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On a certain class of
non-removable ideals in Banach algebras

- by
W. ZELAZKO (Warszawa)

Abstract. Let 4 be a commutative complex Banach algebra with unit element.
A subset § < 4 is said to consist of joint topological divisors of zero if there is a net
(20) © 4, [jgo]] = 1, such that Iigrnzaa; = 0 for all we §. In the paper there are studied
ideals consisting of joinf topologieal divisors of zero. The main result states that

eyery maximal ideal belonging to the Silov boundary of 4 consists of joint topological
divisors of zero.

All algebras in this paper are assumed to be eommutative complex
Banach algebras with unit elements. If 4 and B are such algebras then B
is called an eslension or a ‘superalgebra of A if there exists a map pof A
into B, sending the unit element of 4 onto the unit element of B, the map
being an algebraic isomorphism and a homeomorphism. We write in this
case A = Band call the map ¢ an imbedding of 4 into B. Two extensions
consisting of the same algebra B and two different imbeddings are consid-
ered to be different. When the imbedding ¢ is an isometry we speak
about an isometric extension.

A proper ideal I = A is called a non-removable ideal if for every exten-
sion B of A there is a proper ideal J in B such that I = J meaning
¢(I) = J. The concept of s non-removable ideal was introduced and
studied by Arens in papers [1] and [2]. Actually Arens considered only
isometric extensions, so his class of non-removable ideals is formally
less restrictive than that of this paper. It seems that both classes coincide,
this would follow from a positive answer to the following question: Let B
be an extension of 4 under an imbedding ¢. Does there exists an equi-
valent Banach algebra norm on B under which ¢ becomes an isometry? (%)

In this paper we introduce and study a class of non-removable ideals
that is the class consisting of joint topological divisors of zero (shortly
j-t.d.z., ef. definition below). We do not know whether the introduced
class coincides with the class of all non-removable ideals and, in fact,
we expect that this is the case. Basing upon our earlier result [5] we obtain
the main result of this paper stating that every ideal in I'(4) (the Silov

() A positive answer to this question is given in the paper [ 7] (added in pm’uf).
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boundary of 4) consists of j.t.d.z. As corollaries we prove that the radical
of A consigts of j.t.d.z. and that any functional in I'(4) can be extended
to a member of I'(B) if B is an extension of A (we identify maximal ideals
with corresponding multiplicative-linear functionals).

DEFINITION, We say that a non-void subset § of a Banach algebra 4

consists of joint topological divisors of zero if for any finite subset {z, ..., 2,}
c A it is .
n

(1) 8(yy oy @) mf{Enzwm Il =1} = 0.
This is equivalent to the fact that there is a neb (2,) = 4, |2/l =1,

such that limz,z = 0 for every we § (cf. [5]). We say in this case thap

the net (2,) annihilates S.

‘We denote by ¢%(4) the family of all ideals of A4 consisting of j.t.d.z.,
by 1(A4) — the family of all closed ideals in 1¥#(A), and by £(4) the inter-
section M(A)nE(4), ie. the class of all maximal ideals in I(4).

LeymA 1. If 8 is & non-void subset of an algebra A and 8 comsists of

jt.d.z then S is contained in an ideal I belonging to T¥(A).
Proof. Taking as I the smmlle%t ideal containing §, i.e. the collection

of all finite sums of the form V’a :8;, where a,¢ A4, 8;¢8, we see that

any net (z,) annihilating § also anmhllates I and thus Tet¥*(A).
Lemma 2. The closure I of any ideal Tel¥(A) belongs to §(4).

Proof. Let @, ..., eI and for a given ¢ >0 choose %y, ..., ype I
in such a way that |#,—v, < ¢/n. For any ze¢ A with’ ||z\| =1 we have

anizK _2 o —3:) 2l + Zliyizn <a+2llmzil

and the infimum on the right-hand side with respect to ze¢ A4, || =1,
equals & This means 6(%y, ..., 2,) < ¢ for every ¢ > 0, where 6{wy, ..., %,)
is given by the formula (1), thus I<#(4).

In the sequel we consider only ideals from {(A4) and such ideals we

call sometimes }-ideals. Corresponding facts on Z#—lde als follow immediately

from the above lemma.

ProrosiTION 1. If T<i(A) and B is an extension of A then there is
an ideal J e E(B) such that I < J.

The proof follows immediately from ILemmas 1
ideal I, treated as a subset of B, consists of j.t.d.z.

CoroLLARY 1. Any ideal in 1(4) is & non-removable ideal.

LeMMA 3. Boery ideal I t(A) is contained in an F-mawimal ideal, i.e.
in an ideal Jel(A) such that if J, o J and Jyel(A), then J = J,.

and 2 since the
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Proof. Consider ¥(4) as a partially ordered set with inclusion as
order relation. If {I,} < #(4) is a linearly ordered subset of (4) then
(J I, consists of j.t.d.z. and so, by Lemmas 1 and 2 it is contained in

a

a certain ideal I, e {(4) which contains all ideals I,. The conclusion follows
now from the Kuratowski-Zorn lemma and from Lemma 2.

