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The map L*(Q%) — L*(Ty) defined by
¢ () = [0 p(2) M*(22)7dA
G

is a Hilbert space isomorphism. The integral converges absolutely for all
ZIETQ. .

The proof can be found in [5].

Lemma 6.1 is an analogue of Lemma 2.2. Similarly it is easy to prove
analogues of Lemmas 2.1 and 3.1, and finally one obtains the following
results. (The notation is the same as in Section 4.)

TeeoreM 6.1, The map L*(Q"xR"™) - Z(D) which
ee L (Q* X R™) to

(6.1) F(z) =

carries

[ o, )22, o) M* @A) drda
or R
and the map I* — H2(D) which carries A eL? to ,
(6.2) Fle) = [ &4 4 (22,) H*(22) A
A

are Hilbert space isomorphisms. The integrals (6.1), (6.2) converge absolutely
for every fived z = (2, 2,) e.D.

THEOREM 6.2. The Bergman kernel K of D, i.e. the reproducing kernel
of £*(D), is given by

Conid otz (A€6B3)
Kz uw) = [ o G g O
o -
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The initial value problem for parabolic equations
with data in Z?(R")
by
Eugene FABES* (Minneapolis, Minn.)

Abstract. Suppose u(z, t) belongs to the class of functions having derivatives,
Dyu(z, 1), la] < 2b, and Dyu (x, 8) in LP(R"x% (0, T)). Assume that Lu(z, 1) = 0 where

L= 3 @, t)D3—Dyisa parabolic operator with coefficients hounded and mea-
laj<2b

surable and for [a] = 25 uniformly continuous. Let w(s) denote the modulo of

()43
P ds < oo, then we show that for

1
continuity of a coefficient of order 2b. If f

1<p< oojlu(, Dizomny < cifu(-, 0)ilzrmn). This 4 priori estimate is used to resolve
uniquely the initial value problem, Lu(z,) =0, ¢t > 0, and = (x, 0) = g{x) where
g(@)eL?P (R™).
1. Introduction. In this paper we consider the initial value problem
for the uniformly parabolie operatar L = 3 a,(z,t)D¢—D, when the
laj<<2b
initial data, g(x), belongs to L? (E")y 1 <p < oo, and when the coefficients,
a,(2, %), are bounded, measurable, and for |a| = 2b, uniformly eontinuous
over the strip Sp = R"x (0, T'). As usual b is 3 positive integer, z is a point
in R" t¢(0,T), a = (a, .oy @) IS an m-tuple of non-negative integers,
n
D = 1[0z ... 8°n[Bain, and laj = 3 a;. By the uniform parabolicity
i=1
of L we mean that the real part of the form, 4 (x,3; &) = > a,(z, 1) (¢8)7
juj=20
satisfies the condition, Re (4 (z,t; &)< —7]& with > 0 and inde-
pendent of (z,t)eSy.

Given a function g(w) «LP(R"), 1 < p < oo, we consider the problem
of finding a unique funection u(x, t) such that
(i) for every 8, 0 < 6 < T, D2u, la| < 2b, and D, exist in the sense
of distributions over S, = R"x(8, T) and belong to L?(8, 1)
(I) (i) Zu =0 in 8y
(i) tli?l”u(" 1) —g (Mo = 0.

H
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Given a strip Sp,r, = R*x(T,, T,) we will denote by szjb,l(STo,Tl)
the closure of CP(R™') in the norm,

o D, .
|al<22b“Dmu”Lp(ST°’T1)+” f “L”(STo:Tl)

”u“Wé”b,ﬁSzro,Tl’
By ﬁvg,,,l(s%,ml) we mean the closure of 0‘0‘? (B™ % (T, o)) in the above
norm. (As noted above Sp denotes the strip S(O!T).).

To solve the initial value problem, (I), we consider the problem of
estimating the LP-norm over B at time ¢ of & solution w(x, 1)« WE.(8g),
1< p < oo, to the problem Lu = 0 by the same norm. on u(m,. 0?. That
is, we consider the question: If we W5,1(8p), 1 <p < oo, satisfies the
equation Zw = 0, then is it true that

{11) B (- Dligpgm < Cpz (@, 0)lzo@n

€, independent of te(0,T)?

OBSERVATION 1. An affirmative answer to problem (II) implies there
ewists o unique solution to problem (I) when 1 < p < oo.

