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By (36), we have
4y® 2 0, [0y 272 02 —16 62972 — 8567,

and we see that this leads to a contradiction if both & and y are chosen
suitably small. Therefore, (34) must hold and the proof of Theorem 3 ig
complete. :
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An jnequality for the indefinite integral of a function in I?
by

MAX JODEIT, Jr* (Chicago, IlL.)
To A. Zygmund, real analyst

Abstract. Leb p, ¢ be positive numbers with 1 = 1/p+1/q. Let F be continuously
differentiable on the positive reals and zero at the origin. Let g denote the pth power
of [F|. J. Moser has shown that if ¢ is at least 2 and the ¢ norm of ¥ is at most 1 then
the integral of exp(g(x) —=) is bounded by a constant depending only on g. A new
proof of this is given, and the result extended to all ¢ > 1.

In his paper “A sharp form of an inequality by N. Trudinger”,
J. Moser ([2], Theorem 1) proves that if D is a bounded domain in R,
n>2, and v is a C' function with compact support in D such that
[lgradu (@)"de <1 then [expa,lu(z)™ Vdr<e, for certain econ-
D D

stants e, ¢, independent of u.

Earlier N. Trudinger [3] proved this for some « > 0.

Moser elegantly reduces the question to the following one-dimensional
inequality which he proves for ¢ > 2.

The present paper contains a new proof which incidentally works
for ¢ > 1.

TeEOREM 1.1. Let ¢ and p denote positive numbers with 1 < g < oo,

1
— +i = 1 (Hdlder conjugates). Let f be Lebesgue measurable on (0, o),
g

let [ 1f(@)%de <1, and let F(z) = [ f(t)dt. Then there exists a number
1] 0

C, depending only on q such that
(1.2) [ T dn < .
5 .

In what follows we consider only non-negative functions f. An equi-

. 1
valent theorem arises through use of the substitution z = log;:

* Partially supported by the National Science Foundation under NSF grant
GP 28271. .
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TaroreM 1.3. Let g be defined on (0,1). Suppose g is measurable,
: du . ! du
non-negative, and f g(u.)qmu— < 1. Write Tg(z) = f 9(10)7, O<w<l.
0 @

Then (with », q, and Cq‘as before), .

1
f exp(Ty (@) do< 0,
[

In Section 2, Theorem 1.1 is shown to be equivalent to an assertion
about the measure of the set of points where & — F ()" < y, namely that
miz—F ()" < y) < consty. The derivation of the estimate oceupies
Sections 3, 4, 5.

The function 4,(z) = (expa®)—1, which might as well appear in
(1.2) and (1.3) determines an Orlicz space L ) the dual of the Orlicz
space determined by A, (which is essentially #z(log*2)Y?). The linear
map g —Tyg of (1.3) which carries (I, du/u) (I the unit interval) into

@
L, (I, dx) is the transpose of the map f—F(z) = Df f(&)dt, so we get
the following endpoint case of Hardy’s inequality.

1
TuroREM 1.4. If L<p < co, [F()(logtf®)"? dt< 1, and F(z) =
o

= [ f(t)at, then for a certain number I, depending only on p,
b
. .
d
f o)y 7” <K,
0

Inequalities of this nature may be found in Zygmund’s book [4],
e.g., Chapter V (8.22), Chapter XTI, Examples 5, 6.

2. An equivalent variant of Theorem 1.1. In this section we show
Theorem 1.1 equivalent to the following lemma, in its turn equivalent
to an assertion about the inereasing distribution function of t— B (1)%.

Imwma 2.1. Let f belong to TA(I, dw), f>> 0. There exists a number
K, depending only on q such that whenever

Wl = {f forad* <z,
then
@ f exp{ —a(t— F (1)}t < K,

for all &> 0.
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Suppose this holds. An application of Fatou’s lemma gives (1.1)
when we know (1.2) holds for any one of our functions f>= 0 which is
also zero from some point on. Thus if f() = 0 for t> x,

I= f exp(F ()P —t)dt = f'exp(F(t)”—t)dt+exp(1!’(a:)p~ac).

