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On the localization property of square partial
sums for multiple Fourier series

by
CASPER GOFFMAN* (Lafayette, Ind,) and FON-CHE LIU (Detroit, Mich.)

To A. Zygmund on the 50th anniversary
of his first mathematical publication

Abstraet. It seems that localization and convergence of multiple Fourier series
are related to the Sobalev spaces Wj. This paper establishes the existence of such
a relation regarding the square partial sums. It is shown that for f eW%,, p=n—1,
this sort of localization holds for the n-torus. For each p < n—1 there is an feWp
for which localization fails. Examples are given of an everywhere differentiable periodic
funetion of 2 variables for which localization by square partial sums fails and of a func-
tion in W3 for which localization by rectangular partial sums fails. ’

1. In the study of Fourier series, a primary feature is the localization
property, which has been known to hold in the ecase of functions of one
variable since Riemann. That localization. does not generally hold for
functions of several variables hag also been known for a long time. Our
purpose is to obtain precise information regarding the funetions of =
variables which have this property.

Tonelli, [2], observed that, for # = 2, localization holds for thoge
functions now known as the functions whose partial derivatives (in the
distribution sense) are measures; this includes the Sobolev space Wi.
An example by Torrigiani, [3], shows that a condition given by Tonelli,
which guarantees convergence at a point, and holds almost everywhere
for » = 2 for functions in W%, may hold nowhere for n = 3.

Tn a recent paper, Igari [1], settles the localization problem for the
square (¢, 1) partial sums of a multiple Fourier geries. He shows that
this sort of localization holds for fe I, p > n—1, and fails to hold for
p < n—1. For the square partial sums themgelves — not the averages —
e points out that there are continuous functions for which localization

* Supported by a grant from the NSF.
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In the present paper, we return to the main issue. We show that
localization holds for square partial sums of the multiple Fourier series
for all functions in the Sobolev space Wy, p > n—1. For the CONVverss,
we show that for every » < »—1 there iz a function in W}, for which this
sort of localization fails. For » =2 we construct an everywhere dif-
ferentiable function for which localization fails. For rectangular partial
sums localization fails for p = n—1 but we do not know the situation
for larger values of p.

Thug, the solution of the localization problem. is found to lie ‘among
the properties of the first derivative.

2. Let T, be the n-dimensional cube which consists of those points

B = (g, Byy ..., Bp) 0. n-space with —e <<y <m, ¢ =1,2,...,n, and let

f’ be the mtemol of T,. As usual, we denote by w3 (T ) (or simply by

W) the Sobolev space of those functions in L? (T ) whose partial derlv-

. atives in the sense of distributions are functions and belong to LP(T,).

We shall only be concerned w117h the class W1 which consists of those
functions f in W} with f(—=, &) = f(x, &) for ae t, i=1,2,

This class may be described in severa.l ways. Perhaps the mmplest ig the

completion of the periodic and continuously differentiable functions with

respect to the Wj morm. We are of course interested in the operators

L)) == [fe+0D,,_s0a,
Ty,

where Dy; _; is-the appropriate Dirichlet kernel. For a function fe V‘V},,
we shall we f;, ¢ =1,2,...,%, to denote its partial derivative with
regpect to #;. The norm |f|, ,, for fe W5, denotes

1o = Ifll+ X 1fdl)

i=1

where ||-|, is the L? norm.

3. We show that localization holds for fe Wi, p >n—1. We first
state a trivial lemma.

Lemwa 1. Let Q consist of those fumctions in W‘ which are piecewise
Linear. Then the localization property for square pamal sums holds for all
functions in Q.

Let’ B(0,7) be the open cube of center (0, . ., 0) and side 2r >0,
and let B(0, r) be its closure.

Lemma 2. If p > n~1and 0 < e< 8 < =, there is a constant A = A‘(e), d)
>0 such that

©

@
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Sup 1Ly (e, )] < Al f o

for amy'fe W with f = 0 almost: everywhere on B (0, 6).

Proof. For any positive integer j,ze¢ B(0, ¢), and f satisfying the
condition of the lemma, we have

() o, Nl =5 0Dy,

T

ks
1
g—ﬂ{ f f f@+0)Dy,. Oty ... i,
TN salan
n—1
k3 ™ ’ b ’
+| f f f ff({o%—t)D(j’.__J)(t)dtl... dth
= I bl b
b b
ot oo [$@4+0Dy,..p O . a8,
bligl<n b —b
n—1
where b = (6—¢). ’
For convenience we let j = (.7: vy ¥ = W5 ooy Yicrs Yigrs - Y)

and @, = dty ... dt,_,dt;, ... d%,. Consider, for the first integral on the
right hand side of (*),

} f f f Float-ta, @3- Dy () 86, Dy ()
Zn “ b

sin(j+4)t

)| dt, .
28init, 7 (6l by

<

"%n
“%n

ff(.ml'l'tl) @, +11)

Since the partial derivative of f (in the distribution sense) is a funetion,
S(®y+1ty, 2, +1,) is an absolutely continuous function of ¢, for a,lmosf, all
va,lues of ,. Also, it follows from Fubini theorem that there is 4, with
b < £, < = such that

@ [ wran <= ir1z.