Proof. Given g(x)eL?(R"), 1 < p < oo, let {g;} denote a sequence of
funetions, g0 (R"), such that g, — g in L (R"). Let » denote the unique
solution in W%, ,(8p) to the problem Lu; = 0, u (%, 0) = g(2) (ﬁsee [6],
[6]) and consider the sequence {fu;}. The function tuy(x, )e W, ,1(Sz)
and I is an isomorphism from the space Wﬁb,I(ST) to LP(Sy) (see [6;).
Hence

T (o, — 1) < Cp|l Lt (e —1))|lzogspy = O It —147) sy -

W 1S
Using the estimate (II) we see that

ey, —5llzoisy) < Cp T g, — gl zogemy —~ 0
as§ k, j - oo. This means that the sequence {m,c}'is Cauchy in W, ,(Sy)
and hence there exists a funetion, w(z, 1), such that for every 6,0 < 4§
. < Tyuy -1 in W (85 r). Clearly u satisfies (i) and (ii) of problem (I).
Now, )

oty 8) —g (- Mlzogn < lw(y ) —uz (5 Dlipegn + (5 1) —g1,. (- Wengn +

+ gy —glloamy -
e (v ) —ua{- Dllzogny = Hmlu,(, ) —ux(, 9)zoen and using (II), this last
Limit < Cplim |ig,, "ngLPZ:"’)N= 0111|g.—gk!|L17(R”)' Hence [[u(-, 1) —g()llzo@y
< Gpllg—gZﬁ;;Rn)-s—uuk(g 1) —gx{Mrp@my. The first term on the left-hand

side is small with %, independent of #. With % fixed the second term
tends to zero as t — 0. Hence u satisfies condition (iii) of (I).
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To begin discussing problem (IT) we need to introduce various moduli
of continuity of a.(z,?) for |a] = 2b. Let

w,(8) = sup |@e (2, _t) —a, (Y, ), wy(8)=sup la.(z, 1) —a,(x, ),
[a:—f/[@i z‘elain'
1(0,T) 0<t—-s<5
t,5¢(0,7)

and ®(8) = 0,(8"®)+ wy(d). w(8) can be considered the modulus of
continuity in the variables (x,?) while w, and w, are respectively the
moduli of continuity in z, uniformly in ¢, and in ¢, uniformly in .

It is kmown that if w,(6) < 6%, 0 <y <1, or if w,(8) < ed”, 0 < y < 1,
then the 4 priori estimate, (IT), is valid. The former is due to the work
of 8. D. Eidelman (see [3] and [7], Chapter IX) and the latter due to the
work of T. Kato (see [10]). However, if neither. o, or w, satisfy a Dini

1
(0
condition, i.e. ]ff E%)‘ dd = oo,i =1, 2, then an example of A. M. Illin
0

([9]) shows that one cannot in general obtain inequality (II) in the case
» =1 even for very good data with a constant ¢ uniform for all parabolic
operators with the same parameter of parabolicity, 5, and with the same
modulus of continuity, (d), for the highest order coefficients. Nevertheless,
for the case 1 < p < oo, the estimate, (IT), remains an open problem
and the primary object of this paper is to give a general condition on (6)

1
for which it is certainly possible that f ﬁg—a)« a6 = oo but for which the
o
a priori estimate, (IT), is valid for 1 < p < oo, and hence for which problem
{I) is solvable. (See Theorem 1.)

Before proceeding with a statement and proof of our main
result, two more observations regarding the & priori estimate are
necessary. .

ORBSERVATION 2. Estimate (II) is valid in the strip Sy if there exists
Ty, 0 < Ty < T, independent of u, for which it is valid for t<(0, T,).

Proof. We are now assuming that for each we W%, ,(Sy) for which
Ly = 0, the estimate, [ju(-, Wiro@n < Cp,zllu (-, 0)lizpzn) is valid for every
te(0, T,) with O, independent of ¢ but possibly depending on 7';,. Now
let (£)eC°[0, o) be a function which equals 0 in [0, T,/2] and 1 in
[Ty, 00). For Ty <t < T,

(- lepam = W(wp) (-, lpgn < Cplluyl

W S < Opr L (up) o

< Cp,z’,mo”(”“(‘, t)”L”(R"))“L"U(O,TO) < Cp gl (-5 O)llzogny -

Given numbers M > 0, > 0 we denote by f,,, the class of all
uniformly parabolic operators L = }' a,(z,t)Di—D, such that
Jal=2b

L
=2

A
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sup la,(@, )< M, Re( Y 4@, 1) (8)) < —n £,

(:I‘,isxesT laj=2b . |
and whose coefficients a,(x,1) for |a| =2b are uniformly continuous.
over Sp.

For a given operator Lef,,, we denote by i, 0,z and wy, the
various moduli of continuity of the highest order coefficients of L as
defined above. When no confusion arises we will drop the subscript L
from these functions. We will call a coefficient of I smooth over an open
set Q if it belongs to 0*(2) and has any order derivative bounded there.

