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Distribution function inequalities for the area integral*
D.L. BURKHOLDER (Urbana Ill.) and R. F. GUNDY (New Brunswick N. J.)

Dedicated to Anioni Zygmund

Abstract. Let 4 be the area integral of a function w harmonic in the Euclidean
half-space R™x (0, co). Information about the distribution function of a localized
version of 4 is obtained that leads to a general infegral inequality between 4 and
the nontangential maximal function of  and provides a convenient approach to the
study of the pointwise behavior of u near the boundary. In addition, the general
integral inequality of [2] between the nontangential maximal function of w and that
of a properly chosen conjugate is shown to hold also in the case n > 1.

Our object here is to prove some partial distribution funection ine-
qualities for the area integral and to show how these inequalities can
be used to study both the local and the global behavior of harmonie
functions. Before describing our approach in detail, we consider a few
of its applications. '

Let « be harmonic in the Euclidean half-space

R = {(w,9): <R, y > 0}.
The area integral of » is the nonnegative function A = A4,(u) defined
on R* by
Ax) = Ai(u, 2) = [[y""|Vu(s, y)Pdsdy
()
where a i3 a positive real number,

I'(@) = Ilw;a) = {(s,9): lo—s] < ay},

and Vu = (0u[dy, Ou[dm,, ..., du]dz,). The nontangential maximal fune-
tion N = N,(u) is defined by

@ N(z) = sup lu(s,y)l.

(&:1)el'(z)

* This research was supported in part by the National Science Foundation
under grants GP 28154 and GP 19222. We are also indebted to the Institut Mittag-
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ronment in which this work was carried out. In particular, we thank Charles Fef-
ferman for many conversations on questions related to those discussed here.
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Now let @ be any function on [0, co] such that 0 < @(1) < oo and
b
(b)) = fq;u)cu, 0<b< oo,
0

for some nonnegative measurable function ¢ on (0, oo) satisfying the
growth condition

(2 @(22) < op(4),

Throughout the paper, the letter ¢ denotes a positive real number, not
always the same number in different lines. The growth condition on ¢
implies a comparable one on ¢ and so D(4) is finite and positive for all
finite and positive 1. If 0 <p < co, then ®(b) =¥, ®(b) =log(b+1),
and @(b) = (b+1)log(b-1) are examples of such funetions. The following
theorem, one of our main results, shows that A and N are remarkably
closely related. ’

TEEOREM 1. Under the above conditions -

(3) [od)in<e [ D(N)da.
RH

RN

A>0.

If the left side of (3) is finite, then Yim u(w, y) ewists, and is finite and con-

Y->00
stamt, for x e R"™. If u is normalized so that this limit is zero, then the converse
inequality holds:

(4) [oNis<o [o(4)da.
RR Rn

The choice of gy and ¢y depends only on w, a, and the growth constant @y
The addition of a constant to u does not change A but ordinarily
does change N; normalization is necessary to assure (4).
Theorem 1 can be used to prove inequalities of the form

(®) Jow)is<e [N (w)is
R" R"

where v, normalized to vanish at 4 = oo, is a conjugate-of « in a genera-
lized sense ([8], [15]). For the case n = 1, (5) is already known [2]. Here
is another proof: For # =1, v is conjugate to u if w-iv is analytic in
the upper half-plane. The Cauchy—Riemann equations imply that |Vo|
= |Vu|, hence A (v) = 4(u). By applying (3) to N(u), (4) to N (v), and
using 4 (v) = A (u), we obtain (5). The case n > 1 is discussed in Section 4.

Bounds on the L? norm of the area integral have been given by many
anthors. We mention especially the work, for the case n = 1, of Marcin-
Kewiez and Zygmund [9] and Calderdn. [6], and the work, for the case
%> 1, of Stein [12], [14], Gasper [7], and Segovia [10]. Recently, Feffer-
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man and Stein [6] obtained Theorem 1 for several special eases including
@ a power: ®(b) =9 (0 < p < o). They also proved

”Aﬁ_p < Gp,n,a ”Noup7 0 < p < oo!
where N, is the radial maximal funetion:

No(2) = suplu(e, y)!.

y>0 -
It is interesting to note that if N is replaced by N, in (3), then (3) no
longer holds for all & satisfying the requirements of Theorem 1; see [2],
p. 152.