Tp—1
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‘We write, for almost all
| [ £ty @ 5) Dy 1)
b
<[ @ty 3 8) ~F Guy 2 8} Dy (1) |
b ki :
+IGot)l-| [ Dit |
t"1 ’ L o
<|[ (@t by 08 —F Gy 820} Dy ()t |
b

| [ Ut by 008~ fhy B8} Dy () s |+ A G+ )
i 4

where 4 >0 is independent of j and we B(0,¢). We note that in the ¥

preceding inequality, the lagt step follows by applying second mean-

value theorem to the integral [ D;(i,)dt,. For the next step we express
b

flmy+1y, @ -+1) —F(f, @ +1,) as the difference of ity positive and nega-
tive variation starting from f, as follows
Flor by, @+ 1) —F (8, 00+14) = p(6) —n(ty),

where p(f,) = n(f,) = 0. This can be done for almost all f,. Applying the
second mean-value theorem, we have

o

[ ot o) =5, m+ L) Dy
b

4 L 4
sin(j+4) sin(j +3)%,
< t,) 20 VTR
U Pl =g, O +1bf Ay vl
8 ‘
sin(j+4)t, sin(j +4),
dt Bl AR LA
} ()f 2sin}?, el )sf 2singt,

s

.. iy
sin(j4-4)4 o\ [ S48
py [(SRG+E sn(i+4)t
+’n<>b s, e [ S e
sin(j +1)t, ?sin(j+4)¢
p(b oW TR
)I,f 25in}t, ity |+ I (_I‘b 2sin}t, at

kg

4G+ [ fuoutt, w1y

™

SAGH)Hp @) +Ind)} <

e . ‘ p

iom
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and

lf{f 991+t1’w1‘Lt1) f(t15w1+t1 +D; (tl)dtll

iy

<AG+HYT f aont by, BT Rt

It follows that (from Holder’s inequality and (A))

l f f bf fart, mﬁh)%(h)%(ﬂ)dﬁdﬁ}~
A+ {2f f! fala 1z, 5] Dy ()l
,,f f 116, 81 VD5 (0] i)
e, [f
+[ [ wawra]”| f

Tp—1

sin(j+4)s
25inis

1

qu] ¢ k)
n—1

qu] a :

. N . q;l(n_]) . i_—l
< DE+HH M flp(G+3) * =D@+3) *
where D is independent of j and ze B(0,¢), and ¢ = —pil_

That similar inequalities hold for the other integrals that appear
on the right-hand side of (*) is evident. The claim of the lemma is now
clear. ’

THEOREM L. If p = n— 1, the square partial sums of the multiple Fourier
series of a function f of n variables has the localization property for fe Wja.

Proof. It is sufficient to prove that for any pair of positive numbers
g 8 with 0 < ¢ < 6, and fe ]DV},, with f = 0 almost everywhere on B(0, 6),
limZ;(z, f) = 0 uniformly for #< B(0, ¢).

j—00
Let f be any such function. Choose A as in Lemma 2. For any 7 >0

By

<240 +3)

sin(j+3)s

25ins

Tl

there is a ge@ with the same property as f and f—gl» < 97;-

Lemma 2
sup | Ly (e, f
Iml<s

The theorem follows from Lemma 1.

sup \ Ly (%, f—g) i+suple(w, Nl < n—l-sup [Ls (& 9]

|m[<e [z]<a 1m|<x
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4. We now show that if p < n—1 there is a funetion f of n variables,
with fe Wzl,, the square sums of whose multiple Fourlel series do not
have the loealization property.

For each positive integer j > N, where N is suitably large, let b =1,

2%
C2j+1
There are positive numbers o« and § such that of < M—m < B3, for all
ji=n.

For each j> N and & with m <k< M—1, let I = {(@,, ..., m,):
<o < (k+1)0}, 0<w;<b, i =2,...,4}, and let J, be the cloged
cube concentric with J, with sides h&lf ’rhe length of the sides of I,,. We
define a function f; on T, by

M1
0 if WET,LN an’
k=m

ym = m; = inf{k: &b > §=] and M = M, = sup[k: kb < < §nl.

fj(w) =
the sign of Dy; ;) on Jy if we Jy,

and elsewhere f; is defined in the natural way go that fi 18 quasilinear,
of the same sign on each I, and so that the partial derivatives of f; are

4
bounded in magnitude by 7 If ||fy is the norm of f; in W}, an elementary

calculation yields
il < 4BY2 (n - 1) 5700 < oo
where d is a positive constant.
Let B consist of those fe W) which are 0 almost everywhere on the
7 T, ) .
cube — ) << Sri= 1,...,n Eis a Banach space with norm induced

from W,. Oonsider the sequence of linear functionals

W

1
L) = [ Ds...ows0at = 80,57, > .
Tn

Then
b
1 1
1Zs(f;) ‘7;;21 f]D(i .9 ()] dt
k-m Iy
: 4 . kb]
=i{f sin(j+4)¢ }”-IMI f sin(j+3)¢
" i 2pingt &= s Zsmit
D) iy
L 2
aj 8in(§ iyt
>—;{f B clt} - min f | SinG 4t
= |, 28init mak<m-1 J, 2g8in 4t
T ~ B+

Z¢>0, where ¢is a constant.