[

By Holder’s inequality F(z)” < so the seeond term is bounded by 1.
This and the change of variable ¢ — at gives the estimate

1
1
I mf exp{—m(t—aAF(mt)”)}dt+l =J+1.
p @
Now F,(f) = 2~"" F(at) is the indefinite integral of f,(f) = 2"9f(zt), and
foe (I, do) with ||f, < 1. By (2.1),

. .
J < supy [ exp{—y(i—F, (0)?)}dt < K,.
>0

Next suppose Theorem 1.1 holds. Let f satisfy the conditions of
Lemma 2.1. Extend f to be 0 for ¢> 1, and apply Theorem 1.1 to Syt

Cy=> [ exp(Fy, (1) —1t)di =mfexp{—m(t—ﬁ'(t)l’)}dt.
0 [

Lemma 2.1 is a consequence of the next two lemmas.

Levwa 2.2. Let u be a Lebesque measurable function defined on (0, 1)
with u(s) > 0 a.e. Let m(u < y) denote the measure of the set of points s for
which u(s) <y and set

M =supm(u<y)ly.
y>0

Then
1

M L supmf e ds < M.
z>0 ¢

. :
LeMws 2.3. If 1 < g < 00, 0 < fe LI, dan), | fll,<1 and F(t) = [ flu)du
0
there exists a number K, depending only on g such that
(2.4) mt—F (0 <y) <Ky for all y>0,

where p = q[(g—1) is the Holder conjugate of q.
Lemma 2.3 is proved in Sections 3, 4, 5.
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Proof of Lemma 2.2.

1 ©
I(x) Ea,f PN :mzf m(u <fy)e"”’dy
0

(1]

oo . (=]
Zf Mye‘wdyg Mmzf ye~dy = I,
0 ¥ o
Let y > 0 be fixed. Then because m(u < ) does not decreases as
z increases,
—2Y

m{u < y)

e
cya?—

I{z) = a*m(u <) f e~ %ds =
v

&

If we let © = 1/y we get
supI(z) = m(u < y)ley,
x

and the lemma. follows.

3. A property of the indefinite integrals of functions in I If f> 0
Iifly = Land F(z) = jmf(t) dt we have by Holder’s inequality that F (z)” < 2,
with striet inequalityn unless f = ¢y, 4 (Where ¢ = 2z, Then F())? <t

for other values of ¢{; Lemma 2.3 gives information on the distribution
of values of the difference.

In what follows we use repeatedly the following result, which is
a weakened paraphrase of Theorem 10 in the paper [1] of Hardy, Lit-
tlewood and Polya. For convenience a proof iy included in Section 5.

Levma 3.1. (HLP): Let f, g be non-negative and monotone non-increasing
Sfunctions defined on an interval (0, a). Suppose that each is integrable
and that

fzf(i)dt>fg(t)dt, <z <a.

Let C be any conver increasing function which is 0 at 0. Then

a

felrma= [ clgw)ar.

0

We begin the proof of Lemma 2.3 with two simplifications. First,

it i3 enough to show that an estimate (2.4) holds for step functions. Second,
the rearrangement f* of the steps of f in decreasing order, beginning at

|4
0 gives a new function F*(¢) = [ f*(u)du with F*(1) > F(1), all ¢. Hence
[]

—F (1 <t—F(1)?, so we may assume f is non-increasing.
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It y >1/g we have m(i—F(1)? < y) < gy. Now let y be fized, 0 < y
<1/g. Write (¢—y)¥® for the function which is zero for 0 <t< y and
(t—y)¥? for t> y. Then the open set of points ¢ for which — F(2)? < y
may be written as

{1 B)> (—9)1% = 0,1) U () (50, 4,
k=1

where the open intervals indicated are pairwise disjoint. They are finite
in number because F is piecewise linear. Let the notation be chosen so0
that 3, < 81, 1<k < m.

