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function of B{z, &) whose square is 4 (z; 2), agide from a constant factor
{depending on z). Hence ¢ is a singular cocycle whose square is a function
of z times A. This implies ¢* = 4, and the theorem is proved.

5. The restriction to countable I'" and separable K is not essential.
Without any restrietion, a coeycle A (3, %) is continuous .aJs 2 mapping
from R to L*K) ([2], p. 186). Hence 4, takes its values in a separable
subspace of I*(K), so the non-null Fourier coefficients of all the functions 4,
lie in a eountable subgroup of I™ Thus 4 can be studied on a separable

quotient group of K.
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Weak integrals defined on Euclidean n-space
by
JAMES K. BROOXKS (Gainesville, Fla.) and JAN MIKUSINSKI (Zabrze)

Abstract. The following representation for Bauach-vahxed meagurable weakly

integrable functions on Euclidean n-space is established: f = \ 61y, where the z;

i=1
a.le elements of the given Banach space and the & §1; are characteristie functions of
intervals Il, the convergenee is absolute a.e. The weak integral of f is given by the

equality J fai = Y‘ @;4(I;), where the convergence is unconditional. This approach

avoids entirely the use of functionals.

1. Introduetion. In this paper we establish a representation theorem
(Theorem 1) for Banach-valued measurable weakly integrable functions
defined on Euclidean n-space, where the underlying measure is Lebesgue
measure. The representation is given in terms of intervals and uncondi-
tionally convergent series. As a result, our approach avoids the use of
the conjugate space and the theory of Lebesgue measure, except for
the concept of almost everywhere convergence.

We also present a construction of Lebesgue measurable sets which
seems to be an effective tool for examining meagurable sets in terms of
intervals (Theorem 2).

2. Deﬁmuons. X is 2 Banaeh space over the complex numbers with
conjugate space X*. || is the norm of an element ze X. (R*, &, 1) denotes
the measure space consisting of the Lebesgue measurable subsets of R,
with #-dimensional Lebesgue measure 1. [g or [gdA denotes f garf: R*—>%

is said to be Gelfand-Pettis integrable [6], or weakly mtegra.ble with
respect to A if:
) @*f is A-integrable for every a*eX*;
(2) For every Fe.% there exigts an element zze X such that o*(zg)
= [a*fd; for every z*e X"
* In this case we define x5 to be the weak integral of f over E; in
symbols: sz = [f dl. f is measurable if it is the almost everywhere (a.e.)
b
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limit of a sequence of simple functions. f: B® — X is said to be Bochner
integrable [2] if it is measurable and |f] is integrable. £; denotes the
characteristic function of the set E.

3. The main results.
THEOREM 1. Let f: R* — X be measurable and weakly integrable. Then
there extst elements x;¢ X and intervals I;,7 = 1,2, ... such that

1Lf=

V’a‘,EI a.e., where the convergence is absolute;

2. [fd) = Zwi}‘(l,.), where the convergence is unconditional.
=1

Remark 1. We note that any function which satisfies the above
two eonditions is necessairly measurable and weakly integrable.

Remark 2. Suppose that the series 2 z;A(I;) converges absolutelv

Then from the theory of the Bochner mtegml it follows that Z’m &,

converges absolutely a.e. It is natural to ask if an analovous result holds
for the weak integral. The fo]lowmg shows that it does not; we glve an

example in which S’m/.
i= 1

diverges on a set of positive measure. Let X = I,; «, denotes the element
in I, with 1 in the nth place and zeros elsewhere. Construct intervals I,
in {0, 1] such that A(I,) =1 /n and ze[0, 1] implies that 2 belongs to

mim.ltely many I,. Note that Z’ @, AL,
=1

but ; L @, &, diverges everywhere on [0, 1]
=]

converges unconditionally and Z‘mifll_
=1

) converges unconditionally in I,,

THEOREM 2. Let 8 be a measurable set of finite measure. If = is a positive
number, then there ewist numbers a, = L1 and intervals I, such that

1 &g = ‘Zla"ffn a.6.;
P

2. f MI,

Pro of Let {,} be a sequence of positive numbers such that Z £, < 62,
n=1

We shall construct a sequence {S,} of measurable sets. In the sequel,
&, will denote &g ; & denotes the characteristic function of §. Define
suceessively the sets 8,, such that for each =

1° S is & union of non-overlapping intervals;
2 2 ( 1 n—~% Ei /

)< A(8)+e

3° i.z; (—1)"—if5i < &,

icm

©
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Because of 2°, the inequality in 3° can be written as

flgo_‘j(“l)i‘lf.;! < &p.

Since ¢, ~> 0, we deduce that

£ = M(—17'5 ae.