©

@ ‘ :
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It follows from these estimates on ||f;]| and [L;(f;)| that

1y

and this tends to +oco as j—> oo whenever p < #—1. By the uniform
boundedness principle there is an fe H such that hmsup 8;(0,f) = +oo.

THEOREM 2. For every p <n—1, there is a fmwtwn fe W, of n varia-
bles, the square partial sums of whose multiple Fourier series do not have
the localization property.

5. Our purpose now is to give an example of an everywhere differ-
entiable function of two variables such that Tocalization does not hold
for the square partial sums of its double Fourier series.

The construction depends on the following elementary lemma.

Leava 2. For any a, b, with 0 < a < b <m, any m >0, M >0, and
positive integer jo, there is a j > j, and a continuously differentiable f, whose
support is in the vertical sirip o< < b, such that |f(z,y)] < m, for all
(z,y), and L;(f) = M.

Proof. For each j sufficiently large let r and s,r < s, be positive

J
logj '
Let §; be the vertical strip J— <o < T and let f; be the sign of

rT 87
integers such that a < —T < —1 <band s—r<
J J

the Dirichlet kernel D;; on §j, i.e.
1if (z,y)eS; and Dy; (%, 9) = 0,
fi(w,y) = —1 it (@,9)e8; and Dy(»,y) <

if (w,9)¢ Sj-
Then

ffj @, 9) Dy ( ,ydmd?/—fﬁ (@, 9) Dy (2, y) dody

1 .
- ogj j

. — =l/logj.
7 Viegj

By choosing j sufficiently large and slightly modifying f; to a continuously
differentiable f, we obtain the desired result.

The next lemma is also elementary and we omit the proof.

LevMmA 3. Let 0 <a<b<e<d<m and suppose f is continuously
differentiable with support in the strip oy = {a < # < b}, J, and j, are positive
integers, m >0, M >0, and ¢ > 0. There is a continuously differentiable g,

. whose support is in o, = {¢ < # < &}, and a positive integer j, > max(jo, j1)



GUEST


68 ' C. Goffman and Fon-che Liu

such. that |g(z,y)| < m, for every (,¥), fg ©,y Djm(m,y)dmdy}, M,
|fg(a,y) Dy (@, y)dwdy| < e and | [g(z,y Djziz(a"7 y)dody| < e
oy 9

‘We now define an everywhere differentiable f for which localization -

fails. Let 0<ay<b <...<a,<b,<..., where ]ima,,—limb =gq

N0

< w. For each =, let m, = (¢—0b,)%. By Lemmas 2 &nd 3 we may
obtain, for each n, a continuously differentiable function f, whose support
is in the strip o, = {a, <2 <b,} such that [f,(«, )| <m, for all (z,y),
and f ful®, ) Dy 5 (5, y) dwdy >n—1, for some j,, where {j,} is increasing,

and if 7, = U , then |ffn(m,y D, ;. (@, y)dwdy| < 1.

Letfbe deﬁned by f(m, y) = fule,y) for all (@, y)eo,, » =1,2,...,
and f(z,y) =0 othermse It is clear that

limsup [ f(w 2, 9) Dn(, ) Aoy = +oo,
N—->00 .
and that f is everywhere differentiable.

TaroreM 3. There is an everywhere differentiable function f, of 2 varia-

bles, the square partial sums of whose double Fourier series does not have
the localization property.

6. For n =2, Tonelli actually showed that localization holds for
rectangular partial sums for fe Wi. We now note that this does not hold
for n >2. For n = 3, we give an example of a function fe W3, for which
this sort of localization does not hold. The function f is of the form f(z,
Byy 3) = §(@1) h(2o, @5), Where h(w,, ®,) is in W) and iz such that the
sequence of square partial sums, {s; (%, (0, 0))}, of hat (0, 0) are unbound-
ed, and where g(z,) is infinitely dlfferentmble, zero in a neighborhood
of #; = 0, but not identically zero. Then, f is zero in a neighborhood of
(0,0,0), but there are increasing sequences {n;} and {m,} such that
{sn]n] m; (f, (0,0, 0))} is unbounded.

We md_lcate an example of an A (w,, ,) of the desired type. For each
n, let I, be a square of center (0, 0) and sxde 2k,,, with sides parallel to

. 1
the coordinate axes. Let h, be continuous, zero off I,, with hy(0,0) = ry

and linear on each of the 4 parts into which the lines By =y and @3 = — @
divide I,,. By _'properly choosing the sequence {k,} it is easy to see that

the function 7 = Zh has the desired properties. A similar construction

applies to each n >‘? for fe Wi_,. Thus localization for square partial

-sums holds for f € W5_, while locmhzafnlon for rectangular partial sums does
" not hold.

Y
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