To illustrate the idea of the proof let us first find an estimate ¢, < K,y
for some K,. It is clear that ¢, > y. If t, > qy we proceed as follows. The
line passing through the origin and the point (gy, (gy —»)"?) on the graph
of (t—y)J* is a tangent line, with slope my = (¢~1)"" g7y, thus G,
=myt(t < gy), else (¢—y)}?, is concave, increasing and 0 at 0. Thus
the derivative g, of @, is non-increasing. Since F is concave, in-
creasing and 0 at 0, F(f)/i decreases. Thus if ¢,> a, Flgy) > G, (qy)
80 F(t) > @, (1), 0 <t <7%,. Now apply Lemma 3.1, which we shall refer
to as HLP, to get

to Yo Iy 1 "
2 1> [fura> [o0ra =mior+ [ (- o-g)a
[ 0 ay p

=7 +p~og(ty—y)/(gy —y) = p~* 4 p~Tlog(p —1) (K —1),

where K = {,/y > q. Hence K is dominated by the root K, of the equation
1 =p~* 4 p~Uog(p ~1)(K —1). It is crucial in what follows to note that
even if ¢y < gy, we still have s, > gy. This follows from the coneavity
of ¥; the part of its graph to the right of ¢, lies under the line through
the origin and the point (4, (¢, —y)"7).

4. A procedure for estimating m(i—F(1)? < y). Having now set the
stage we turn to the main part of the argument. In case 1, > qy we add
to the intervals (s, ;) the interval (qy, &). However, we keep the same
notation.

Let a function #', be defined by requiring that
(41a) F,(0) = 0,

(4.1b) F; be continuous, :
(41e) Fy(t) = (t—y)'" if 5, <t 1, for some F,
(4.1d) the graph of F, consist of line segments otherwise.

In particular, F,(¢) = tF(s,)/s; = t(s;—y)Ps7* for 0<<t< 1. The
function F, is the smallest concave increasing function which is 0 at 0

n
and equal to (—y)¥? in UJ (s, ). Moreover, F(f)> Fy(f), 0 <t < t,.
Pt}

3 — Studia Mathematica XLIV.6
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Then by HLP,

N t?b
(4.2) [rera= [ fi@rd,  where f; = Fj.
1] [
For the sake of definiteness we combine intervals with a common
endpoint, but keep the same notation.

Now the idea of the proof is to replace F, by a similar, simpler
function F, which satisfies the conditions (4.1), but with (s,,t,) and
(84, %) Teplaced by (s,— (3, —s,), 32). That is, we move the first curved
part of the graph of F, to the right, staying in the graph of t—n)P,
and above an interval of length (¢; —s,;), until we have reached the next
curved part of the graph of ¥,. Then we combine these adjacent curved
parts into one, and complete the graph of F, with the line segment from
the origin to the point (s,— (f,—$y), {82—(ts—s) —9}Y?). We continue
in this way until the curved parts are combined into one (when we reach
F,). The graphs of F; and Fy, cross each other. In order to apply the
idea of HLP we have to show that the passage from F to Fy., only
decreases the right-hand side of formula (4.2). It is enough to do this
for F, and F,. We need another lemma, which is proved in Section 5.

Levuma 4.3. Let a, b, d be positive numbers with a < b, a-+d < b. Let
6 <z < b—d. Consider the fumction G,(t), the integral over (0,1) of

(09 + d)llﬂ — mllp

Fi r<u<aoitd,

g.(u) =

— ™M, otherwise, for u> 0.

(G4 (t) = /% emcept in (2, &+ d), where G, is linear.) Then on the imterval
(@, b—d) the funciion '

b
Q@) = [ ga()a

8 strictly increasing.
This is applied as follows. The right-hand side of (4.2) ean be writiten