OBSERVATION 3. Suppose Lefyy ,. Assume that for each Lepy,, with
smooth coefficients of order 2b over B! and with wg < g estimate (II)
is valid with Cpz = C(p, wz) an increasing function of oz, i.e. if w(d)
< wy(8) for every 6, then C(p, w) < C(p, wi). Then (II) is walid for L
provided C(p, or) < oo. ‘

Proof. Let I = 3 a,(»,1)Dg—D;. For |a| = 2b, a,(x,?) is uni-

lof<2b
formly continuous over Sp. By defining
a.(x,0) for ¢<O0,
a.(z, 1) =
a,(z,T) fort=T,

we may assume that for |a| = 20, a, is uniformly continuous over R"**

and that the new modulus of continuity of L satisfies the condition

C(p, wr) < co. Now let ¢(z, 1)< (R™), =0, [@drdt =1, and for

“k a positive integer set a,.(z,t) = K" [ o(k(y, s)a.(e—y, t—s)dyds.
RO

Also set L = > a, (%, ) Dy—Di+ 2 a,(x, 1) D,

laj=2b lal<2b

Lye Py, and the coefficients of order 2b are smooth over R"+'. Let
and u, denote respectively solutions in W3, ,(8y) of Lu = 0 and Lyu, = ¢
with (2, 0) = u(x, 0). u—uge W, ,(87) and hence

[l —6,] ) < Oy 1Ly (1 —u) llzogs,)

W, 5
with €, independent of %. Therefore

I —z.ll < Oy WL —Ly) wlignisyy — 0

ﬂ’g‘_ob,ﬂsl')
as k - oo If wy(08) denotes the modulus of continuity for the coeffi-
cients of highest order for IL;, then w.(d) < wr(8) and from the
hypothesis

(5 Dllzp@n = 1111_31 Mz (- Dlizoem < (k.mO(P, o)) (o, 0)l| oy

< C(p, wr)u(z, O)HLT’(R”)'
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2. The & priori estimate.
TieoREM 1. Suppose Le@y, and let w(8) = wy(6YP) +ws(8) denote
: 1 a3
the modulus of continuity of the coefficients of highest order. If J i 6(6) dé
[
< oo, then (II) is valid for L; i.e. if g(z)eCT(R™) and u(w, t)e WE, 1 (Sp)
is the solution to the problem Lu = 0 in Sz, u(z, 0) = g(»), then

(s Dllzoam < C (2, ) lglpn (1 <p < o),

where

! w8 (8)
P

o(p, o) :A[1+f d5+w(5)] and A = A(p,n, M, 7, T).
0

Proof. Consider L = ¥ a,(z,1)D:—D, ©aryy and as Dbefore set

jaj<2b
Ay, s; &) = Zb a,(y,8)(18)". Let ‘Fv,s('r) ) = '?E(BAW’S;S”)@):

laj=2i

&, denotes Fourier transform in the g-variable. Set

where

i
Pf@, ) = [ [Tyolo—y, t—s)fly, s)ayds,
0 gn
where fe L7 (8y). It is known that P is continuous from IP(8y) — Wfb,l(ST)
for 1 < p < co and that LPf = —f+df, where Jp: LP(Sy) — L*(8y)
is given by
f~8
Jif@ )= 3 tm [ [[a,2,0)—a,(y, 0)1DET, o(0—y, t—s)f(y, s)dyds
jal=20 00  pn
3

+ Y aulw,t) [ [ DEl,le—y, 1—s)fly, s)dyds.
lal<2b [ '
The above limit is to be interpreted as a limit in LP(8z) (see [4]). Tt is
also true that

21

Wt lzmsy < 4 [on(D)+ 3 T if lpns,y
j=0

where 4 = A(p, M, 5, n) and oy is the modulus of continuity of the
highest order coefficients. We will prove the & priori inequality in an
interval (0, 7) for which

2b-1

I a3
[wL(T)+(f wLS(S) ds) +2 Tl—jzb:l

is sufficiently small for L and then use observation 2 to obtain the estimate
for L over an arbitrary finite interval. Also by Observation 3 we may assume
that the highest order coefficients of L are smooth over R™! and that
over the strip Sy, [J l<1/2 as an operator from IP(8p) = L7 (8p).
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Tn this case then we can write the solution u (2, t)e W, 1(Sy) to the problem
Tu =0 in Sp, u(z, 0) = g(%) Ve (P (B™), in the form

_ Ploa ) —P( S HII @),
=0
(?/)dy; J = JL! and

w(x, t)

where I(g)(z,1) = [ Tyo(@—Y,1)g
R™

S au(z, HDaT(g) (@, ) =D L (@)@, D).
laj<2b
It is mot difficult to see that |Ty(w, 1) < y(@[*)i™™, where
[ p(z)de < o0 and y only depends on M and 7. Hence
W(g) (- Dlzogm < Olgllzogm -

