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Estimates for singular integral operators
in terms of maximal functions
by
A. P. CALDER GX* (Chicago, 1)

Dedicated to my teacher, Professor Antoni Zygmund.

Abstract. Various maximal functions M (f, z) are associated with certain dis-
tributions in | J L2y, 1< p< co. They are slight modifications and generalizations
x>0

>
of the following function associated with a function f(x) of a single variable

2| f e

It is shown that, if K is a singular integral operator, it is possible to estimate M (Kf, =
in terms of M (f, z) provided the latter is finite and integrable to some power p, p < oo
outside a set of finite measure.

1. Introduction. The purpose of this paper is to obtain estimates
for the distributions of values of singular integrals in such a way that
cancellation due to variability of sign of the funetions involved is taken
into aecount. We accomplish this by using various maximal functions
associated with a given funection. These are defined in terms of primitives
or potentials of the latter. For example

t
M(f,n) = 8‘1:1: %Jf(mw)dsi,

13
where f is a function on the real line, or more generally, if pe —F,. =f

and if Ry(»,!) denotes the remainder of the % term Taylor expansion
of F, at =,
M(f, 2) — sup |t~ Relo, 3)

illustrate the type of maximal functions we have in mind. Actually we will
discuss some variants and generalizations of these and define them also
for certain kinds of distributions. Their interest lies in the fact that if

* This research partially supported by National Science -Foundation grant
NSF GP-28271.
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564 A. P. Calderén

K is a singular integral operator it is possible to estimate M(EJf,») in
terms M (f, #), even if this function is inordinately large or even infinite
on a set of finite measure.

2. Notation and statement of results. By @, 9, ..., » = (24, ..., %,) we
denote points in n-dimensional Euclidean space E™ If f(x) is a function
on R |Ifl, will denote its norm in I”. If # is an exponent, 17 < oo,
» will stand for its conjugate, i.e., ' = r/(r—1). The symbols z+y, |z|

icm°®

and Az, where 2 is a real number, have their usual meaning. If ¢ = (q, ‘

dyy +-., a,) Where the a; are non-negative integers, then

3 - Qe a,
o = aflai? ... o

le] = a;tapt...+ay,

a al a 02 a G,’L

o R v N e R O
z x| \ 0z, 2,

The letter ¢ will stand for a constant, not necessarily the same in each
occurrence. Finally p, ¢, 1 < ¢< p < oo, will denote two exponents which
will remain fixed throughout this paper.

Let F(4) be a complex-valued function on R" which belongs to L¢
on bounded sets. Given a positive integer m we will associate with F
a funetion N (F, »),

@)

a!l =ala! ..l ayl,

N@ o) =supe™[e™ [ 1F(y)—Pw,y)ay]"

lz—~yl<e

if there exists a polynomial in y, P(z,y) of degree at most m —1, such
that the expression on the right above is finite. If such a polynomial
exists, it is unique, and thus N (¥, ) is well defined. If no such P(z, y)
, exists we set N(F, ) = co.

' Consider now the class #%% 1L <g<p < co of functions F with
the following properties: F belongs to I? on bounded sets, N(F,x) is
finite and belongs to I” in the complement of a set of finite measure.
It m is even we shall say a distribution f belongs to .#Z%? if there exists
a funetion F in A% such that A™*F —f, where 4 stands for the
Laplacian. If m is 0dd we shall say that f is in 42,2 if there exists a function
F which is locally integrable and such that A™ D2 F — f and oF [B2;e AT
If m is even and fe #%% we define the maximal function M (f,») by
M(f,2) = N(F,s) where Fe#D% and A™: F =f As we shall see,
M(f,x) is well defined, ie., independent of the choice of ¥. Similarly,
if m i8 odd and fe .#2 we define

- [OF
2 )

=1

M (f, o)
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where 0F[0z;c 47 and A™HIRF — f. The space A% i3 contained in
L2, . (see [2] for the definition and Properties of these spaces). Thus,
operators in L2, . are well defined on A% and we have the following
result.

. THBOREM 1. Let K be an operator O3 defined by (Ef)" =%"f", where
I and (Kf)" denote the Fourier transforms of f and Kf respectively, and
k™ is a bounded function with %" (z)] < 1. Suppose that the inverse Fourier
transform of &~ coincides with a Junction k(z)in 2 0, and that & is m
times differentiable with |k, (2)| < j@|~"™ for all a, |a| = m. Then K maps
Oy into L2, ., and has o unique continuous extension K to L2, ... Let f be
o distribution in ML with m even, then g = Kf belongs to 455 Fur-
thermore, if u(f,t) and u(g, ) denote the measures of the sets of points whers
M(f, ) >t and M(g,x) >t respectively, then

1
w9, ) < o™ [ 87 p(f, 5)ds,
0

where ¢ depends on p, g and m.

