJ
fk [ ¥ @uia=adute) H | 2016ty —2) ) a

POl
fk ¥ (2) ¥ (y) { [[ G (221G (4 —2) de ) () s )

2wt [0 [ [ o

"\H

Hyge) (@ ~9) du () [dp(y),
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where
Hp() = D) Inf¢™=
|nl<R
and
n(z, y) = min(n(z), n(y)).

Using (5.2), the integral enclosed in brackets in (5.8) is majorized by

[ 1B (@ =) P ().
Bk

By (4.1), this is majorized by
[ Calo—yPeRap(z)]™.
=k

We will prove this last integral is bounded independently of y. Then
substituting back into (5.3), the proof of Theorem 2 will be complete.
By hypothesis, p{a—Fk)> 1—k, say
pla—k) =1—Fk-+e
We may assume 0 < ¢ < 1.
[ 1=y dp )
§old
= [lo=y ™ due) = [ rFau(s(y, f + f =4+B.
Bk 3

o

f BEY L—-—cdlu

1 1

4 = [P qu(S(y, ) = ru(Sy, ) j 1R (S (y, 7)) dr.

M1 50

v, 7)< [ du(S(y, 1) < Hyy(T) < oo.

@
The smoothness condition on I' gives w(8(y, 'r))

A = iR Ry fr_k'“O(r’“‘l =0(1).

This completes the proof of Theorem 2.
‘We remark that if in equation (5.1), n(z) is replaced by any Borel-
measurable function and du is any mass distribution with

f lz—y|* % du(z) < M
Bk
where 1/ is independent of y, then the proof of Theorem 2 shows thab

J [Sn(r) )Id/‘( ) CaM
EF .
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We will use this fact in the proof of Theorem 1.
6. Proof of Theorem L. If U is a Borel set in H* the f-capacity

of U, C,s(0), is defined by

=infsup | o — yl”ﬁdﬂ(y)

1
. Cﬂ(U N 2eER e
the infinum being taken over all (non-negative) mass distributions con-
centrated in U with total mass one,

fd,u:fdy =1.
g 7

Tt is ‘well known, see for example [2], [3], that if U is a Borel set, then
(61) int{g: Hy(U) = 0} = inf{f: C,(U) = 0}
We may assume I"c T%. Denote by F the set of points of T* 3t which

(1.1) does not spherically converge. We will prove that B has outer (k—a)-
capacity zero. That is,

(6.2) inf{C,_,(U): U is open and Fc U} = 0.

Thus, there is a G, set, W, which contains B, such that C,_,(W) = 0.
Hence by (6.1) Hy_,(W) = 0. Therefore, H, ,(I'nE) = 0.

‘We now establish (6.2). Its proof is analogous to the proof of corres-
ponding one variable results due to Beurling, and Salem and Zygmund,
see [4]. We may assume Sp(x) is unbounded as, R tends to infinity, at
each point # of H. For if we let Tr(z) = Y w(|nl)c,e™™, where o(t)

nj<R

is a positive, differentiable function increaging monotonically to infinity
with ¢ such that Yew(|n])?|n|®|e,f* < oo, then

1
Sg(#) = 2 'm o(n])e, e

<R .

. f i (atar) 4700y

Hence lim Sz(x) exists at each point z, where Ty (z)
R0
to infinity.
Fix a number N. For each 2 in ¥ there is a number n(2) such thab
18p)(®)| > N. Since, for fixed @, §,4(2) is a trigonometric polynomial
and therefore continuous, |8, (y)| > N for y in a neighborhood U, of a.

Cover F by a countable number of U,, and denote by Oy the union. of
these U,.

= 0(1) as R tends
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E is contained in Oy, Oy is open, and |8,y (#)| > & for each z in Oy
and some Borel measurable function «(x).