Our problem then is to consider the LP-norm over R" of the function

I(g)(,t) =

(2 J*(Ig))(z,?). The succession of lemmas that follow proves that
under the hypotheses of Theorem 1,

”P (Z 7 Lrg))( )

where A —A(p,M 7).
LEMMA 1. For feI? (Syp), the potential

[[wL + f wal da] gz

Lp(R")

Pf(a, t)—ff ol@—Y, t—8) f(y, 5)dyds

satisfies the estimate,

s)ds“ + sup 1,1J llsf HL'D(SD]

o<r<t

RS, Dlzmm < [

Proof.
t
Pf(a;t) = [ [Tyolw—y, t—8)f(y,s)dyds+ ‘
2 pn
12
'|'f f[Fv z—y,t—8)—Iy(®— v, H)1f(y, s)dyds+
o gn
2
+ [Tyola—y,0[[ fy,)ds]ay
RN [1]
= Pyf+-Pyf +Psf.

t
BT Dllzory < O [ 1FC )lzpeum ds <

2

» f I $)lisds <

l,p [isf llzpesy-
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For P,f we use the mean-value theorem on the difference in the integrand
-and we obtain

Hsz(', t)”L?(R”) <
Again recalling that

w_
Wo(@~y, 1) < 01/)( tl,z,f' ) g,

2
¢
7 f shf(,y $)zogn ds <W HSf!]Lp(St).

0

we see that
“Paf ”LW(RVL) G”f f( s)ds ]L?(R")

Let us now introduce the nmorms

1
N.(HH() =f<‘}£’tﬁﬂsf”msﬂ’ No(f) (@) = sup

o<r<t [f JCy9)ds 'L”(R”)

and N (f)(#) = Ny(f)(#) +No(f). From Lemma 1 we have proved that

| (kZ‘ THLLG)) (-3 1) oy < 05’ N(J*LIY)(1).
=0 k=0

9. For feIP(8y), 1< p < oo,

LEMMA

2h—-1

a0 < A, M, ) [w: (M) +ou()+ 3] 072 N ()0

Proof.
i
If@, 1) = Y [ [laf2,0)—a,(y,0

lal=2b 0 pn

D2y (m—y,t—8)f(y,s)dyds +

+ Y [au(@, 1) —a,(a, O)Jhmf fpa @ —Y,t

laj=2b

+

—~8)f(y,s)dyds

@ (2, 1) f JDiTy e~y , t—s)dyds

la]<2b 0 ge
= Jif+Jaf+4f,
sT5f (@, 8) = J3(uf) (@, 8) +875(F) (@, ) =T (w) (@, ),
2b—1
I (4f g,y < O X 777%2) I llzogs,y -
=0
Now
$(Jof) (@, 8) =5 (uf) (@, 8)

= 2 aa('m,s)f fD“Fy
0 g

(@ =Yy, s—u)(s—u)f(y, s)dyds.
laj<2b
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Following the same procedure as in Lemma 1, we see that for 0 < s <.r

185 f (5 8) —d 5 (uf) () $)izw@m
2b~1
< 0,M (2 H/w)[ f IF (5 )|y w4 N o (£) (s )].

Now using Hardy’s lemma ([8]),
2b—1

s of (2, 8) = (uf ) (@, 8)llzmis,) < Op M (2 wl—j/z(;) lef oy + 72 3 () ()]

J=0
From this follows immediately that

2b—-1

LA ( 2 £ W (f) 0.
Once again,
sJof(®,8) = Iy (uf)(x, 8) +sTf(2, 5)

and we have

—Ja(uf) (2, 5)

o (uf )”L?’(S,.) < oy (1) luf “LP(S,,y
Again following Lemma 1 '

1975 9) T uwm)\omw( [ s iz -+,

0

From the last two inequalities we conclude that
N1 (J2f)(8) < AoV () (2)
Finally we need to consider N, (J,f)({). Leb

teat®) = 17" [, 000(* 7Y a,

RN

where geCg (R, (p> 0, and [¢ =1. Set
RN

e
Ky =tm [ (D20, 0y, 1—0)f(y, sy ds
>0 o bt

R‘IL
= 2b with the above limit understood in L2 (8y).