The & inequalities of Theorem 1 follow easily from the partial
distribution function inequalities proved below. The latter also provide
a convenient and illuminating approach to some of the results on the local
behavior of harmonic functions due to Marcinkiewicz and Zygmund [9],
Spencer [11], Calderén [3], [4], and Stein [13]. As an example, the fol-
lowing result of Calderén [3] can be mentioned: If u 4s nontangentially
bounded at every poini of a measurable set B < R", then u has o nontan-

gential Uimit at almost every point of B. We return to these questions in
Section 3.

1. The basic inequalities. Keeping the notation already established,
we consider local versions of the area integral and the nontangential
maximal function. Let R be a measurable subset of R} and Ag the
nonnegative function on R™ defined by

(8) @) = [[ ¥ |Vu(s, y)Pdsdy.
I@)AR

If I'(@) N R is nonempty, let
Np(@) = sup
(8 1)l {z) R
Sup - y|Vu(s, )i
(8,1)el@) AR
otherwise, let Ny(z) = Dy(z) = 0. In the following theorem, m (45> 1)
denotes the Lebesgue measure of the set of zeR® satisfying An(z) > A.
TEEOREM 2. Let G be a bounded open subset of R™ and R the interior
of the complement of \J I'(z). Let a>1 and B> 1. Then
=G

fu(s, 9,
Dr(2) =

(7 m(dp > 2) < om(eNg > 2) 4 om(eDy > 2)
for all 2> 0 satisfying
(8) Mm(Adp> A) < am(dg> f2).

The choice of ¢ depends only on a, B, n and a.
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In the proof, only the harmonieity of « in R is used; u need not be
defined outside of R. Note that over each component of @ the shape of
R resembles that of a mountain range. The theorem is also true with
@ unbounded; this follows easily from the ‘bounded case since Az, Ny,
and Dy increase as R increases.

In the following theorem, we need to use an interesting variant of
the nontangential maximal function. If I'(x) N R is empty, let N3(z) = 0;
otherwise, let

Ny@) = sup |uls,y)—u(s, 9l

(8.¥)el(z) R
where (s, y,) is the point on the upper boundary of R directly above
(8,9):
(8, ) eE}.
THEOREM 3. Let G be a bounded open subset of R™ and R the interior
of the complement of \J I'(x). Let a > 1 and § > 1. Then
&

¥s = SUP{Y:

9) m(Ng > ) < omledr > A)+om(cDg > 1)
for all 2> 0 satisfying
(10) m(N% > 2) < am (N> pA).

The choice of ¢ depends only on a, B, n and a.

We now use additional variants of ¥ and A4 to simplify the right -

sides of (7) and (9). Consider the truneated cones

I'(@; by k) = {(s,9): lz~s| <by, 0 <y <k}

where b and k are positive real numbers. Let W, b,z De defined by (1) with
I'(x) replaced by I'(w; b, k). Define A,; and D, analogously.

Lievwa 1. Let @ and R be as in Theorems 2 and 3 and let & be a positive
number such that ak is not less than the diameter of G. Let b = 2a. Then

%

(11) Dp< Ny,
(12) D < edyy,

and the choice of ¢ depends only on n and a. Therefore, in Theorem 2, (7 )
can be replaced by

(7" m(dg> 1) < em(eNyp> 4, @),
and, in Theorem 3, (9) can be replaced by
(9 m(Ng> ) <om(ed, > 4, &).
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Note that the comma is sometimes used to denote intersection.
Proof. The height of B does not exceed h = }%: if (, y)eR, then
ay < inf{jz—s|: s¢G} < ah.
Therefore, Dg < D, ;. By Lemmas 4 and 5 of Stein [13], D, < ey, and
Dy p < 64y ;. Accordingly, (11) and (12) follow.

Because both Ny and Dy, vanish off @ and are dominated by 6Ny,
the right side of (7) is dominated by the right side of (7'). A similar com-
parison holds for (9) and (9'). Therefore, the last statement of Lemma 1
follows from (7) and (9).

Here is another basic inequality.

Lemya 2. Let b> a> 0. Then, for all 1> 0,

(13) m{Ny > 2) < em(N, > 2).

The choice of ¢ depends only on n and the ratio afb.
Note that (13) implies

(14) m(Npz> 4, @) < m(N, > 2) < om (N, > A).
Furthermore, if @ is as in Theorem 1, then
(15) [oN)an <o [o(¥,)aw

BR RN

To see this, use Fubini’s theorem to obtain
[o¥)az = [ p@ym@,> naz,
RT il

then use (13). Note that 6as) = Cp13)-
Proof. Let B(x,y) = {seR": jz—s| < y}. Then B(z, ay) « {N,> 1}
for all (z, y)<RY™ satisfying |u(z,y)| > i In fact,
Ne> 2} = U{B(, ay): lu(w,y)| > 1}.