There is a second analogue of the Hardy-Littlewood maximal funetion
associated with a distribution in #%% Its properties are described in
she following

THEOREM 2. Let f be a distribution in M%% with m even. Then there
exists a function M*(f, ) < co with the following properties:

(1) M(f,w)gM*(f,w),
{) if pu(f, 1) and u*(f,1) are the measures of the seis of poinis where
M(f, @) >t and M*(f, z)> ¢ respectively then

t
() <ea® f 8" u(f, 8)ds
0

where ¢ depends only on p and m,
(iii) 4f the operator K in the preceding theorem is of the form

Ef = [h(a—y)f(y)dy

where k(z) is integrable, m times differentiable, [Ea(@)| < |27 ™ for all
a |a| = m, and

[ sup [k(y)lde < 1.
2=l

Then M (Ef, z) < M*(f, 2).

As is to be expected, there are inclusion relations among the spaces
A7, Some-of these are given by the following result which we state
without proof. ’

4 — Studia Mathematica XLIV.6
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TEgoREM 3. If r=>p,8<gq, then My° > M55 If fe ML and M,
and M, are the maximal functions associated with  as an element of M22
and AT respectively, then M, > My, and My = M, if s =¢. If s<yp,

—1
and s< (% _%) , then AES, o ML If fe Mp? and M, and M, are the

maximal functions associaled with f as an element of M7 and M5, and u, (t)
and uy(t) are the measures of the sets where My >t amd M, > & respectively,
then :

i
pa(t) < 67 [ 677 (s) ds
]

where ¢ depends only on p and m.

The first part of the preceding statement follows almost immediately
from the definitions. The second requires an argument which is very
gimilar to the proof of Theorem 1.

The foregoing results are also valid under more general conditions.
For example, the restriction ¢<<p can be relaxed considerably. How-
ever, this greatly complicates some of the proofs and the interest of these
improvements does not seem to justify the additional effort needed to
obtain them. Also, our results hold for m odd if the conditions on %(z)
are slightly strengthened. In the one-dimensional case, however, no
additonal hypotheses on k(2) are necessary and our proofs apply without
change.

As an illustration of the consequences of our results let us show that
if the funetion M (f, ) in Theorem 1 belongs to L", + > @, the same holds
for M (g, =) and.

Mg, 0o <o [M(f,0) do.

In faet, this follows at once by multiplying by '~ the inequality relating
u(g, %) with p(f,?) and integrating after having selected p larger than
r {according to Theorem 3, we can select p arbitrarily large).

3. In this section we shall discuss the spaces .#%¢ and the function
N{(P, z).

Levwa 1. There ewists an infinitely differentiable function ® with
support in 2| <1 such that
P(2) = [P(y) "0 [A(v—y)]dy
for all polynomials P (x) of degree les than or equal to m.

This is well known. See [1], Lemma 26, for example.

LEMMA 2 If F and P are as in (1), then F(z) = P(x, ) for. almost
all @ for which the right hand side of (1) 4s fimite. ’

icm°®
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Proof. Evidently

P@)=Plo,) =lm— [ [P(y)—P(, y1ay
et ly—zl<ce

almost everywhere, o being the volume of the unit sphere, and, from Holder's
inequality it follows that

Y

1

|F(o) — P(a, )| <%[W [170)~P(@, y)]%y] <IN (F,z) g =0. -

Levwma 3. Let N (F, 2,) < t, N(F, 1,) < t, and let P(xy, y) and P (x5, ¥)
be the corresponding polynomials. Then

a1\ a\
(@) Plwy, y) _(?73) Pz, y)

where ¢ depends only on a.

< [y — &, + ly — 2] ]

Proof. Let 47! = |y —a,|+|y—a, and let @ be the function of
Lemma 1. Then

E) a a a
(55 20 0= () 21 = [ 144990, 1a1y — 112 01,2~ e, 2170,

which follows from Lemma 1 by differentiation under. the integral sign.
Thus if ¢ = 2Jy —,|+ 2|y —,] = 247" we have

d\° d\¢
‘('b‘?'/‘) P(zy, y)—(a—y) P(ws, i’/)l

< [ 1F@-P@, e,y - a)de+
le~zjl<e
+ [ F©—Pla, 0, Iy o)) de.
lz—myl<e
Thus, applying Holder’s inequality to these integrals we find that their
sum is dominated by ¢tA"t" g"*™ which is the desired result.
Lenvats 4. There is ai most one polynomial P(xz,y) of degres m—1
which makes the right hand side of (1) finite.
Proof. This follows from the preceding lemma by setting o, = z, = x,
=2 and letting « range over all multindices with 0 < |a] < m—1.

a a
Lewvva 5. Let a, (@) = (@») P(z,y)]y—z- Then, if N(F,2)<t on a
set H,

@ 00— N (0= t3(7)| < et — 7

Bl
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for @ and % in B. Furthermore, if la| =m—1, a.(®) satisfies a Lipschity
condition on B with constant ct. If |a| <m—1, a,(®) satisfies a uniform
Lipschitz condition on every bounded subset of H. The constant ¢ depends
only on m. .