Nif = D' [a(2, ) e s (@K + Y K.([60s(y)

laj=2b laj=2b

t
S+ )

f [, (%)
la]=2b 0 R"

for |a|

—aa(y, 0)]f)+

— 0,2 {y)]1 D5 yo(w~y, t—s)f(y, s)dyds.
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Using the fact |a, ; —a,] < »,(4) and proceeding as for J,, we see that ¥,
applied to each term of the first two summations and evaluated at ¢ is
< O DT (). A oy
and proceeding as for J;, we see that N, applied to each term of the last
1(2 — " N (£)(1). We conclude

Using the fact that |a,,(v)—a.(¥)|<C

summation and evaluated at ¢ is < C, ——
that

t 1/2b
[ﬁwl(?»)—*—wl(/)]N(f)(t)

Choosing 2 = #*** we obtain our final result.
LeMuma 3. Suppose 0< la| < 2b. For feL”(Sy) set

N (1f)(@)

12b

t
T, 0) = ay(e,0) [ [ DT, (@—y, t—s)f(y, s)dyds.
1] Rr®

Then
NN < Alp, U, )8~ PN (£)(1).
Proof.
[ Tufle, s)is = Hf(y,u)[f DTy (0 —y, s —u)a,(@, 5)ds| dy du
o T2 gn
—rfﬁjf(y, n UD]’“(J: —y,8—u)a,(w, s) ]dydu—l—
[ R"‘
+f (1, u)[f DTy o (@—y, s —u) a(w, 5)ds| dydu
0 pn

= Py(z, r)+Fy(x, r)+Fa(z, r).

r

1B (y Nlip@ny < C J WG, “)HLP(R")(T_M)FMM
/2

wl [ :
< Ca--*“f'-”7 Juirt, wau < o=, () ),

o

f ¥, 6)(16) (fD;F,,,,,(m —y, s —w)ay(z, s)ds) dydu

Fo(z,r) = f]
_( foJ,G)dG)(D” Tyo(5—y, 1) ay(x,

0 R 0

Hence
Fales 1) lgnny < O j l} f e

< NP,

+fDﬁ.Da ol =1, 8 —u)ds).

- .
laie
P v SiT 1a1/zb

7 — Studia Mathematica XLIV.4
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Finally

7/2

)||L7’(R”) pl—lali2b g,

sy )iy < fuf

r/z

0 f [ f e nL,,(Rn,da]u tal20 g,
<ol f oIS

{2

+ [~ f 01f(
0

< ONy(f) ().

This concludes the proof of Lemma 3.
The proofs of the following two lemmas appear in the appendix.

)| ozeny 46 +

6)llzo o 40 du}

B i 9 2b—1
Wy (8
LEMMA 4. N,(LTg)(t) < A[a)l(tl’zb) +f —zs(lds)”?‘ +3 tl-mh] g lzogeny
[} j=0
(1<p< o) .
LevmA 5. For |a| = 2b and for fel?(Sp), 1 <p < oo, set

Jo(f)(@, 1) =lim f [ [aa(@, 1)~ —y,1—8)f(y, s)dyds,

=0 5 Rn

o (@, 0)]Dgly o (0
the limit understood as a limit in L?(S5). Then

Y uis)

P20 < A [on0) o0 ( [ ds)m) N0+

+Af (( v (s ozs-)l~

We return now to finish the proof of Theorem 1. After Lemma 1 we
noted that

HLZ’(R") <C Y N(IHLIY) ).
k=0

|2 (> 7 @ro) e, v
=0
From Lemmas 2, 3, and 5 we see that for k> 2

N(THZLg) ()
201

< A4 {601(tll2b Foy(t) + Ztl jlzb (f a8

) vz zry) o +

icm
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dr. .

i r o 4 o
af Mol LT () ( [ ds)""
o r 8
0 0
By Lemma 2,

25—1

N1 (T HITY) (1) < A [0u () oy (1) + ) rIP| N (7% (LIg)) ().
F=0
4]3 (s) 2b-1
Setting @(1) [w(t)—i— f ds4- V’ t‘”’/‘b], we conclude that
§= n

N(JMIDg) ) < 4B () (¥ (J"'I(Lrg)) O+ (T (L)),
It is easy to see that

k=2.

2b-1

NU(BLg)(B) < Ay (B2) +ag(®)+ 3 #] lglzn.
7=0

From Lemmas 2, 4, and 5 this implies that
NI (LLg) (1) +N (L) (1) < [(AD(#))*+ 4B (1)] gl zogen) -

Since &(f) — 0 as ¢t — 0+, there exists 7', depending on & such that
for each t¢(0, T,),

D N(JELTY) (5)

k=0

< AS (W) llgllzrgery -

The proof of Theorem 1 is now complete.

3. Appendix. Suppose k(z, ) = Q( tfzb)t“"/”"l, where Q(x)e S(R"),
the space of rapidly decreasing functions over R”, and f Q(z)dz = 0.
Jow) f k(z

Below # and & both denote I‘ouner transform
THEOREM (A.1). For feI?(R™), 1 <p < oo,

(Do < O] [ (1 + o) (12(2)] +1 P 2(@)]) de ] 1f iz
where C depends only on p and n. Moreover, imK,, (f) exists in LP(R™.
=0

Fix 1> 0 and 0 < ¢ < 1. Set K, (g)(x) = x—y, s)ds.