Let f be the charaeteristic function of this set and f* the maximal funetion
of f defined by

(@) =sup f f(s)ds/m{B(z, y)).
y>0 B(TU)
Then
(16) ' WM>ec{f">a
where ¢ = a"/(a+b)" For, if w, (%) > 2, then there is a point (s, y) satisfy-
ing |u(s, y)| > 1 and zeB(s, by). Note that f = 1 on B(s, ay) since B(s, ay)
< {¥, > 4}. Therefore,
(@)= m(B(s, ay) 0 B(w, ay+by)) /m(B(e, ay+by))
= m(B(s, ay))/m(B(o, ay+by)) = a,
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which proves (16). Using (16) and a variant of the Hardy-Littlewood
maximal theorem (see, for example, Chapter I of [14]), we have

am (N, > 2) < am(f* = a) < ¢llfll, = om(N,> 1)

with the choice of ¢ depending only on n. This completes the proof of
Lemma 2.

As we have seen above, any “complete” distribution funetion ine-
quality, such as (13), implies a corresponding & inequality. However,
“partial” distribution funection inequalities, suech as those contained in
Theorems 2 and 3, can also be used to obtain @ inequalities as we now
show.

2. Proof of Theorem 1. In addition to Theorems 2
prove below, we need the following elementary lemma.

Lemwma 3. Let f: R - [0, o] be measurable with compact support.
Let @ be as in Theorem 1 and suppose that a>1, f>1, 0 < y < a/f, and

p(BA) < yp(d), 1>0.

J¢mm<

A ={>0: m(f>2) < am(f> p2)}.

The easy proof is essentially contained in [1] and is omitted.

To prove (3), we apply the lemma to f = Ay for B and G as in The-
orem 2. Notice that 4, vanishes outside of G. Let § =2, y = ¢, and
a = 4y. Then, by Lemma 3,

[oUgdn<
R?

and 3, which we

Then

where

a [p(A)ym(dp> 2)da
A

where A is the set of all 1> 0 satisfying (8). By (7') and (14), the right
side is no greater than

fzp(l Yem (N > 1)dA = ea f@ (eNydze < ¢ f@(N)dm

Therefore, (3) holdﬂ with A replaced by Az. Now let R4 R%™. By the
monotone convergence theorem, (3) follows.

We now consider the converse inequality and let b = 2a. Using
the same pattern of reasoning as above, here in conjunction with Theorem
3, we obtain

@) [ois<o [o4,)ax
R% R .
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We assume from now on that the right side of (17) is finite and show
first that (0, y) converges as y — co. We restrict our attention to the
regions B = R, corresponding to @ = B(0, af) = {z: [2] < at}. Suppose
that @ is any point in R" and that |r{ < ay < az < at. Then (0, y) and
(0, 2) belong to I'(x) N R and it follows from the definition of N% that

(0, y)—u(0, 2)] < 2Np(2).

Therefore,

(0, ) —u(0, )] + |u(0, 2) —u(0, )] <

= $limsup |u (0, ¥) — u{0, 2)| < hmmf (%)
Y700

and, by Fatou’s lemma and (17), we have

[oWar<e [@(dy)dr< o,
- RR RR
which gives @(d) = 0. Therefore, 6 =0 and this implies that (0, y)
converges as y — oo.
Using the mean value theorem and (12), we have that

(s, y)—ul0, y)i < SUPDR(%)MI < ody () Isly ™

provided |r,—s| < ay and r,| < ay. Since A4,(r,) is finite for at least
one ,,
limiu(s, y)—-u(0,y) =0,

Yoo
and the convergence is uniform for s¢B(0, 7). This proves the existence,
finiteness, and constancy of the limit of u(-;y) as y — co. From now
on, assume this limit is 0. :
Let
frel@) = sup{Ju(s, y)—uls, y)l: (s, ¥)el'(x) N R, 5] <1},

Fo(@) = sup {lu(s, )|z (s, y)eI(x), Is] < 7}
As usual, if the sets are empty, f, p(¢) =f.(z) = 0. Then f, <

:tﬁnlfr,R =f7'7 lllﬂfr =XN.
—00 =00

N% and

Using (17) and Fatow’s lemma, we obtain

[e(N)de<e [@(4,)dr.
RN

B‘;L

In view of (15), this inequality also holds with N replaced by N,. This
completes the proof of Theorem 1.