Proof. Inequality (2) is obtained from lemma 3 by setting #, = 3,
2, =y = If |[of =m—1, then a,z(@) =0 for |[f]> 0, and the sum
in (2) reduces to a,(z), and we see that a,(x) satisfies a Lipschitz condition
with constant ¢t. Arguing by induction on j, and using (2) it follows that
ag(x), 1B) = m—j satisties a uniform Lipschitz condition on every bounded
subset of H. ’

LeMMA 6. The funciion N (F, x) is lower semicontinuous.

Proof. Let &, be a limit point of the set of points where N (F, z) < 1.
Suppose that N (F, x;) <? and @; — 2,. Then a,(x;) converges as j — oo,
as is shown by Lemma 5. Let P (%, %) = imP(2;, y). Then

| @) -Penn)P =lm [ [Py)—Pay)Pdy <.

ly—zyl<e ly—zjl<e

and N (¥, ;) < t. Thus the set where N (F, x) <t is closed for all ¢,1 < o,
ie., N(F,z) is lower semicontinuous.

icm°®

THEOREM 4. Suppose that N (F, x) is locally integrable in an open sei 0. -

Then the derivatives of order m of F' coincide with locally integrable functions

in O and
aa
— F
‘(8m)

for all a, |a| = m, where ¢ depends only on m.

Proof. Let n(s)e €3 and have support in @. Let @ be the function
of Lemma 1. Then

< N (P, z)

[+, [4y —2)]n(2) de

converges uniformly to #,(y) and has support in @ for A sufficiently large.
Consequently

6 a
[P0 (5 rnar =1im [ ) [ 90,1200 2190 e,

I—>0

Interchanging the order of integration in the last integral, it becomes

() f F(y)D, [y —#)]dy de.
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Now, if |a| =m, &, is orthogonal to all polynomials of degree m —1.
Therefore, we may subtract P(z, y) from F (y) in the inner integral. But
Holder’s inequality gives

[P @) ~ P 910,00y —2)1&]
<ol [ Pw)-Penra]” i <o g,
ly—=l<1/2

Thus, substituting above, we obtain

f J7w (5] 1w

whence the assertion of the lemma follows.

THEOREM 5. Let F' be a function in 452 and let t> 0. Then F can
be decomposed as the sum of two funciions F, and Fy with the following
properties

()

<o [ X(F, ine)a,

F, vanishes outside the open set O where N (F,z) > t, and the
measure | 0| of O is finite.

N(Fy, o)< ot in the complement € of @, where the constant
¢ depends only on m.

(it)

(iii) J N (Fy, w)%de < 7] 0|8, where ¢ depends only on m.
¢

@) Jdo[IF () lo—yI" ™Ay < & (018 1<r< g, where ¢ depends
¢
only on m.

(v) If 6(y) denotes the distance between y and ¥ then f B ) d(y)~™" dy
< 0] for 1 <7 < ¢, with ¢ depending only on m.

(vi)

N(Fyyz)<et and [N(F,, )" de < ®[|01° + [N (F, z)?dz]
¢

where ¢ depends only on m.
Proof. Since N(F, z) is finite and integrable to the power p in the
complement of a set of finite measure, the set ¢ where N(F,z)> > 0
has finite measure. Furthermore, ¥ (F, z) is lower semicontinuous and
consequently ¢ is open. Now define F, to be the Whitney extension of
the restriction of F' to the complement C' of @. Specifically, let Zx; =1
be a partition of unity in @ where the functions #; > 0 have the following
properties: #;e 0F; for each z,we0, there exist at most 2" functions
7; whose supports contain the point z; if d; and J; denote the diameter
of the support of #; and its distance to € respectively. then
¢l

c‘1<6—<c, for all j
i
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and
a\° ol .
(3) 0 7 (@) < edy for all j, la| < m

where ¢ depends on m but not on 0. That such partitions of unity exist
is well known. Let now ; be a point of % at distance §; from the support
of »; and let Fy(s) = F(x) for » in % and

2 m(@)P (@, o

for # in @. Since for each z there are at most 2" non vanishing terms
in the preceding series, and the same is true for any derivative of these
terms, it is plain that F,(x) is infinitely differentiable in 0. Furthermore,

() 7o = 3 S (g o (2] 2o

i Bty=a
If Ze¥, wc0 and o is the point in ¥ closest to », then

( ;;) Py(@)— ( B‘L)GP(E, @)

-3 S st wolfef s (3]

F) ﬂ+y=-a
9\ , 9\
+[(6_m) Pz ,w)h(é—a}—) P(i,w)].

Now, for & in the support of 7; we have

Fa(z) =

o' —z] < o, — | <
| —a] > 6;.