Proof. We first observe that
|| Z (@) (as") F1F () (@' s)]
I (jl»é,s)ds) [ U———éﬁ 'gOuf_Smds,

where [2'] =1. Since F(0)(0) =0 we see that this last -integral
<Osup[}Dmif(Q)H-[J:if(!?)i]. Hence the result is wvalid for p = 2.

7
R
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‘Moreover,

¢
ez —y, 5)—k(z, 5)]ds; do <

1zi>4lyl &

Fo1
oWl [ < P (o)l dods
8 (1> [w/s120

<0l | I §7I 35) do

(w1 /11)20

<0 [ lelir2),

‘We can now apply the result in [1] to finish the proof of the first part.
The proof of the second part is fairly standard and we will omit details.

Suppose now that b(x,s) is a smooth function over R™ with
b(x, 0) = 0. Set

@y(8) = sup |b(z, s)|.

&
1<g<d

Set

¢
Euh@ = [) [ Ba—y, )b, s)ds,

R 0
‘where k(w,s) is described above.

Before proceeding with the next theorem, we would like to review
for the reader what we will call the Calderén~Zygmund decomposition
or C-Z decomposition of a function f(z)>0 corresponding to a given
number 4> 0. Precisely, given f> 0, ¢L*(E"), and 1> 0, we can find
a sequence, {I;}, of non-overla.pping cubes such that

@) < f F<2i; |
() if D,= U I, then f< 4 almost everywhere in Dj, the complement
of D,.
We now set

1 .
ITk!'ff if meIk,
Iy

I if weDj,
and b = f—g. k and g have the following properties:

g(z) =

(iii) l9!E2mm < Cnallf lzyzm  and  ligllzyzm < IIf x5
(iv) Jh=0 and IRz < 20flmng.

i
(See [2].)
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THEOREM (A.2). (a) For feI*(R™),

' ol i
VB (F zzmy < GA( | i;f—(flds) I 2
0

where
4 = [A+12)(1@)] + 72 ()] de
(b) For feI*(R™,

L 12 .
o 1Ky () (@) > 7 < 04 [( [ a) "+ o00] 7 ke

with A as in part'(a) (| { } denotes Lebesgue measure of the set { }.)

Proof. (a) K, (f)(2) = fb(a;, 8)( [ k(z—y, s)f (y) dy) ds. Hence
Rﬂ

PR
Ko< J 2 a) [ o] [y, nswanf as
0 RN
Using Parseval’s theorem,

2 0 1/2by 12
[1Etr@ras <o [ 222 g, ) [iFner | [ IED™E 4y,
Rr" 0 .

Proceeding now as in Theorem A.l, we obtain part (a) of Theorem
(A.2).
{b) We first observe, as in A.1, that

, .
| 5@, ) [k(@—y, )~k (2, 8)1ds| do < Can, (1) [ I2] | ()] da.

lxl=>41y] 0

We now use the C-Z decomposmlon of f corresponding to the number,

12
Aj®(t), where D (i) = ( f ©h,0(5) ds) . These observations together with
s
0
part (a) are all that are needed to carry through the usual weak-type
proof as found in [1] or [2]. We leave this to the reader.
Theorem (A.2) insures that for'1 < p < 2,

¢ s \12

s Poroy < O4 [ [ 2242 2" 4 0,00] 11,
0

where ' o

= [ +12)(12(2) + Iy 2(@))) da.

R"
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To obtain this result for all p, 1 < p < oo, We need to consider the operator
[
Ey(ho) = [1@)([ Ble—y, b, 5)ds) dy
R™ 9

TrEorEM (A.3). (a) For feI*(R"),

| N
oo < 04 f 250 2)"” e
0

with A is in Theorem (A.2).
(b} For feL*(R",

' ol »(8) L\
fo: Byt @1 > )< 0 [ [ 22D @) o 0] 1
. 0
Proof. Part (a) follows easily from Theorem (A.2) part (a). For part
(b} we begin by writing f = g--h, the O-Z decomposition of f corresponding
to the number A/®(f). Consider the set D = Dysq = U I; discussed
i

above. We expand each side of I; symmetrically about its center to a length
of say six times the original. We denote by I} the resulting cube and by
D* = |JI;. Again following the usual proof for “weak-type’ as found

- 3
in [1], we see that to prove part (b) it is sufficient to prove that

[o: By @)] > 47 nD¥|< (00 +as(0) [ 171

where ¢ depends 6n1y on n. (Recall that @(f) =( f w”(s) ds) and
0

D* = complement of D*.) Set

1
— | ()b dz f el
o) = w%f (@)b(e, 8)ds  for yeI,

0 for yeDﬁlwm.
Let y; denote the center of Ij
zt,b(h) ()

i . L
=2f1f (k(z—y, 8)—k(@—y;, $)1 (Y, )b(y, ) —H(y, 5)]dyds +
70 I

13
+ [ [R@—y, )H(y, )dyds = Fy(2) +hs ().
[

icm
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W jhy(2)] > Az}np*°]<i {!ib {x)|dx
{ 1 \A), J, 1\ ]
) D
f 1hy (2| Az
<2f f(fm(m—y,w ~k(@—y;, ) |da)[IR 1Dy, $)] + |Hy, 9)|1dyds