2 — Studia Mathematica XLIV.6
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3. Local behavior of harmonie functions. Our aim here is to illustrate
how partial distribution funetion inequalities can be used to study problems
of local behavior. First, consider the following result of Calderén [4]:
If u is nonfangentially bounded at every point of a measurable s-et E, then
Az i finite almost everywhere on B. The first step of the proof is to show
that

B = {Nyp < oo}

This is not difficult and rests on a familiar point of density argument
(see Calderdén [4]). The key step is to show that

(18) {Wyp < 00} & {4y < o0},

We need to do this only for b = 2a. If (18) does not hold, then
(19)

for some 2 > 0, with ¢ the constant appearing in (7). Let B, be a measurable
subset of the set in (19) with diameter not greater than }ak and such
that m(Hy) > 0. Let G; be an open set containing #, with diameter not
greater than ek and such that m(G;—Ey) -0 as j — co. Let R; be the
region, defined in Theorem 2, corresponding to G;. Note that AR,- (#) = o0
for z<E,. Therefore,

M(Ayy, = co, 6Ny <) >0,

m(Ho) < m(dg, > pA) < m(dp, > 1) < m(Gy)

and, since m(6;) —m(E,), the number 2 satisfies (8) for all large j. So,
for such j, we can apply Theorem 2 and Lemma 1 to obtain

m(ARi > A < om(oNy > 4, Gy).

But the right side converges to om(cN, ;> A, B,) =0 while the left
side converges to m(H,). Accordingly, (19) eannot hold and the proof
of the key step is complete.

Now consider Stein’s result in the opposite direction (see [13], which
also contains some remarks about the historical background): If Ay is
finile at every point of o measurable set B, then u has a nontangential limit
ot almost every point of B. Let ¢ > 0. We denote by M the set of all zeR"
such that either

limsupu(s, y) —liminfu(s, y) > &
or ‘
Limsup [u(s, y)| = oo
as (3,9) - (z, 0), (s, y)el'(z; @, k). Stein’s result is a simple consequence
of the fact that
(20)

for all e> 0, a> 0.

m(B N M) —o
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We show below that (20) holds for all ¢> 0 with a = 4b. This is
enough! The special case implies that » is nontangentially bounded almost
everywhere on E. By Calder6n’s result, we have that

B < Ay < oo},
S < oo}
Therefore, by the special case, we have that (20) holds for all a.
Now fix ¢ > 0 and let ¢ = }b. Let > 1 as in Theorem 3 and choose

A to satisfy 281 = e If (20) does not hold, then m(E n M ) > 0 and, for
b sufficiently small,

(21)

Here we have used the fact that App(®) >0 as b — 0 for all zeB. Choose
¢ to be the constant appearing in (9'). Let E, be a measurable subset of
the set in (21) with diameter not greater than 4 ak and such that m(Eg) > 0.
Let &; be an open set containing B, with diameter not greater than ah
and such that m(@;—H,) -0 as j - co. Let R; be the region, defined
in Theorem 3, corresponding to G;. Lebt zeH,. Using the definition of
M and 2, the continuity of  in a neighborhood of (z,9,), and the fact

m(cdy,<i, M)>0.

“that |y, —v, <alls —al, we obtain N} (z) > pi. Therefore,

m(Bo) < (N, > b3) < m(N, > 1) < m (@)
and A satisfies (10) for all large j. Applying Theorem 3 and Lemma 1,
we have
m(By) = Iimm(Nl"e]_ > 1) <limom(edy, > 2, 6) = em(cd, ;> A, By) = 0,
Fo0

o0

a contradiction. This completes the proof of Stein’s result.

4. Coujugate harmonic funections. Suppose Uy Dy, Vgy.ery ¥, are har-
monic in RY* and satisfy the generalized Cauchy-Riemann equations:

ou n 0vy
oy

ot 2y
oz, " Om,
ou ov, 0oy ov;

0z, Oy ' om;  om,’

GyE=1,...,n.