J}ﬂz

1=

Moreover, we obtain from 3° that

n—1
Jea< 3=
=0
where ¢ = [&,. Hence

(1 :S‘fe<fs.,+2fsn<fso+s.
=1 n=1

0

By 1% §; = UJ}', where for each ﬁxed 4 the intervals Ji, Ji,...
=1
2{,@ and f& = ZZJ*) We now

are non-overla.ppmg Thus §&; =
order the pairs (¢, j) into a sequenee {pn} Let I, =), and an =(—1)"

1)n_i—1f5i+£n<5n—1+8m n=12..,

where ¢ is the ﬁrst element in the pair p,. Then &y = Eo = E oy, a.e.,
n=1
2’2(1,, f§,</» (8)+e.

4. Preliminary lemmas. We now present some lemmas that will be
used in the proof of Theorem 1.

Levvia 1. (cf. [5]). Let f: B* — X be Bochner integrable. Then there
exist elements x,e X and intervals I, such that:

and by (1

=
(a) f = n;; o, a.0., where the convergence is absolute a.e.;

converges absolutely.

®) 3 i)

The next lemma is a special case of Theorem 1 in [3].
Leyvma 2. Let f: R* — X be a measurable weakly integrable function.

Then f can be represented in the form f = g+h a.e., where g is a bounded
Bochner integrable function and h assumes at most countably many values

(==}
in X. If one writes h in the form b = 3 = &g, where the measurable sels B;
oo i=1
are disjoint, then [fdi = fgd/l+ Y 2 A(E NE,), where the series converges
E b i=1

unconditionally for every measurable set E.
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We shall need the inequality stated in the lemma below ([1], Th.
5 and [4]).

Leava 3. Let {3}, and {a}}_, be seis of complex numbers and eole-
ments of X respeeﬁz‘ely. Then them exists @ subset A = {1,2,..., n} such
that

Batnt e+ ha] < A(max ) (| Y o).
ted )
LexMa 4 et {a;} be a sequence of elemenis from X such that Zn a;

i=1
converyes unconditionally. Let {A,J} be a sequence of complex numbers such

that V‘ gl < M, 1 =1,2,..., for some number M. Then 2 Ay, converges
i
umoadztwmlly

Proof. Assume that the a; % 0. Let >0 be given. There is an

index i, such that jZa,, < for every finite set 7' of integers such

8 M
that i< T implies that i > 4. There is an index j, such that 5’ [24]
for i =1,3,...,4,. o
Let I, be the set of ordered pairs of integers (3, J) such that (3, j)e I,
if and only if 4 <7 and j< o Let Ty = max{iy, j,}. It suffices to show

that for r > r;, we have j X ey < ¢ for every finite set § of ordered
({B.7)eS

pairs of integers such that § NI, =@. In fact, let J; denote the set of

all j such that (4,5)e 8. Since § is fmlte, the J; are empty for large 4, say
i>k>i,. We then have

ig
Sl < (e Sa )

"iu @]

Z a( Dl = T+ 7 <,
(E5)eS =i+l  Jedy
ip
since U < (2 lag]) (2 45) < ¢/2, and by Lemma 3, V< 4M| Ya,| < ¢/2,
_] . ;e -
for some A < {ip+1,. ; ok} “

5. The proof of Theorem 1. By virtue of Lemmas 1 and 2, we may

assume that our function f has the form f= 2 #;¢g,, where the sets B

are pairwise disjoint. By Theorem 2, for ea,ch i there exist a’:

+1 and
intervals I’, j=12,..., such that

o0

sz. =2a§§p‘j

=

a.e.
and

D) <

§=1

ME)+min{A(I), 2%, i=1,2,..

©
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Let @ be any bounded interval in R™ First of all,

343500 = 3 - 3 i o< 3 ump—i(U 5-0)
7 J J =
< M(B) +min{i(B,), 27— WE—Q) = A(B, Q) - min{i(Fy), 2.
Hence

D aIing) /ZZE Q)+ 2
1,1 i

One can show, for example, by means of the Borel-Cantelli lemma,

that A(hmI’) = 0. This means that except for a set of measure zero, if

5@, then s belongs to at most finitely many If, {,j =1,2,... Thus,
sinece R" is a countable union of bounded mtervah, we conclude that

fh

FKAQ) L < oo

a.I',>11
"]

where the convergence is absolute a.e..

yaa/ I2

1;}
This series converges unconditionally by Lemma 4, where we put A

A AT}
A(E)
Remark 3. In a later paper, the first author will extend Lemma 2

to spaces whieh are not necessairly o-finite, and will present a representa-
tion theorem similar to Theorem 1 in a different setting.

a.e.,

Consider now the series

and a; = 2;A(¥;). This completes the proof of the theorem.
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