.

358 H. 8. Shapiro

for each a, the function # — A(#) is, under the stated assumptions, necessa-
rily continuous on J.)

An interesting consequence is: )

CoROLLARY 3. Let J be a compact subset of R*. Suppose for o certain
positive number b each point of J is a point of density = b relative to .J.
Let e H* (R™), and suppose the restriction of f to J coincides a.e. with a eon-
tinuous function A on J. Then, for each keL'(R") satisfying [ kdn = 1,

lim max‘l(£)~f¢p(£——aw)k(w)dw‘ =0.
a0+ el

This result (which answers question (a) posed in [2], p. 116) can be
viewed as a very strong “localization principle” for compact gets. In
particular, on a compact subset J of the circle satisfying the density
condition of Corollary 3, the Fejér means of any fe H* (T) whose restriction
to J is (after correction on a set of measure zero) continuous converge
uniformly. Even for J an arc we have not found this result in the literature,
although its direct deduction by means of known Tauberian theorems
would not be difficult.

In conclusion we remark that the proof of the lemma has a “function
algebras” flavor, and an analogously formulated proposition is valid for
certain function algebras on T™ (in particular, for the polydise algebra
. itself); what is decisive is certain properties of the “Jensen measures”
that would be easy to formulate explicitly. For the weak® closure in
L7(T") of such an algebra the analogs of Corollaries 2 and 3 would then
be wvalid. :

Also, it is possible to estimate how rapidly A (k, a) tends to zero,
enabling the rate of convergence in (1) to be estimated in terms of s(a)
and properties of the kernels k. This will be discussed in [3].

I wish to express my thanks to Charles Fefferman for a valuable
remark converning the subject of this paper.
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On the derivation and covering properties
of a differentiation basis

by
Miguel de GUZMAN* (Madrid, Spain)

Dedicated to Professor Zygmund with gratitude

Abstract. A theorem is presented that determines the type of covering pro-
perties of a differentiation basis which differentiates integrals of functions satisfying
a rather general integrability condition.

We define a differentiation basis R in n-dimensional Euclidean space
R" as a collection of open bounded sets of R" such that for every zeR"
there is at least one sequence {R;} < R so that R, »>2 as k — oo (i.e.
for all k¥ =1,2,...,2eR; and for every neighborhood U of z there is
a ky = ko(U) such that R, < U for k> k). An example of a differen-
tiation basis in R" is the collection R, of all open cubic intervals. Another
one is the collection R, of all open bounded intervals. A third one is the
collection R; of all open bounded rectangles of R"

We consider a locally (Lebesgue) integrable function f: R™ — R
and define the upper derivative D([f,x) of [f with respect to R at
the point # in the following way :

B( [ 1,0) = suplim— [ j)a,
k-0 [Rk! Ry,

where the sup is taken over all sequences {R,} < R such that B, — =
a8 k — co. The lower derivative is defined setting inflim above. We shall
say that R differentiates [f if D{[f, ) =D([f, @) =f(#) at almost
all points zeR™

The type of covering properties considered in this paper find its
motivation in the following. Let E c R™ be bounded and measurable.
We say that T' = R is an R-fine cover of # if for every w<E there is a se-
quence {T};} < T such that T} - as k — co. There are differentiation

* This work was supported by the Fundacién Juan March (Madrid, Spain)
and the Institut Mittag-Leffler (Djursholm, Sweden).
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bases R such that, given any E bounded and measurable, any R-fine
cover of B, T, and any &> 0, one can select a finite collection {S;} <« T
such that |BE—J8; < & and the {§;} are disjoint (ie. } s, —Xos, =0,
7.4 representing the characteristic funection of the set 4). Such is, for
example, the basis R;, by virtue of the classical lemma of Vitali, but
not R, nor R,. However, with an appropriate extension of the notion
of disjointness, one obtains a positive result for R,. ’

We shall consider functions ¢: [0, co) — [0, co) satisfying: (i) ¢(0)
=0, (i) ¢ is continuous, (iii) ¢ is strictly increasing, (iv) @(4) - o as
% — oo. Such functions will be called strength functions. For such a function
we consider its inverse. It is easy to see that ¢~ is a also a strength function.
Furthermore, if y and o are strength functions, so is y, defined by vy, (u)
= uo" p(u)) for u > 0.

We say that a differentiation basis R has (covering) strengih ¢ whene-
ver for every measurable bounded set #, any R-fine cover T of ¥ and
any > 0 one can select a finite collection T* = {8} = T such that
IE—US <& and [o( xg,(#)—2os,(@))de < e (Observe that these
two conditions vaguely mean that E is nearly covered by the §,'s and
that the overlap ) Asy, — Xus, 38 “p-small”. In general, for x<R™ and for
a finite sequence of measurable sets {4,} we shall denote »({4;},») =
2 4y, (@) — 70 4, (%) and we call » ({4}, *) the overlapping function of {4.}).

A theorem of de Possel [7] affirms that for a differentiation basis R
the two following statements are equivalent: : :

(a) R differentiates [ f, for all feL{5, (R") (i.e., the space of all measu-
rable functions which are essentially bounded on every compact set).