Stein and Weiss [15] and Stein [13], [14] haive made a deep study of such
systems of conjugate harmonic functions. Here let v — (D1 v vy Dy)s
fo] = ( Z ”Izc) ;
k=1

and define ¥ (v) by (1) with » replaced by v. Then we have the following
generalization of Theorem 2 of [2]: :
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TugoREM +. Let u be harmonic in R, Tat @ be as in Theorem 1, and
suppose the right side of (22), below, is finite. Then there is a v = (vy, ..., v,),
conjugaie to u in the above sense, such that

(22) [o(¥@)dz<o [O(N(w)ds.
RV BrY

The choice of ¢ depends only on w, a, and the growth constant of .
Proof. There is a 9, conjugate to %, such that v vanishes at y = oo:

(23) - limo(z,y) =0.

Y00

For the case n = 1, the proof of this is contained in [2]; the proof of
the general case is similar with Riesz transforms playing the role of the
Hilbert transform. Now (23) implies that 0v,/dx; vanishes at y = oo;

using this, we obtain
2 7
{f g 2 P asay < o {f yl"’]—~;’°
| 0z T{a3b) v

Dlaya)

by slightly modifying the proof of Stein’s Lemma 2.5.1 ([14], p. 213).
Here b = 2a. Therefore, using dv,/0y = du/dz;,, we have

(24) A(v) < edy(u).
Hence, by Theorem 1 and (15),

Jo@i)ar <o [BlAw))dn <o [ D(4,(w)do
R™ RN RrM

2
dsdy

<o [O(N(w)dzr<c [ (W (u)) de.
Rn

RM

Theorem 4 now follows with the use of the following elementary facts:

s

V(o)< D, N (v,

bl
I
-

(N

o3

k=1

n
D) <e D B(h), HK=0,k=1,...m.
k=1

B
[

1

5. Proof of Theorem 2. We need the following lemma.

Leyma 4. Suppose that @ is an open bounded nonempty subset of R"
and that F is its complement. Let o > 1 and suppose that B is a measurable
subset of G satisfying m(@) < am(E). Then there is a ball B < G, with at
loast one of its boundary points in P, such that
(25) m(B) < cam(E N B).

The choice of ¢ depends only on n.
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Proof. There is & Whitney cube @ = & (for example, see [14], p. 16)
such that

(26) m(Q) < om(E N Q),
(27 ¢g<d< g,

where ¢ i8 the diameter of § and d is the distance from @ to F. Now consider
all balls centered at the center of @, containing @, and contained in G.
By the left side of (27), this family is nonempty; let B denote its union.
The maximality of B in the above family assures that at least one of its
boundary points is in F. By (26) and the right side of (27), we obtain (25).

We now turn to the proof of Theorem 2. For the sake of simplicity
and with no essential loss of generality, we assume that a = 1.

Suppose that 1 satisfies (8). Let R, = {(z, y)<R: y> ¢} for e> 0.
Since Ap — Ay as ¢ -0, the inequality

(28) m(dp, > 1) < am(4Ap > pi)
bolds for all small s As we now show, this inequality implies that (7)
holds with R replaced by R,. The result for R follows by letting ¢ — 0.

Note that A is a continuous function -vanishing outside of @.

Therefore, @, = {4p_> 1} is an open set whose closure is contained in G.
Let

B = {Ap, > Bi, Ng < yi, Dy < 02}

where y and ¢ are positive numbers to be c¢hosen later. Assume that (28)
holds. Then :

m(G,) < am(E) +oam{Ng > ya)+ am(Dg, > 82).
The key step of the proof is to show that
(29) am(E) < $m(G,)
provided y and & are suitably chosen, the choice to depend only on a, 8,
and #. The desired inequality follows:
m(Gy) < 2am(Np, > yi) +2am(Dg, > 62).

Suppose that (29) does not hold. Then m(G,) < 2am(E) and, by Lemma 4,
there is a ball B = @,, with at least one of its boundary points not in G,,
such that

m(B) < agm (B N B),

where ay = 2a6,;). Without loss of generality, assume that B is centered
at the origin and has unit radius. Let V be the interior of the cone with
base B and vertex at (0,1). Then the closure of ¥V, — {@,9)eV: y> &}
is contained in R. Choose 0 < 5 < % so that the ball B, with center ab
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the origin and radins 1—27 satisfies m(Bo)/m(B) = 1—(2a,)~". Then,
letting B, = ¥ n B,, we have that

(30) m(B) < 2a,m(Hy).
Finally, let

W=UI'z) n7,.

xelly

Note that W = V, and, except for its more “mountainous” lower boundary,
W has roughly the same basic shape as V,. Certainly, W is a Lipschitz
domain. Observe that
(81) (s, NI< v, y[Vuls, y)l < 52
for all (s, y)e W, hence for all (s, y)edW; indeed, these inequalities hold
for all (s, ) in I'(z) N R, if z<H,.