If (6.2) is false, then there is a number M such that for every open
get O containing F and for some du of total mass one concentrated in O

[ lo—yr*au(o) <
Bk
for all # e F*. Then, by the remark made at the end of the proof of Theorem 2,

(6.3) { 8 (2) () < O

But |8,y > N in Oy. Hence,

f e ()] e (@) = f 8y (2)] s (2) > f Nip(@) > ¥.
This contradicts (6.3) if IV is chosen large enough This completes the proof
of Theorem 1.

7. Let F(x) be a function defined in a neighborhood of z,« B*. We
say F(z) has a generalized Laplacian at z, equal to s if F'(z) is integrable
on each (k—1) dimensional sphere | —,| =t for ¢ small, and if

@ry¥ | F(w,+tr)ds(zx) = ag+
[o]=1
as 1 tends to 0.
Shapiro [5] proved the following: Let the coefficients ¢, of (1.1)
satisfy ¢, = O(in]’) for some & < 2 —k. If the series (1.1) converges spherically
at @ point @, to a finite sum s, then

s
[ — 2
s az) oW

00 (xl T . +mn)2
Flw) = ok _ Z nE®

n#EQ

(7.1)

has a generalized Laplacian at x, equal to s.

The condition on. the coetficients ¢, imposed by Shaplro is needed to

make the series of (7.1) converge uniformly and, therefore, insure that
F(x) be continuous and, so, integrable over every (k—1) dimensional
sphere |x—z,] = 1.

We are able to improve Shapiro’s result by applying Theorem 1 and 2
to the series in (7.1). We then have the following result:

THEOREM 3. Let the coefficients of (1.1) satisfy D) |n|*|e,|* < oo for
some a> k—5. If at some point z, the series (1.1) comwverges spherically
to a finite sum s, then F(x) defined by (7.1) has a generalized Laplacian aof
z, equal to s.
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In particular we are able to prove the theorem for series which do
not converge uniformly, and so for which the function F(z) need not be
continuous. ‘

In addition somewhat weaker conditions than spherical convergence
of (1.1) are sufficient to prove Shapiro’s Theorem. These will be the subject
of a later note.
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Boundary values of hounded holomeorphic functions

by

Harold 8. SHAPIRO (Ann Arbor, Mich.)

Abstract. Suppose [ is a bounded measurable function on the n-torus T which
is the (distinguished-) boundary value function of a bounded holomorphie function
in the polydise. If, for some point a?eT™, f(z) — 4 as x tends to 2? through points
of a set E which, in a specified measure-theoretic sense, is “thick> at a0, then f(z) - 1
“on the average” as z — 20; here, the “average” can be any one of a very broad class
of summability methods applied to the Fourier series of f.

1. Let .U denote the open upper half-plane, R its boundary. By
H*(U") we denote the bounded holomorphic functions in U", and by
H*(R" the Fatou boundary values of these functions on the disting-
uished boundary R™ of TU”-H™(R") is naturally identified as that sub-
space of L*(R") consisting of the functions whose (distributional)
Fourier transforms are supported in the “first quadrant”, i.e. the set
{£, >0, ..., £ = 0}. For an elaboration of these matters (in the slightly
dﬁferent contett where U is the open unit disc) see [1].

The purpose of this note is the proof of the following theorem, a refi-
nement of Theorem 1 of [2]. By B(z, @) we denote the closed ball in E®
with center # and radius a, and ky (z) denotes the “dilated” function

™" k(o z); dv denotes Haar measure in R", and |E| denotes the measure
of B < R"

THROREM. Let peH™(RY,a"eR", and suppose there ewist b> 0,
a complex number 1, and a function s(a) tending to zero as a — 0-F, with
the following properties. For each sufficiently small a, B(a°, a) contains
a set K, of measure at least b|B(2°, a)| such that

{ess sup |p(®) —A|, ze K} < s(a)
Then, for every keL' (R”)
(1) (9 ki) (2°
as a — 0.

Let us say that a point 2° is a point of density = b (where 0 < b < 1)
relative to B < R", it |B NB(2°, a)| = b|B(2°, a)] for all sufficiently small a.
Then the above theorem may be reformulated as follows:

= [¢(a*—az) k(@) dz >sz
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