PROPOSITION 2. Every l-maximal ideal is a prime ideal.

Proof. Let I be an {-maximal ideal in A and let syeI with x¢ L.
We have to show that ye I. Let (z,) be any annihilating net for I. There
is an index a, and a positive real § such that |jz,2)| = 6 for all a > a,.
Otherwise there would exist a subnet (z;) < (2,), cofinal with (2,), which
annihilates § = JU{x}; this, by the Lemma 1 contradicts to the {-maxi-
mality of I. Setting now s, = z,%/|lz,#| we obtain a net annihilating
IU{y} since it annibilates T and fr,y]| = lR.@yll/lizaz] < 67" |l2.29] = 0.
This, as before, implies ye I.

Actually we do not know whether any I-ideal of 4 is contained in
an ideal belonging to :£(4), i.e. whether any I-maximal ideal is is 2 maximal
ideal in A. It would be interesting to know whether a corresponding
fact is true for non-removable ideals, i.e. whether every non-removable
ideal is contained in a maximal ideal which is also non-removable. This
problem is connected with some questions posed by Arens in'[1], where
he asked whether a family of removable ideals of A can be a non-remo-
vable family in the sense that there is no single exfension B of A which
“removes” all ideals in this family(¥). If I is a non-removable ideal in A
guch that every maximal ideal containing I is a removable ideal then
the family of all these removable ideals is a non-removable family. On the
other hand it can be shown that if every non-removable ideal is contained
in & maximal ideal which is a removable ideal, then every finite family
of removable ideals is a removable family.

PrOPOSITION 3. The set £(A) is a closed subset of the maximal
ideal space MM(A4).

Proof. If Mneﬁ(A), then for a given neighbourhood U of M,
in M(A4) there is an element M’ in £(A) belonging to the neighbour-
hood U. So for & given & >0 and elements ®, ..., s,¢ M, there is an
M e£(4A) such that |&;(M)] < ¢2n for i=1,2,.. . T we pub
y; = 1;—%;(M)e we have y;e M and |y,—mll <e2n, t=1,2,...,%
Since M'e#£(4), there is an element zeA such that [z = 1 and

n

2, eyl < #/2.

n n n n
Mz < Dyl + X lep—zdll < ef24 ) lyi—ail <
i=1 =1 i=1 i=1

(2) It follows from a construction given in [6], that the answer to this question
is negative (added in proof).

This implies

1:
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Since ¢ was choogen arbitrarily it means that d0(zy, ..., m,) =0
and so M,e£ (4).

We pass now to our main result stating that there are “guffi-
ciently many” ideals in 2(4), i.e. that if two elements of an algebra
A can be separated by functionals from 9(4), then they ean be
also separated by functionals from £(A). This result is contained in
the following

THEOREM. If I'(A) designates the Silov boundary of A, then I'(A)
< L2(4).

Proof. It is sufficient to show that if §(x, ..., 2,) >0, then the

elements @y, ..., #, cannot belong to the same maximal ideal Me I'(4).

Without loss of generality we can assume &(w, ..., ®,) =1 which ig
equivalent fo

(2). D el = 11l

for‘ all ze A. Consider e_xtens?on B of A consisting of all formal power

series § = Z;}O“il...ini? o B gy g€ Ay with 8] = 3 la [ < ool
iy . ] fpdg=0 L

It‘car% be easily verified that B is a Banach algebra mideyf Cauchy multi-

plication of formal power series, which contains A under an isometric

imbedding given by

Fotiny>0

¢(@) =5+ 0. gin.
i
If we put w = @8, 4 ... +m,%, we obtain an element of B and from (2)
we see .tham llwal] = [ie]] for all ze A. We want to estimate from below the
expression [w*2||, ze 4. Writing
w Tt = O o . aintin. o
ey =koL

we have 0f7) >0 and
)

(3)
‘ At i =l—1
By use of (2) and (3) we have

2

it Fig=h—1

—1 _ . ,
™ = OF~1 gl ... wing.

17

B - P :
o] = [} O oft ... afp et ... gin

It

l

D S I SN SR S S ol

Lo Teanly
s=1 ) +...+i=k~—1

n
\T k—1 i .
, Z o83, Z lzsait ... wlpe|
it ig=he 1 &

N

Fo— i . i,
> 3 0f it afee] = e
Tt ebig=k-1
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Thus, by induction we obtain

{4) lw*ell > [zl

for all ze 4 and all £ =1,2,... and thus also [w®2"| > l¥].
By passing to the spectral norm |jull, = lim ™" we get

llwzlls = Jlells

(8)

for all ze A. Since [jt;]l, = 1 we obtain

n
6) < > el
=1
and so the relation (2) holds also for spectral norm in A.