Now consider the area integral relative to the domain W; see (6).
For a suitable d, the choice of which depends only on a, 8, and n, we have
that
(32) Ay (2) > $(p2—1) 22,

To prove this, we fix weE, and observe first that
B < A (2) = A7y (2) + AL, (0) + 4, (0) + A, (2)

a’eEu.

where

Uy ={s,9)eR,: 8] < y—1, y>1},

Uy ={s,9)el'@) N R,: |s|>y—1, y> 1},

Us ={(s,y)el(&) N R,: (s,9) ¢ W, y<1}.
Using now the fact that B has a boundary point, say Ty, not in G, we
obtain U, < I'(z,) N R, and

A%, (2) < A%, () < 22

Let v, denote the volume of a ball of unit radius in R™ Then, by (31),

P .

Aby@) = [ g Vui,pitassy< [ [ gt ry—2asay
e s

=82 [ [0,9"— 0, (g —1)"ly " dy < 0,2" 622 [y tdy =cota2.
1 1

We now use the fact that seB,. This means that ] <1—2n and if
(8,9)eUs, then n <y < 1. Therefore, ' .

1

Ay (@) < [

7 Isi<y+1

These estimates imply the statement containing (32).

YU Ry dedy = 062,
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We now use Green’s theorem assuming that the above region W is
smooth enough for the theorem to apply. Whether or not this assumption
is generally valid, W can always be approximated by a smoother region
(see [13],[14]) to achieve the same end.

Let o denote the measure of the surface area of W and let a/on
denote the directional derivative along the inward normal. Then o(0W)
< 4 m(B) sinee |0y/dn] > 27F almost everywhere with respect to o. Now
using (32), (31), (30), and the identity Au® = 2|Vul?, we have that

(B-L2 mEB)<2 | AL (#)de = v, | | yIutdsdy
<3 [ ditois <o,

r 0y ou

= 2 — —_—

v, J Lar do—2v, fyaﬂ udo
o o

< 0,92 220 (W) + 20,y 8426 (3 W)
< 4o, (y*-+2y8) 2*m(B)
<

Bayn, (y*-+-296) 2m(B,).

This gives a contradiction for y suitably small. This eompletes the proof
of (29).

6. Proof of Theorem 3. Again, we set a = 1 and let B, ={{z,y)eR:
¥y > ¢} for > 0. Suppose that 1 satisfies (10). Since N tN% as ¢ |0,
the inequality

(33) m(N%, > 2) < am (N, > pi)

holds for all small e. This inequality implies that (9) holds with R replaced
by R, as we now show. The result for R follows by letting & — 0.

If » is a point of G within § of the boundary of @, then |y —y,| < &
for (s, y)el'(®) N R,. By the uniform continuity of % on R,, we have
that N3 is a continuous function vanishing outside of G. Therefore,
Gy = {N% > 7} is an open set whose closure is contained in G.

Let f be the characteristic function of the set {4g, > y1} where y is
& positive number to be chosen later. Here, let f* be the maximal function
of f defined by

F*(@) =sup [f(s)ds/m(B)
@B p

where B is any ball containing z. Let

B = (>, <}, Dy < o1}
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where 6 is a positive number to be chosen later. Assume that (33) holds.

Then
m(Go) < am(B) +am(fF > §)+ am(Dg > 81).

By the Hardy-Littlewood maximal theorem,

m(f* > 3) <elfll, = em(Adp, > y2)
where the choice of ¢ depends only on n. Therefore, if
(34) am (B) < §m(Gy)

holds for suitable y and 4, the choice of which depends only on «, 8, and
n, then the desired inequality also holds:

m(Go) < em(dp, > y2) +2am(Dg > 62).

So the key step is to prove (34). Suppose, on the contrary, that
m(Gy) < 2am(E). Then, by Lemma 4, there is a ball B « @,, with at
least one of its boundary points not in @,, such that

m(B) < apm(E N B),

where a, = 2acy;). Without loss of generality, assume that B is centered
at the origin and has unit radius. Let V Dbe the interior of the cone with
base B and vertex at (0,1). Then the closure of V, = {(z,4)eV: y > &}
is contained in R. Choose 0 <7 < } so that the ball B, with center at
the ‘origin and radius 1—27 satisfies m(B,)/m(B) = 1—(2a,)~" Then,
letting By = ¥ n B,, we have that