(b) R has strength 6, for 0(w) = u. . :

For a simple proof of this theorem we refér to [2]. In virtue of this
theorem, R, has strength 6, for 6(u) = u, but not R,. For these facts
we refer to [1] or [6]. One can also see them in [5].

The problem we deal with in this note is to establish connections
between differentiation properties of the type

(A) R differentiates [ f, for all f in some space of locally integrable
Junetions

and properties of the type

(B) R has strength ¢, for some strength function .

Tt is ratther easy in some cases to obtain theorems of the type (B) = (A).
Implications in the other direction seem to be deeper. In 1955, Hayes
and Paunc [4)] obtained a theorem stating that, if we call, for 1 < p < oo,
#p(4) = uP, >0, and ¢ = p/(p—1), and if (a), (b), (b,) are the following
statements:

(a) R differentiates [f, for all feI”(R™),

icm°®
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(b) R has strength g,

(b;) R has strength ¥y Tor all ¢ < g,
then one has (b) = (a) and (a) = (b,).

More recently, other implications of the type (B) = (A) have been
obtained, ¢ being in (B) a function defining an Orlicz space, and the
corresponding space in (A) being then the conjugate Orlicz space. For
these results one can see [3] and [2].

The following theorem, an extension of the above mentioned theorem
of Hayes and Paue, gives a general result in the direction (A) = (B).
The idea of the proof is essentially that of their theorem, which appears
then as an easy consequence of this result.

Let o be a strength function. We define o (I,,,) as the space of functions
f: R* - R which are measurable and such that [ o(|f(z)[)ds for every
K

compact set K. (The spaces If}.(R") are particular cases of this type of
space. Observe that o(Z,,,) is not necessarily linear).

THEOREM. Let v and o be two strength functions and assume y(u) = u.
Jfor w>1. Assume also that R is a differentiation basis which differentiates
[ 1 for all fea(Ly,,) and has strength . Then R has also strength vy, where
pu(w) = uo™ y(w)).

The theorem will be proved by means of the following lemma.

LEMMA. Let 0 be the identity function, 6(u) = w, 4 > 0 and ¢ a strength
Sfunction such that @(u)/u is non-decreasing. Assume R is a differentiation
basis having strength 6 but not strength @. Then there exist o set B < R™,
bounded and measurable with |B| > 0, two numbers a > 0,b > 0, and an
R-fine cover T of B such that for every finite subcollection of T, T* = {T;} < T
with [BE—JTy <b and [v({T:}, z)dz <b (such T exist, since R has
strength 0) one has [|UJ{T: TeT**} > b where T is defined by T*
={TeT*: [[»(T" 2)] " ¢(v(T*, 2))dz > a|T|} (the function inside the in-

r

tegral is defined to be 0 whenever »(T*, ) = 0).

Proof of the lemma. Assume the lemma is not true. This means
that for some differentiation basis R, having strength 6 but not strength
@.one has that for every B = R" bounded and measurable with |E|> 0,
for every a > 0, b > 0, and for every R-fine cover T of F, it happens that
for some finite sequence T* = {I}} = T, satistying |E—(JT, < b and
also [»({T}},z)dx < b, one has | J{T: TeT*}|<b. We shall prove
that under these circumstances R necessarily has strength @, reaching
80 a contradiction. This will prove the lemma.

Let B, bounded and measurable with |E| > 0, ¢ > 0 and T, an R-fine
cover of F be given. Take @ open, ¢ = H, |¢| < 2|E| and two numbers
@, b> 0, to be fixed later. According to our assumptions, we can
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choose T* = {T;} = T satistying |B—U Tl < b, f”(i'—”k} ,*ic)dm <b,
1U{T: T T} < b, and also T}, < G. We cons1der*S =T —T" = {%}_
Then, obviously, [B— U S < 18— U{Tx: Tue TH+1U (T Tpe T,
< 2b. Furthermore, defining again the integrand as 0 when »(8,2) =0,

[ ob(S, @) = [ (S, @)1 9l (S, ) 3 2, (@) a0
< Y [ ol e (T a)de

S8 8

< Z al8, < afv(S,m)dm+a{ U 8

] SgeS
<a [ (T w)dn+a|¢ < ab+2a|B|

having made use, for the first inequality, of the condition that ¢(u)/w
is non-decreasing.

¢ we first fix b so that 20 < &, and then a so that ab+2a|B| <,
we see that R has strength ¢. So the lemma is established. )

Proof of the theorem. Assume R has not strength wu,. Since

o (BY) = o(Iy,.) we have, bj the above mentioned result of .de Possel,
that R has strength 6. We also see that w, (u) /% is non-decreasing. Hence
we can apply the lemma for ¢ = 3, and affirm that there is an I, bounded
and measurable with |B] > 0, that there are 4, 5 > 0 and an R-fine cover
of B, T, so that for every finite subeollection T = {T)} = E, w.ith
B—UTy <b, [»(T,x)ds <b we have |J{T: TeT*™| > b, T being
defined as above.