Designate by 4 the completion of the algebra A of Gelfand trans-
forms of elements of A in the sup-norm on the maximal ideal space

lelly < fooally = || 3 2zt

"M (4). It is known that every multiplicative linear funectional fe M(A4)

“gxtends” to a member f of M(A), so we can identify M(4) with M(4).
Under this identification we have I'(4) = I'(4), i.e. the elements 2, ..., o,
are in an ideal M belonging to the Silov boundary I'(4) if and only if
their Gelfand transforms &,,..., &, are in a Silov boundary ideal of A.
We apply now the main result of [5] which states that for every function
algebra A it is I'(4) = £(4). The formula (6) proves now that the ele-
ments By .., &, canmot be in a maximal ideal M« I' (4), and so the ele-
ments @, ..., ¥, cannot belong to a maximal ideal Me I'(4).

Denoting by cor4 the cortex of A ie. the set of all non-removable
jdeals in IR(4) (cf. [1]) we have the following relation

T'(A) c £{4) = cor(4).

An example due to Silov [4], repreduced also in [1] shows that it may be
cord s I'(4) and in this case corA = £(A4); so there be £(4) # I'(4).
On the other hand we do not know whether it can be cord # £(4), and,
as mentioned above, we expect that both sets coincide.

COROLLARY 2. If rad.4 denotes the radical of A, then radAel(4).

COROLLARY 3. If f is a functional in I'(4) and B is an extension of A
then f extends to & member f of I'(B). ‘

Proof. As in the proof of the theorem the problem can be reduced to
the case when 4 and B are function algebras. The zero set of f is contained
in an I-ideal of B (Proposition 1), so in a non-removable ideal (Corollary 1).
But B< C (P(B)) and this proves thus also that any non-removable
ideal of B is contained in an MeI'(B).

Remark. We do not know whether Corollary. 3 holds true if we
replace there I'(4) by 2(4) or cor A. It is also possible to have a functional
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feI'(A) which has an extension f not belonging to I'(B), or even corB
for some superalgebra B > 4. To see this take as B the sup-norm dise
algebra of all eontinuous functions on the unit dise of the complex plane
holomorphic in its interior and let 4. — {we B: 2(0) = #(1)}. The maximai
ideal space of A is the closed unit disc with identified 0 and 1 and the
Silov boundary of A4 is the unit circle (with 1 identified with 0). So the
functional f(#) = #(0) = #(1) is in I'(4) and it has two extensions onto B:
Si(@) = (1) and fy(#) = #(0) such that S1eI'(B) but fy¢ corB.

The following purely algebraic result can support the conjecture
that I(4) coincides with the family of all non-removable closed ideals
of A. Let B and P be arbitrary rings with unit elements. P is an extension
of B if there is an isomorphic imbedding of R into P sending the unit
of B into unit of P. Callan ideal I of R non-removable if in any extension P
of E the ideal Iis contained in a proper ideal of P, A subset § of R
consists of joint divisors of zero if for any finite subset {®y ooy 8,} c R
there is a non zero element ye R such that sy =0fori=1,2,..,n

) P.ROPOSITION 4. An ideal I of a commutative ring B is a non-removable
ideal if and only if it consists of joint divisors of zero.

The proof can be obtained from a reasoning in [2].
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On cosine operator functions
and one-parameter groups of operators
by
J. RKISYNSKI (Warszawa)

Dedicated to Professor Anfoni Zygmund

Abstract. If 4 is a complex number then

i
cos (— A [ eos(—A)rdr
[

*) exp(t (21 (1))) = g s —oo< i< oo,

T cos(—A)  cos(—A)k

The paper gives a gencralization of this formula to the case, when 4 is an unbounded
linear operator in a Banach space.

1. Preliminaries.

1.1. If ¥ and F are Banach spaces over the same, real or complex,
field of scalars then £(#;F) denotes the space of all linear bounded
operators from B to F. Let £ (F; F) denote #(E; F) equipped with the
topology of pointwise convergence (called also the strong topology).
An & (E; F)-valued function of a real variable is called strongly continuous,

“or strongly continuously differentiable, if it is continuous or continuously

differentiable, when regarded as a mapping from (— oo, o) to L (H; F).
For instance, by an application of the Banach-Steinhaus theorem, it
follows that a function K: (— oo, oo) - Z(E; F) is strongly continnously
differentiable on ( — oo, o) if and only if for any fixed x« F the F-valued
function ¢— K (f)# is continuously differentiable on (—oo, oo) in the
sense of the norm in F. ) )

1.2. Let B be a Banach space. A strongly continuous mapping
G: (—oco0, ) >L(B; F) is called a one-parameter strongly econtinuous
group of operators it G(0) =1 and

G(#)G(s) = G(t+s) for every s,te (—o0, co).

The infinitesimal generator of the one parameter group ¢ is the
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