(f oy0(s) [ Th(@—y, 5)—k(z, 5)|deds) dy

12l>4lyl

=3 wo
< Coyy ()| [ 121 14Q(@))da] [ 1kl < Odwns @) [ 1]

- 1 -
oz 1Ry AR <——— | ()
s (ha(e) > A8 < [ th@pas
From Parseval’s theorem,

1[ Mg‘e(ﬂ(& s))(w)ds

]hn LLARY = C!

2000

<o f ( f T ) f !‘%(H(iys))(ﬁ)ig-ds)

<4 j f Lo (H (&, ) a:)da:—

<o4 ‘]f R{ M dwds

Observe now that if wel;,

|5 (2 2b 3) Ao
' f 1A ¢(t)
Hence
A%
J e, ) dn < Cony (67 G IDigony) < Conpfor 5 f -
We conclude that |{z: |7, (2 z)| > A< O ——}E—t)— f Ifl, and hence the proof

of part (b) is complete.
THEOREM (A.4). Suppose feL?(R™), 1 < p < oo. Then

W5 (F)llzpam < Cpu A If lizogny
where : :

4 = [ @+ le)(12@)+ 1V 2 (@) dw
and Oy, , depends only on p and n.
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Proof. The proof follows in the usual manner from Theorems (A.2)
and (A.3) and the Marcinkiewiez interpolation theorem.
" Now suppose that

Q(y; o/t™)
By @, t) = — o
where for each y, 2(y, -)eS(R™), f Q(y, x)dv = 0, and for each'y and g,

sup [Iw”DﬁQ(y; @)z < o0
yeRN
Set

Ey(f)(@) —y, 8)ds) dy

i
= [fo) ([ kiy;o
Rn &

and

: _ .
Ko (f)(@) = [f@)[[ kly; o—y, 5)b(a, 5)ds] ay.

R" 0
Once again b(z, s) is assumed to be smooth over B+ with b(x, 0) = 0.
Again set wzb(é) = sup |b(=, s)].

0<s<d
zeRM

THEOREM (A.B). For 1 < p < oo,

1o () izogamy < C1IF lzogam s

Porora e
VPl < 0 [+ [ 22 a) "] 171,
0

where O is independent of e.

Proof. For j = (415 - ,jn),ji/ 0 an integer, set H;(») =

HH

where H, (2} is the Hermite polynonnal of order j;. The family {H ““‘2’ n}

is a complete orthogonal family with respect to Lebesgue memme on R™
and we can write

r) = Zaj(y)ﬂj(w)6~xr\2/z’
—Izl21° dz.

The series has the property that, for each y and g,

2 sup loy| sup|” D (. (2)¢7P8)| < oo,
j -
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Since [ Q(y; x)dz = 0, we can also write Q(y; 7) =

Q) = [Hy(x)—Cyle PP,
series 3 a;(y)
i

Xa;(y) ©;(w), where

2 I 2
with 0; = [ H;(z)e " 2z [ e~ dz. The
£;(x) still maintains the property that for each y and g

Zsup la;(y)) sup |27 D Q;(%)] < oo.
j v z
(For a detailed discussion of the above see [5].) Hence
= Z f %(¥)
i Em

Qj ($/8112b) Sanlﬂb—l .

i
E,o(f) (@) 1) [ F(a—y, s)dsdy,

where
kj(.vg §) =
Now from (A.1) we see that

Mo Pl < O X[ [ (141 (12501 + | 79y ) ] s logany
O[3 suplal [ (1+ 1o (1925 (2)i + 172, (@)} ] 1 1 pogam
Fi

In the same manner, Vusing (A.4), we see that

~ ’ P 12
Vo om0 a0 +{ | 222 )1

0
THEOREM (A.6). (Formerly Lemma 4 of section 2). For 1 < P < oo,

o, 26-1
No(LIg) (1) < C[wl(tl‘yz)‘f‘mz(t)‘f‘ (f ‘wi.:‘slds) + v tl_]IZb]“g”L’f’(R") J
Proof.
J 2T 9)@s = 3 [ [an(e, 0)—a.(g, 0lgy) [ Dilyolw—y, s)dsdy+
0 laj=2b R .0 .
+ D [9) [ Dilyo(@—y, 8) [a,(e, ) —a,(@, 0)]ds dy-+
la{=2b R [1]
+ X [ew) f D;Ty (@ —y,8) au(s, 5)dsdy.
le}<2b RN