8 20 Sz 2
[ foraes [ frat [ foras [ o
o . b Y S2

By (4.3) the sum of the second and third terms is only decreased if we
move the linear part of the graph of F, above (i, 8,) to the lefi to a new
Position above the interval (s, 83— (8—8,)), still as a chord of (t—y)}2.
‘We then get new seecond and third terms
s~ (63 —2y) 8
[ hrde+ [ hea,

f 89— (f1—381)
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where in the new second ferm %, is constant (the slope of the chord joining
the point (sy, (s;—#)"") to the point (85— (2, —sy), {82 (1 —8,) — y}}{™),
and in the new third term #,(#) = p~Yi—y)~Y% This gives a funetion
H, which is eoncave, increasing and 0 at 0. Hence H,(t) > Fo(t) on
0< i< 8y—(t,—$;), since on this interval Fo(t) has the form ¢f, and
Hy(sy—(t—8)) = Fyfsy—(t,—$,)). Again apply HLP and the argument
just preceding to eonclude thas .

in iy
[ Rra= [ fumea.

As mentioned before we finally get to F, in which all the curved parts
have been combined into one eurved part of the graph of (t—y)¥?, the
part lying over the interval (¢,—pu, 1,), where pu =D (t;—s,). Thus

B k=1
t(tn’—:u*:'/)llp(tn*‘lu)hl;
(t_?/)”p7

From (4.2) and the chain of inequalities just ended we geb

0\<\i<tn~—y,

Fn(t) =l
ty—p <t i,

-1 _
) +p‘glog _ﬁ._y_

2
i (tn"/‘_?/
tn_lu'"y !

1> fu()ydt = Z
[ n

(compare with formula (3.2)) or
1> (1—7) ' +p Yog(1l+Kr);

we have written r = y(t,—p)™", p = Ky, and replaced Kr(1—r)~ by
Kr to get the strict inequality. Since la—=pu>=82qy, r<1fg, so we
consider o

w(t) = (1—tg ) +pUog(1+Kig™Y), 0<t<.

Now 4%(0) =1, and (1) >1if K is sufficiently large. It remains to show
that by (possibly) increasing K, u(t)>1 for 0 <t <1, )
Now . :

Wt = (-1 —tg )V (—g )+ K (g + Ky,
u’ (@) = (§—1)(¢g—2) (L —1g ™) 2g~2 —p~ K% (g -+ Kt) 2.

If ¢< 2, W' <0 so that if u(1) =1 we have u(f) > 1, 0 <£< 1. Suppose
4> 2, and %'(t) = 0 for some #, 0 < ¢ <'1. Then for such i,

() = (¢—2)g A —ig ) P K (g4 Kt)"' — p 9 K2(g+ Kt)™?
=P(){(g—2)(g+Et)—q(1—tg ") K}, ‘
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where P(i) is a positive function of ¢. The expression in curly brackets
is megative for 0 <t <1 it K> q(g—2). Hence if K is so large that
u(l)>1,and also K >q(g—2), we have w(f)>1 for 011, as
desired.

5. Proofs of two lemmas.
Proof of Lemma 3.1. Our application is to C(z) = 2% Write

0(a) = [e(y)dy

where 0 < ¢(y), and ¢ is monotone non-decreasing. Integration by parts
gives

O@) = [ (w—y)do(y)+awey,

= [ @—y), de(y) +a0,,

where (#—y), = max(0,z—y) and ¢, = lime(y). Thus
y—0

Jolfw)a = [ [(f@)—y)sdtdey)+o [ f0)aL,
L] [ ) 0
80 the lemma followé once we show that

o —y)ea> [ (g —v), @

for all y > 0. Let m(f > y) denote the measure of the set of points ¢ in

which f(t) >y, with a similar expression for g. In each case, the set

measured is an interval with endpoints 0 and m(f> ) (or m(g> y)).
We have to show that

m(f>y) m(g>y)

D= [ fWd—ym(f>y)— [ gWdit+ym(g>y)
L]

0

is non-negative.
H A =n(f>y)>mg>y) =B write

A B B
D =Eff(t)dt—y(A~B)+(f foa- [ g a),
0 0 E
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which is non-negative (i) since f(1) > y for t < 4 and (ii) by the hypothesis.
If A < B write