&+ < (L+0) 5,

Thus, from (3), Lemma, 3, and the fact that for each # the sums above
have at most 2" non vamshmg terms we find that, for |a| < m

2\ 9 \¢
(aTo) Fy(w)— (3;) P(%,z)
With ¢ depending on m only. Let now b,(z) — (—%)GFZ () for » in 0, and

ba(®) = a,(®), where a,(2) is as in Lemma B, if we%. Then (4) can be

4)

< ot g — gt

icm°®
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rewritten as
1
(5) by(x) — Eﬁw—f)ﬁbaﬁ(w' < atfp—zyml

Now since N(F, )<t in ¥, Lemma 5 shows that this holds also for
@ in %. This shows that b.(z) is confinuous for la] < m—1 and that b,(x),
la] = m—1 satisfies a Lipschitz condition with constant of at all points
of . Now for z¢ @ and |a| =m, (B) gives |b,(2)] < ¢f, and thus b,(x),
la] = m—1 satisfies a Lipschitz condition with constant ¢ for all a.
Consider now the funetion b;(z) = b,(2), @ = (0,0, ..., 0). Then by(x) is

infinitely differentiable in ¢ and (5) shows that b,(w) = 9 ) by (z) for
2e%. The same holds true for @« @ on account of the deﬁ.mtlon of b,,

namely b,(z) = (%) Fa(z) = (_065) by. Furthermore, Lemma 2 permits
us to assert that by(®) = a,(x) = Fy(z) almost everywhere in %. Thus we
conclude that F,(x) coincides almost everywhere with a funetion b, ()
which has continuous derivatives up to order m —1, and whose derivatives
of order m—1 satisfy a uniform Lipschitz condition with constant ef.

Next let us show that N (F,, ) = N(b,, ) is dominated by ¢. For
e % this follows from (4) with Ja] = 0. If < @ we seb

1
bolotn)— D —yb@+m-1)

jal<m~—1

L f ba(+39) (1 —s)"~2ds.

Jal=: m—l

But, for |a] = m—1 we have

ba(@ +39) — ba()]
whence substituting above we find that

< dlslyl

1 1
D by

jaj<m—1

o (w+y) — <ely™

whence the desired conclusion follows from the fact that F,(z) = by(x)
almost everywhere.

Now let us turn to the function F,;. That (i) holds is clear. As for
(i) not only do we have N (¥, ) < ¢ for @ in %, but actually

® [ f IFl(?l)lqd?/]llqg (;tg’m'i-n/z_z’
{y—z|<e

This becomes evident if we observe that according to (4) and (5) the
polynomials which we have to subtract from F and F, in order to

re?.
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calenlate N (7, #) and N (F,, ), coincide. Thus, since N (F,, #) < ¢t angd
NF oz <t

[ ma@ra]”

ly—ai<e

<[ [ wo-Pe,ora] "+ [ 1F:0)-Pe, pray]"
ly—zl<e lv-zl<e

< (14 0)tg™ ",
Next let us prove (v). As is well known the open set @ can be obtained
. as a union of cubes @; with disjoint interiors and with the property that

if ¢; and d; denote the distance between Q; and % and the diameter of

Q; respectively, then
o“lé—%gc, for all j.
4
Let y; denote the characteristic function of @; and d(y) the distance
between y and ¢. Then if 1<r<gq

[Py sy ™ay = D [Fu(y) 53(9) 8 (y) ™ dy.

But for y in ; we have 4(y) > 4; and, consequently, the sum on the
right is dominated by

D ly) x(y) 7™ dy .

If 2; is a point in % at a distance 6; from @, setting ¢ = d;+ J;, we have

JR@ruway< [ Fyay

ly—zjl<e

and according to (6)

[ Bray<o| [ Puyrag]"etrio < ov e
lv—zl<e lr—z;l<e

But ¢ = d;+ 8; < (L-+¢) ;. Thus
[R@r ) s ay < v er = orig,)

where |@;] stands for the measure of Q;. Substituting above we obtain (v).
Next let us prove (iv). We have

J @ [ 1B e~y ™y = [\, )7 [ 10—yl 0+ da,
¥ o 3

But for ye 0 the inner integral is finite and is dominated by ed(y)™™
and the desired result follows from (v).

° ©
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In order to prove (iii) let us observe that, since

e [ Fuydy < [ Fy(y)ie—yreay,
lz—yl<e
we have

N(Fy, 000 < [ Byl —yi--mdy
whenee (iii) follows from (iv) by integration.
Finally, let us prove (vi). As we saw earlier, N (F,, z) < c¢t. Thus
[N (@, wpar < P 0]
Furthermore, ’

[ (#,, 2y dn < 27! [ ¥ (7, 2)Pdz+ 20 [V, 0.
L3 € ¢

But ¥(Fy,2)<ct in %. Thus, according to (iif), the first term on the
right above is dominated by

(@)~ [ N (Fy, a)ds < 6" 0],
€

and this combined with the preceding estimates gives (vi).
Leswa 7. Let F be locally integrable and suppose that its derivatives
B, of order m are functions in LP. Suppose that |F,(z)| < h(z), ja] = m,
where h(w) is also in LP. If » is a unit vector let
¢
hi(,v) = supi h(x -+ vs)ds
i>0 1 &

and .
¥(@) = | [ Bla+v)a,]",

where do, is the surface area element of the unit sphers {¥}.