Ttis clear that the Z”-norm over E" of the last summation is < ¢ Z 'rl””z”) X

X |lglizogn - Using the second part of (A.5) we see that the Lp-norm over
R" of each term in the second summation is

Tl i
< O[(fﬁ%ﬂds) +m2(r)][]g”mmn)'

0


GUEST


408 E. Fabes

To consider the first summation, we first take @, () = A" [ @iy x
X ag(#—Yy, 0)dy, where g7’ (E"), 9 >0, [ =1, and we observe using
the first part of (A.5) that the L”-norm over R™ of a general term in the
first summation is bounded by

0@ (M) lglznn+ | Rf 9(9) [00,1(@) — G ()] f DTy (@ —y, 8)dsdy

LZ’(H’”)] :

| —y], the last term above

(4)
¢ A

Sinee [a,,(2)— o, (U)] <

w(4)
A

<0 2 gz zm -

Hence we have shown that

”f LI 3)ds|‘zv<nn)

N . wi(s -
< C‘[ﬂl—}f—l 5% oy (r) + (f ——z—d-?) + 2 r mb] g1l

0

We couclude the proof of (A.6) by choosing A = 72,

Now suppose once again that
Q(y; o[t"™)

kE(y; e, 1) = s

satisfies the conditions stated just prior to (A.5). For f eIF (8p),1 < p < oo,

set
i—g

E(f)@,t) =tm [ [k(y; s—y,i—8)f(y, s)dyds,

>0 g RN

the limit understood in the sense of L”(S;). Assume b(z,t) is smooth
over R"*', b(z,0) = 0, and again set w,,(d) = sup |b(z, s}|- Let

0<s<d
Ze.

i
By(f)(@, 1) = [ blw, )E(f)(, 8)ds.

Lemma 5 of Section 2 is an immediate corollary of the following theorem.
TEEOREM (A.7). For 1 <p < oo,

)y Dl < O a0+ [ et SNEGEE

-l-Cf Nl({ ) [U 0)2,3(3) ds) +w2,b('r)]d”f
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Proof.

11
N 5@ 9) kif) (@, s)ds +

]

+,,J e [ff’“(y: =y, 8 —1)(s—n)f(y, r dydr]

Hence By(f)(@,) = By, (f)(, ) +Ry(f) (@, 1),

3
PR (1) Doy < [ 22 4, )y

i
a
< f w_sﬂ f VB (), ) gy s

1
<20 oy,
L]

£
_!_f(%,bq(s) _ s, 5(8)
§* s
0

) [ 107 ¢, i duds.

Since s 4(8)
and we see that

1By (F) (s

>0 we can drop the term involving this derivative,

Dlizogn < Cay, (P IE () lzmgsy +

2
s, 1
+C f ﬂb_(‘i)—l—,,,— W (7 ) zoqsy ds

@,5(8)

<0[co2,,(t)l\71(f (t)+f Nl(f)(s)dS],

. t
b
Rosto,0 = [ 22D [ [ higs0my, smn)ie—rity, nayaras +

sji2 gpn

b(z,s) [ :
+of~——‘”8 ”ufR{[k(y;w—y,s—r)(s--ﬂ—k(y;w—y, 8)81f(y, ) dydrds +

8/2

+fbw s)fk Y5 —y; ff(y, Ydr dy ds
R

Az, t—}-B(w ) +C(z, t),

. 14
JA G Dl < O f 22l uf ©2(8) N (f)(s)ds.

Npgmdr < € f
s/2
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Using the mean-value on the difference in B, we see that

,5(8)
8

i
By Ylloy < O [ 222N, (£) (6)ds.
0

Finally we have

Oz, 1) =f(ftf-(y,r)dr) (ftk(y; z—y, 8)b(z, s)ds) dy —

R" 0
12 tl d r
= [b@,5) [kso—y,9 [ Z2([ s, wuie) arayas
0 R 8/2 0

= f(ff(y”‘)d")(ftﬂy;w—y,s)b(w,g)ds) —

R 0

_% (ff((l/, u)mlu) (f‘b(w, 8)k(y; z—y, s)ds) dy +
RV 0 ]

8/2

i
+2f&;ii)- fk(y;a:—y,s)ff(y,u)ud'u,d'yds—{—

R ° )
+Of%R£(off<y,u)udu) jrk(y;w—y,sw(@ ) dsdydr.

Using the second part of (A.5) we see that

LIS 12
100 Dlezy < 0 anatt + [ 22O w1+

t 2 ., r 1/2
_,_gfﬂ%(i)l\*l(f)(s)ds-l-(?f&({lm(f—c—og-’l’—(s)-ds) r.

8
0

This concludes the proof of (A.7).
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