(35) m(B) < 2a,m(B,).
We need to consider several domaing W < W o< W,. Let
W,=UT@nv, i=0,1,

xelly
where B, = {f* <4} n B. Notice first that
[ 43 (@) dw < y222m(B),
Ey
where B, = {4g, <92} N B, since A < Ag. Let B(s,y) = {z: |z—s]|
< y}. Then, by Fubini’s theorem,
fA%ﬁ(m)dm = ffy“”]Vu(s, Y)*m{H, 0 B(s,y) dsdy.
Ey it

‘We can get a lower bound for this integral as follows. Suppose that
(8, 9)e W, Then, for some <k, (8, 9)el'() N V,. Hence, weB (s,v)
and f*(z) < 4 so that ' :

m{dp,> 1, B(s,y)) < $m(B(s, 3))

e © '
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by the definition of f*. Since B(s,y) B, this implies that
m(By 0 B(s, ) > im(B(s, y)) = }o,y"

where v,, is the volume of a ball with unit radius. Combining these esti-

mates, we obtain
(36) 27 Em(B) = v, [ [y|Vulrdsdy
. ,

and an even smaller integral if we replace W, by the smaller domain W,
which we define below.

From now on, we assume that %(0,1) = 0. This we can do without
loss of generality since N}’gs and Vu are unchanged if » is replaced by
u—u(0,1). Using this assumption, we now show that
(37 NW(,(‘”) > 3(B—1)1, meby,
for a suitable choice of 6 depending only on e, 8, and n. We fix z¢F, and
observe first that .

BA < N, () < Ny (@) + N, (2) + N, (@)
where
1 ={(8,9)eR,: |s] <y-—1},
Uy = {(s,9)el'(x) 0 By: (s,y) ¢ Wy U T4}
Note that the upper boundary of U, is part of the upper boundary of R,.
We now use the fact that B has a boundary point, say #,, not in G, to
obtain U, « I'(z,) N R, and
Ny (2) < N (20) < 2.
If (s,y)el'(x) N R,, then
(38) yIvu(s, y)l < 04
by the definition of E,. We know by the mean value theorem that if
(38) is satisfied for every point (s,y) on the line segment joining the
points (s, ;) and (S,, ¥.) in R}, then
(39) [(S1, ¥1) — (52, ¥o)| < OA(181— 8212+ (Y2 — U2V P Y1 A Y-
Here y; A y, denotes the minimum of y; and y,. Now let (s,y,) and
(3,9,) belong to U,. Then |s|>y;—1; otherwise (s,y,) would belong
to U,. Also, |z—s| < y;, implying that |s| < ¥;-+ |z] < y;+1. Therefore
sl-1<y<lsl+1, i=1,2,
80 that ly, —y,| < 2. Using the fact that z< B, = By, we obtain y; A ¥. > 7.
Therefore, by (39), we have

Y, (@) < 20077
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TUsing our assumption that #(0,1) = 0, we also have

(40)

for all upper boundary points (s, y) of Wy; this gives
N (%) < N () + 26277,

(s, )| = lu(s, y)—u(0,1)] < 280y~

Combining these estimates, we obtain (37) for all positive 6 satisfying
(41) 8<27(8—1). .
) We can now define W. Let I'(x, ) denote the cone I'(x) translated
upward by # units; that is,
() ={(s, y): lw—s| <y—1}.
If (2,1)e W,, lot
N(z,t) = sup

Bl (@, 8) "y

Finally, let 6 = }(f—1) and »
W = {(z,8)e Wy: N(z,1) < 04}.

By continuity and the faet that u(0,1) =0, W is a nonempty open set.
If (=, t)e W, let (z, 1,) be the point on the lower boundary of W directly
below (2, 1):

lw(s, g}

t, = inf{i: (z,1)e W}.

Then J¢,—1t,| < |w—s| for all # and s in the projection Py, of W on R™
For § satisfying (41), which we assume, the upper boundary of W coin-
cides with the upper boundary of W,. Clearly, W is a Lipschitz domain.

By the definition of W,
(42) fu(s, )| < 64

for all (s, y)e W, hence for all (8, ¥)eOW. Our next step is to show that,

in a sense, [u| is near 62 on a large part of the lower boundary of W. To
be precise, we let

8 ={(= &): lu(@,1,)] > 162}
and denote by Pg the projection of 8 on R" Then
(43) m(Pg) = om(B)

with the choice of ¢ depending only on « and #. To prove this, we let:

g be the characteristic function of Pg and g* be the maximal function
of g as defined in the proof of Lemma, 2, Then )

(44) Bcigt>g

icm
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for a positive number £ whose choice depends only on 5 and %, hence
only on a and %. Inequality (43) easily follows from (44) and (35) since,
by the Hardy-Littlewood theorem,

Em (o) < Em(g* > §) <elgly, = em(Pg).