Then &* belongs to LP, |h*, < cllhl,, where o depends on p, and
N(F, &) < oh*(z) almost everywhere, where ¢ depends only on m.

Proof. Let us start discussing the function h*. First observe that
hy(®,») is precisely the one-dimensional Hardy-Littlewood maximal
function of the restriction of % to lines s parallel to the unit vector ».
Thus we have

[, vy a0 < o [h(2)?dz,
with ¢ dependjng.on p. But then
(@) =[[h(@, »7de,["" < o [bi(@, 7)ds,

whence the desired result about &* follows by integration.
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Assume now that F is infinitely differentiable. Let P(x, y) denote
the sum of terms of degree less than or equal to m —1 of the Taylor ex-
pansion of F(y) at . Then, if.y = lyl#,

1
(M) ) —Plo, )l <owl™ [ hlotsy)L—e)*T s < oly"hu(o, )
: : ¢

and
® [ IF@)-P@,yldy <" [Tn(@, 9 de, < IR (@)

yl<e

which is the desired conclusion in this case.

In the general case let 7(x)e €7 be non negative and have integral
equal to 1. Leb u; = Ay (Aw), let F, be the convolution Fxy, of F and
73, and hy = h¥y;. Then Fy(y } converges to F(y) almost everywhere
and P,(z, y) converges to P(z, y) for almost all ® and all y. Eurthermore,
according to the maximal theorem of Hardy and Littlewood the function
g(x) = suph, (2) is locally integrable, and we can pass to the limit in
! 3

1
T, (y) —P(w, ) < oly™ [ Ma(w+sy)(L—s)" " ds
0

whenever

1
[ g(@+sy)(L—s)"ds
; .

is finite, i.e. (7) holds for almost all » and y. Thus (8) holds for almosb
all z, and the lemma is established.

LevwMA 8. If f is & function in I” and k& a positive integer, there exists

0\
(am) 7| <oty
for all a, la| = 2k, with ¢ independent of f.

Proof. Let n” (%) be an infinitely differentiable function with compact
support which equals 1 near the origin and 9, (2) = 4" (A @) —7n" ().
Let n(x) amd (@) = A"y (Ax) —A""n (A" x) be the inverse Fourier trans-
forms of %" and 7, respectively. Then if f, = f«#, is the convolution
of f and 1, f; vanishes near the origin and near infinity. Let F, be the
distribution vanishing near the origin defined by (—4n?)*|@|*F, =f; .
Then its inverse Fourier transform F, is infinitely differentiable and
AT, = f,. Furthermore, [(0/0x)°F,]" vanishes near the origin and

a locally integrable fumction T such that A*F = f and

~

o\ : .
[5]7] = eros.
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As is well known, #*|¢|~%*, [a| = 2% is a multiplier in L”. Thus

a\e

(ke
the last inequality being a consequence of Young’s theorem on convolutions.
Thus we can select a sequence A; tending to infinity so that (%)HF,;J_
converges weakly to a limit g, with 9.1, < 2¢]fl,linll;. Furthermore,

l < ellfally < 2¢ 1l il

inspection of their Fourier transforms shows that (g—) Fy = g, *7,.
g

Let now h(x) = sup [77,1*2 1g./]- Then the maximal theorem of Hardy

and Littlewood asserts that he L? and ,]h]m\czligalmgcuﬂ]p. Thus if

B* is defined in terms of % as in Lemma 7, and 1* () < o0, we have,
by Lemma 7,

[ @) —Palao, 9)1%dy < oh* () ™+™.

ly—zl<e

pet now Fy (y) = F,(y)— P,{«,, y). Then since P, (g, y) is a polynomial
in y of degree less than or equal to 2k—1, we have that

) 7 (el =

for |a| = 2%. Now take a subsequence 4; of the one above so that not only

a\*_ . a9\
(22

converges weakly to g,, but also F, converges weakly on bounded sets

. . a1\
to a limit F. Evidently (—5;) F = g,. Furthermore

AR = h'mA"FzJ_ = Iimflj,
where the limits here are weak limits in L”. But
fi(@) = 2" [ fly)nlalz—9)]dy— 27 [ fly)n A @ —y)1dy
and since, as readily seen,
1A= (27 2]l < 02" 0

the second integral tends to zero and.fl(w) converges to f(x) almost every-
where. Thus f,, can have no limit other than f and we conclude that
A*F = f. This completes the proof of the lemma.
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4. In this section we will discuss the spaces 457,

TuroREM 6. The space 4%7 is contained in L2, ., s =n (P —q)/pq.