We shall try to construct a function feo(Ly,,) such that R does not
differentiate [ f, reaching a contradiction. This will prove the theorem.
First we take a sequence {b,}, b, > 0, b, |0, which will be fixed later
conveniently. For each m =1, 2, ... we take a finite sequence T}, = {I%}

T with §(I%) < L, 8(4) meaning the diameter of the set 4, such
»m

that |E—\J TP < bn, [ wp(Th, ©))dz < b, (observe that we also have
fv(Tfn, x)dx < b, since y(u)>u). We consider then the corresponding
T,y and define : ‘

0 (@) = o7 p((T5, 2))).
We now set

f(ﬂ?) = Sup Ct)m(éﬂ).
m
So we have,
[olif@laz < [ Y olon@)de< D [ ppThe)do < D by
m m m

I we take b, sufficiently small as m — oo, then >’ b, < co and 50 fea(Lyg)-
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Consider now the set O, = J {IT%: T¢eTy} and A =limsupO,,.
m

m
Then we have {4]|>b. Every zed is in some T0e Ty for an infinite
number, of m’s and so, if R differentiates [ f for feo(ILy,) Wwe have, since

[ f@)dz > a|TP| for T Ti,

112
T%

that f(#) > ¢ for almost all points # of A. Hence [ of|f{z)|)dz > o(a)[4]
> o(a)b. If we choose b, small enough as m — oo, we can make
2 b,, < a(a) b and this is a contradiction. So the theorem is proved.

COROLLARY. With the notation of the theorem, define vwy(u) = uo™ (1py (u)),
Vo1 (4) = uo™" (y(w)) and assume w(u) > u for all k. Then R has strength
yy for all k.

It is enough to apply the theorem % times. The theorem of Hayes
and Pauc is a particular case of this corollary. In fact, if R differentiates
[f,feL”(R* for some p,1 < p < oo, then, by the de Possel theorem,
R has strength 6, with 0(u) = u. Hence, by the corollary, R has strength

: -
o

%
@, With ‘Phk(“) = ulk, hy =E Therefore R has strength @q for all
o

G <gq=plp-1).

Remarks. (1) The setting of this note is a rather concrete one.
It is possible to consider more general measure spaces and more general
types of differentiation bases. By the same methods one would obtain
similar results.

(2) It is interesting to observe that the spaces o(Ly,) considered
in the theorem are not necessarily linear. There are other situations in
differentiation theory where linearity is irrelevant. Compare the problems
recently treated by Rubio [8] on the relationships between the Hardy—
Littlewood maximal operator with respect to R and the differentiation
properties of R.

Acknowledgement. I wish to acknowledge here the very helpful
remarks of C. Y. Pauc, in Nantes, and of A. Gallego and M. T. Men4rguez,
in Madrid, on a previous version of this paper.
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The integrability class of the sine tramsform
of a monotonic function

by

R. P. BOAS, Jr. (Evanston, IIL)

Abstract. This note introduces a method for discussing the weighted Lebesgue
class of the Fourier transform of a monotonic funetion, a method that is rather more
direct than those that have been used for similar problems about Fourier series. The
method depends on Steffensen’s version of Jensen’s inequality (see [6], p. 109 ff.).
and a theorem of S. M. Edmonds [4] on Parseval’s theorem for monotonic functions.

Two classical theorems of Hardy and Littlewood (see [8], vol. 2,
p. 129-130) state that if ¢ is an integrable function, 1, are its Fourier
sine or cosine coefficients, and 1 < p < oo, then

(1) If 2,00, then geL® if and only if n'=>P ), lP.

(2) If p(x) =0 and ¢ decreases on (0, n), then A,¢l® if and only if
2P () e IP,

These theorems have been extended (see [1], p. 35) to weighted L
and 17 spaces. Here and subsequently, p" = p/(p—1).

(3) (Generalization of (1) by Y.-M. Chen) If 1,0, then =7 ¢(2)eL?,
—~1/p’ <y < 1/p, if and only if n**'2P) IP. Alternatively (replace y by
(2/p) —1—%) if 2,40, then n~72,¢lP if and only if o'~ Pp(z)e I?, —1/p’
<y <1/p.

The corresponding generalization (4) of (2) has the same conclusions
but the hypothesis 1,0 is replaced by ¢(z) =0, decreasing, and ¢
integrable (all on (0, «)). :

Theorems (3) and (4) reduce to (1) and (2) if in each we take y =0
in the first statement or y = (2/p)—1 in the second statement.

Theorems of this kind naturally have analogues for Fourier transforms.
A partial analogue of (1) is given by Titchmarsh ([7], p. 113). This is:

(8) If p(x)|0 on (0, co), ® is its cosine transform, and @(x)a* P IP
1<p<?2), then Dell.

Disregarding the distinction between a funection’s having a Fourier
transform and its being a Fourier transform, we may loosely formulate
a hypothetical integral analogue of (3) and (4) as follows:

5 — Studia Mathematica XLIV.4
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