"We now prove (44). Suppose that z,eH,. Then, by (37), Ny, () > 64,

so there i3 a point (s, y)el'(z,) N W, such that lu(s, y)l > 0A. Let (z, t,)
be a point on the lower boundary of W, in I'(s, y) N Wy, and satisfying
|u(2, 1)} = 04. By (40) and (41), such a point exists. If # = x,, we have
g (@) = 1; if & 5 ,, we proceed as follows. By (39), (41), and the fact
that #(0,1) =0, we have I'(z;) N V, = W. Therefore, B(,, ) < Py,
@ —zy| <, <7, and
Bz, [&—2o]) = Pyp.
Let s be any point in

B(m, (1—mn) [m“wof) N B, |6 — ).
Then [, — 1] < [0 — 8] < (1 —9) |z — o] < |2 — 4],

bz = 0 —8| > o —ag| — (1 —n) o~y = qln—a,],

and, using (39) once more, we obtain

61— lu(s, )] < lu(®, 1) —u(s, 3]
< 62-(]‘/3_8]2'*‘(.5:2:_"’8)2)1}/% A ts
< 2607
So, by (41), we have [u(s, )| > 64 and s is in Pg. Therefore,
g" (@0) = m(Pg O B(wg, o —q))) m (B (w0, lo—ag])) > &
where
=m{B(z, (1—n)lp—ao)) N By, o —aq)))/m (B (o, lo—,))),
which clearly depends only on # and #. This completes the proof of (44).
Keeping the same meaning for /0n and o, we now apply Green’s
theorem with the same proviso as in Section 5. Denote the lower boundary
of W by (0W)~ and the upper boundary by (0W)*. We have dy/dn > 2~F
on (W)™, ¢(8) = m(Pg), and ¢(d0W) < 4m(B). Using (38), (40), (42), and
(43), we obtain

szyIVulﬂdsdy =ffyAqusdy
W w

o

= fuzﬂdcﬂ— fﬂﬂ%{—du—fz fy%u.da )

- an g 7 b

> f 979622 do— | (2007 Y2do—2 f s6i2dc
s o)+ oW

> 22m(B) [0 2 65 —16 829> — 886].
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By (36), we have
4y® 2 0, [0y 272 02 —16 62972 — 8567,

and we see that this leads to a contradiction if both & and y are chosen
suitably small. Therefore, (34) must hold and the proof of Theorem 3 ig
complete. :
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An jnequality for the indefinite integral of a function in I?
by

MAX JODEIT, Jr* (Chicago, IlL.)
To A. Zygmund, real analyst

Abstract. Leb p, ¢ be positive numbers with 1 = 1/p+1/q. Let F be continuously
differentiable on the positive reals and zero at the origin. Let g denote the pth power
of [F|. J. Moser has shown that if ¢ is at least 2 and the ¢ norm of ¥ is at most 1 then
the integral of exp(g(x) —=) is bounded by a constant depending only on g. A new
proof of this is given, and the result extended to all ¢ > 1.

In his paper “A sharp form of an inequality by N. Trudinger”,
J. Moser ([2], Theorem 1) proves that if D is a bounded domain in R,
n>2, and v is a C' function with compact support in D such that
[lgradu (@)"de <1 then [expa,lu(z)™ Vdr<e, for certain econ-
D D

stants e, ¢, independent of u.

Earlier N. Trudinger [3] proved this for some « > 0.

Moser elegantly reduces the question to the following one-dimensional
inequality which he proves for ¢ > 2.

The present paper contains a new proof which incidentally works
for ¢ > 1.

TeEOREM 1.1. Let ¢ and p denote positive numbers with 1 < g < oo,

1
— +i = 1 (Hdlder conjugates). Let f be Lebesgue measurable on (0, o),
g

let [ 1f(@)%de <1, and let F(z) = [ f(t)dt. Then there exists a number
1] 0

C, depending only on q such that
(1.2) [ T dn < .
5 .

In what follows we consider only non-negative functions f. An equi-

. 1
valent theorem arises through use of the substitution z = log;:

* Partially supported by the National Science Foundation under NSF grant
GP 28271. .
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