Proof. If fe.#2% and m is even, then f = A™F where Fe. 4?1
Decompose F as in Theorem 5. Since the set @ there has finite measure,
the function &(y) in (v) is bounded, and (v) implies that F, is in L% On
the other hand, according to (vi), N (Fy, #) is in L?, thus it follows from
Theorem 4 that all derivatives of order m of F, are in L”. In particular
A™2 P, e LP. Consequently, f = A™2F,+ A™*F,e I’ + 1%, and accord-
ing to Theorem 6 in [2] L?,, = L?,, ;. The proof in the casé m odd is
analogous to the preceding one and is left to the reader.

LemmA 9. Let F be in #27 and AF = 0 for some 1= 1. Then F is
a polynomial of degree less than or equal to m—1.

Proof. Since Fe #7:% according to the preceding theorem, I ig
also a tempered distribution. But 4'F = 0 and, therefore, |z[*F" = 0.
Thus P" is supported at the origin and F is a polynomial. Let N (F, z,) < o,
and F(y) = }a,y". Suppose that k> m is the degree of F(y). Then, if
P(w,,9) is the polynomial associated with F as in (1) and o = 2|z,|, we
have

N (B, wy) oM gmnHa ' (y) —F (@, 9)|*dy

ly—azyl<e

semh [ | Say

lyl<ef2

“dy+o(L)

— 2~n—kq

“dz+o(L).

3w
l2l<1’ |aj=k

Thus if %> m, letting o —+ co ‘we find that

2 a,2* 'dz =0

lel<l |al=k

which implies that a, =0 for |a] = % contradicting the assumption that
F(y) is of degree k. If k = m, on the other hand, letting ¢ — oo we find

that
| 2 @,

l2gl=1 lal=m

“de < N (F, w)2"+,

But the function N (F, ») is integrable fo the power p in the complement

of a set of finite measure. Thus N (F, z,) can be taken arbitrarily small
and we conclude again that

leaaz“

laj=m

“dz = 0

which implies that F(y) is of degree m—1 at most, as we wished to show.

icm°®

¥
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TEEOREM 7. Let f be in 457, then M(f, ) is well defined, that is,
if m is even, Fy and Fy are in A5, and are such that A™*F, = Am?F, = f,

then N (Fy, %) = N(Fy, x); if m is odd, F, and F, are locally integrable,
such that ATFUER, — AORE, — £ ang oF, , 0F,
O0x; =~ Oy
oF OF
o ?) = e o)
Proof. Suppose first that m is even. Then, according to the pre-
ceding lemma, F', — F, is a polynomial of degree m —1, and from Lemma, 4
we see readily that N(F,,z) = N(F,, ).
If, on the other hand, m is odd then, since A™+V2(F, —F,) = 0,

A then

are in w2l

0F, OF
we also have A1 (Aa;:i - amg) = 0 and the preceding lemma asserts
i 7
oF, OF, . . :
that o Tm B polynomial of degree at most m —1, which eom-
i s

OF. aF

L, m) =N(——2, w)
Oy ox;
5. We are now ready to prove our main results.

9 8
(5;) 5(2)] = fp(2)]

el ", 0 < |f| < m. For |f] = m this is part of our assumptions.
Suppose that our assertion holds for |f| = j = 1. Let |p| = j—1, and. let
VE, denote the gradient of %,. Then |Vk,(x)] < ¢lz|™" 7 and expressing
k,(ox)—k,(2), 0 > 1 as the line integral of V'k, along the segment joining
2 and gz we see that %, (o») has a limit as p — oo for each z % 0. On the
other hand, if |x,} = |#,| = o, expressing again k,(x,) —k,(x,) as the line
integral of Vk, along the arc of a circle with center at the origin, and
joining #; and x, we see that k,(x;) —%,(.) — 0 as g = oo. Consequently,
k,(») has a lmit as |#| — co. Let now ne 07 and [n(z)de =1. Then,
since %~ is bounded, K7, is square integrable and for |z| sufficiently
large we have

bined with Lemma 4 implies that ¥ (

Proof of Theorem 1. First we will show that

(Kn,)(@) = [kz—y)n,(y)dy = [ k,(@—y)n(y)dy.

Thus, if ¢ = lim k,(y), the last integeral tends to a as |#] - oo, and
|z}—>co

therefore we must have ¢ = 0. Consequently

e, (@) < lo| [ Wk, (e5)|de < elel ™ [ ™" o < ol
1 1
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In particular we have

a
'———k(m) < ¢fw|™t
Ox;

and this, as readily seen, implies that

f (e —y)— k()| do < c.
tzl>2lyl
Consequently (see [3], Theorem 2 for example), K is bounded with respect
to the norm of I?, and from the very definition of the norm of I? (see [2])
it follows that K is also bounded with respect to the norm of all these
Spaces.