B B B
D —yB—4)~ [fwai+(f fwa— [ g@)a),
4 0 0

which is non-negative since ¢ > 4 implies f(¢) <.
Proof of Lemma 4.3. Write C(y) for 4% set G(t) = i'?, g(i) = G“(f)

1
=2¢"Y2, Then
P

T b
0w = [opwja+ao(ZEI=EE) 4 [opa)a,

z+d

Q'(@) = Cgl@)+0"

(_G(ﬂ-%ﬂ)(g(m—(—d)—g(m))—o(y(m'l‘d))

Gz +d)—G(z)
a

Ny -
) _q((wﬂ-d) P_mllp)q 1(iw_11q_____]; ($+d)—1[q)_
d ? P

- o(g(w))—a(g(w+d))—0'(

et _ 1
=Pz x+d

)(g(w)—g(w+d))

Consider the expressions

1 1 g1 1 -t
[ M [ —_—— —
4= (m m+d)[p (m"“ (w+d)”")] ’

B_ ( (w+ayP—a'? )'H‘

and

d

To show Q'(z) > 0 we show that for each #> 0, the functions of d
defined by A and B, which have the same limit as d diminishes to 0,
have ratio B = B[A less than 1 for positive values of d. If we put
d=uat0<t< oo,

1+t —1)‘1‘1 (@ +oYe—1)(1t)ve

— ma-1
E=p q( t 1

Put s =1+1,58> 1, to get

= -—pq“lq( s—1 )“(s"—l+1—s

&1 1 ) =" g7 (L —1p 7Y,
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where 7/p = (s—1)(s”—1)"%. As s increases from 1 to oo, r decreases
from 1 to 0 (p/r is the slope of a certain chord of a convex funetion). Sinece
the funetion ¢r%*(L—rp~') attains its maximum value of 1 at r — 1,
the lemma is proved.
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Sur les coefficients des séries de Fourier
dont les sommes partielles sont positives sur un ensemble

par

J.— P. EAHANE (Paris) et Y. KATZNELSON (Jérusalem)

Sommaire. 3i B est un intervalle, les ocoefficients ¢, sont bornés. Si F a cer-
taines proprietés arithmetiques, ¢, = O (¢*®) pour tout ¢ > 0. On discute en particulier
le cas ol F est un dénombrable fermé.

Ce traivail a son origine dans le probléme, toujours ouvert, de 'existence
d’une série trigonométrique dont les sommes partielles tendent vers - oo
sur un ensemble de mesure > 0. On sait que la réponse est négative pour
les séries de Haar et les séries de Walsh ([71), et que la. réponse est positive
si on remplace les sommes partielles par les sommes de Poisson ([61, [11)
méme si on impose aux coefficients d’8tre “presque” de carré sommable

(51

Il est facile de voir (Proposition 1) que le probléme mentionné est
équivalent au suivant: existe-t-il une série trigonométrique dont les
sommes partielles sont > 0 sur un ensemble de mesure > 0, et dont les
coefficients ne soient pas bornés? Cela nous améne & étudier Pordre de
grandeur des coefficients r, d'une série trigonométrique

(1) Zrnms(nt—i—cpn)
0

dont les sommes partielles S, (f) sont > ¢ sur un ensemble fermé E. Pour
certaing ensembles ¥, assez minces, les coefficients peuvent étre arbitrai-
rement grands (Proposition 5). Mais dés que ¥ admet un “point de densité
arithmétique” (par exemple si F est de mesure > 0) on a 7, = O (™)
pour tout > 0 (Proposition 4). Si ¥ est dénombrable, on n’a pas néces-
sairement 7, = O(1); mais on peut choisir # dénombrable de facon que
7, = O(w,), ol w, est une suite tendant vers Iinfini arbitrairement
donnée (Proposition 7). Si F = [0,2x], on sait par un théoréme
de Helson .que 7, = o(1) [2]. Il n’en est plus ainsi si B est un inter-
valle contenu dans ]0,2x[ (alors r, =1 et ¢, constant pour n>1,
et r, assez grand convient); dans ce cas cependant, on a r, = O(1)
(Proposition 2).
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