Let now fe.#5% and let 1> 0 be given. Let Fe /27 be such that
A™* F = f. Decompose F as in Theorem 5, and let f, = A™2F, and
fo= A™F,. The function F, belongs to L? and therefore (see [2],
theorems 5 and 6) also to L?,,_,. Thus KF, is well defined. Furthermore,
since K concides with K in ¢ and K is continuous ‘with respect to the
norm of L% KF, is a function in L7 But, for ge (0P we have A" Ry
= KA™?g, and thus, the continuity of K in L?,_,, and the continuity
of the embedding of L? and L?,, in L2, _,,, imply that A™* KF, = KA™?F,
= Kf,. Now let us estimate N (EF,, ) assuming that x¢% and

(9) y@) = [IF:(y)lle—y| """y < oo

which, according to (iv) in Theorem 5, holds for almost all z in %. Without
loss of generality, we may further assume that # = 0. Let ¢ (y) be infinitely
differentiable, equal to 1 in |y| < ¢ and equal to zero in |y| > 2. Then
if o] < 9/2_, # is not contained in the support of Fy(1—g¢), and; as readily
verified, K[F,(1—¢)](#) is given by the integral

[H@—9) Py () [1—p(w)]dy.

Expanding %(z—y) in powers of y and substituting in this integral we
obtain

[ra—rmn-gwna = 3T [k(—n D -

la|<m

- 3 [k~ T wetay+
2iar | B0 Twemay

+ D [rito - ) L~ o)1y,
la}=m

wlllmre 0< 0 = 0(s,9) < 1. Bub |k,(—y) <ely)™", and since F, is in
I* apd vanishes outside a set of finite measure, (9) with 4 = 0 implies
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that all the integrals in the preceding expression are absolutely con-
vergent. The first sum there is a polynomial P (z) of degree m —1 at most.
Each term in the second sum is dominated by
ola| [ 1F)lylm" M dy < eg™ [ 1Py (y)l "y
vi<2e
< og™y(0).
Finally, since 1—g(y) has support in |y| > ¢ and |6} < 40, We have
k(0 —y) < ely|™ ™, and consequently, the terms in the third sum are
also dominated by ce™y(0). Collecting estimates we see that if |z] < p/2 then

(10) IE[F1(1—g)](2) — P(2)] < eg™p(0).
On the other hand for KF,p we have

JIEEe)fdn <o [ |Fy)p@)dy <e [ F.(y)ldy.

lyi<ze
As it was pointed out in showing (6) in the proof of Theorem 5, the last
integral is dominated by oN(F,,0)%"*™. Combining this with (10)
we obtain
[ 1EP (@)~ P(@)fds < o[p(0) + N (Fy, 0)F ™ ™.

lzl<e/2
Thus we have shown that
(11) N(EF,, 2) < o[p(2)+ N (F,, z)].

According to (ili) and (iv) in Theorem 5, p(z) and N (F,, z)? are
integrable in the complement of @. Thus since ¢ has finite measure
and 1 < ¢ <9, both yp(x)? and N(F,, z)? are integrable outside a set of
finite measure, and the same holds for N (KF,, ). Thus KF,e 422 and
Kf, = A™? KF, c 422 Furthermore, according to (iii) and (iv) in The-
orem 5, the measure of the set of points where :

M (Ef,, %) = N(EFy, z) > /2
does not exceed ¢|@ = ou(f, t)- B -

Now let us turn our attention to Kf;. On account of (vi) in Theorem 5

and of Theorem 4, we can assert that f, = A™*F, is in L” and that

Ifallo < o[i0122+ [ N(F, a)°da|.
%

Since M (f,#) = N(F,x) and 0 i3 precisely the set where M(f, =)
= N(F, x) >t we have

4 i
p [ "7 p(f, 5)ds =101~ [$°du(f, )
0 0

=1*10|+ [ N(F, o) dw,
<
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and consequently

4
Ifal < ep [77*du(f, s).
[

Sinee f; is in L7 so is Kf,, and Lemmas 7 and 8 applied to Kf, show that
there exists a locally integrable function G such that AmPq = Kf, and
N(&, z)e L?, |IN(G, )Ih < ollfsl5. Therefore, Kfye 457 and M (EKf,, z)e I?
with ' :

t
(12) 13 (B, )i < olifI5 < e [s" u(f, 5)ds.

Thus we have shown that g = Kf belongs to .#Z% Furthermore the
measure u(g, t).-of the set where M (g, #) > ¢ is less than or equal to the
sum of the measures of the sets where M (Kf,, #) > t/2 and M (Kf,, ) > 1/2,
respectively. Thus, combining (12) with the estimate for the measure of
the set where M (Kf,, ) > t/2 we obtained previously, we find that

i
e, < ofulf, )+ [0S, )ds].
[

Now, u(f, s) is a decreasing function of s and consequently

14
w(F ) <pt7? [ u(f, s)ds,
0
and the preceding inequality can be written as

%
plg, )< @™ [s"u(f, 5)ds.
o

Thus our theorem is established.

Proof of Theorem 2. Let us start defining M*(f, #). This is done
simply by setting

M (f,5) = SEP M (Ef, w), -

where the supremum is taken over all operators K satisfying (iii). Thus
we merely have to show that M*(f, ») is finite outside a set of finite mea-
sure and satisfies (ii). This we do by examining the proof of Theorem 1,
and show that under the hypothesis (iii) the same estimates hold for
bl {f, @). First observe that the constant in (11) depends only on the norm

oNf K as an operator in L¢ and on the bounds for "k, (), 0 < |a] < m.
ow

J@)de < [ sup k)ida =1,
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which implies that the norm of K in I? is less than or equal o 1. On the
other hand, the argument showing that |z/"*! |k ()] is bounded also
shows that there exist a finite common bound for all K satisfying (iii).
Thus (11) holds for all K with a fized constant ¢, and since M (Xf,, )
= N(KF,, z) we have

SEP M(Ef,, 7)< e[y () + N (F,, z)].

Before we discuss Kf, let us make some prelilﬁnamy observations. For

each a, |a| =m, let K, be the operator on G’ defined by (K,f)" = |z|™a"f".

Sinee 2°|¢|™™ is a multiplier in I?, K, ean be extended continuously to -

I?. Now if fe 07 we evidently have [A’"/’Ka—(;—) ]f = 0. Since K,
2

is continuous with respect to the norm of I? and 0 is dense in L” this

also holds for f< I”. Let now f and f be in I” and such that A™2f(

= (a—i)af. Then

0

AL ~19) = 4 (g =0

therefore the Fourier transform of K,f—f® is supported at the origin
and K,f—f® is a polynomial. But K,f—f® is in I” and this polynomial
must therefore be qual to zero. Thus, if AmEflE) — (éj;)af then K, f = f,

Let us turn now to the function f, which we shall henceforth denote
simply by f. Let f, = (—;;)GFE, la} =m, g = Kf. Since N (F,, z) belongs

to LP, according to Theorem 4, the functions f, and f also belong to L? and
|fo(@)] < N (F,, #). Since K is continuous in I?, g = Kf also belongs
to LP. Now, according to Lemma 8, there exists a funetion G such that
a a
g, = (55) &, |a] = m, is in I” and A™*@ = g. Since 4™ F, = f, we have
a 9\e

AmEf = (aiw) f for all |o| =m, and similarly A™’g, = (79;) g- Thus,
as we saw above, g, = K,g and f, = K,f. Now as is readily seen, K,
and X commute and therefore we have

Kf, = KK, f = E,Ef = K,g = ¢,-

Let now h(z) be the Hardy-Littlewood maximal function of N (F,, b).
Then '

v(e,2) = [ N(Fyo—9)dy < o"h(a)

wi<e

5 — Studia Mathematica XLIV.6
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where « deénotes the volume of the unit sphere. Furthermore, if #(p)
= sup [k(y)l, v(o) is non increasing and )
lyl=>e
(@) = (EL (@) < [ N (Foy o—)ik()ldy < [N (Fyyz—y)p(ly))dy

0

= [ vl@dv(e,2) = — [v(e, 0)dy(0) < —h(®) [ we"dp(o)

=nh@)o [ ¢ ple)de < nh(z),
0

and, according to Lemma 7,

N(G, @) = Mg, 2) = M(Ef,, 2) < oh* ()

where ¢ is independent of K. Thus

sup M (Kf,, ®) < ch*(x)
K

where nh*ﬂp < ¢elhll, < ¢V (Fy, )]l From here on the proof proceeds as
that of Theorem 1.
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Isomorphic characterizations of inner product spaces
by orthogonal series with vector valued coefficients

by
S. KWAPIEN (Warszawa)
To Professor A. Zygmund

Abstract. A Banach space X is isomorphic to a Hilbert space if and only if one
of the following conditions holds for all sequences () in X

(a) if 3 lwalP< + oo, then
n=0
om

[ et
0 k

be

(3 sinki+ mppcoskt) |2t < + oo,

il
-

2= o0 o0
(b) if [ llwg+ 3 (#op—15inkt+ zopcoski)fdi< + oo, then S lznlPdt < + oo,
0 k=1 n=0
- oo 1 el
(c) logl? < + oo if and only if [|| I apra()ifdi< + oo.
=1 0 mn=1
Here (r,) denotes the Rademacher system of functions.

1. Introduction. In the present paper we prove the following

TarorEM 1.1. A 7eal or complex Banach space X is isomorphic fo
a Hilbert space if and only if one of the following conditions holds for all
sequences (2,) in X

(a‘) ’Lf 2 ”‘”n“2< +007 then

o

oo
12
ot ) (B sinki+aycoskt) [ di < + oo,
k=1 :

27 ]
) if [ @+ 3 (@ ,sinkt+zyco8kt)|Pdl < + oo,
[} k=1

then >z, B < + o0,
n=0
oo 1 o .
(€) D lz,l? < oo if and only if fj lenvn(tmzdt< +oo.
n=1 0 n=

Here (r,) denotes the Rademacher system defined by
. (f) = signsin®®mt  for te[0,1] (B =1,2,..).
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