about an isometric extension.

On a certain class of non-removable ideals in Banach algebras

by

W. ŻELAZKO (Warszawa)

Abstract. Let A be a commutative complex Banach algebra with unit element. A subset $S \subset A$ is said to consist of joint topological divisors of zero if there is a net $(z_a) \subset A$, $||z_a|| = 1$, such that $\lim_{\alpha} z_\alpha x = 0$ for all $x \in S$. In the paper there are studied ideals consisting of joint topological divisors of zero. The main result states that every maximal ideal belonging to the Šilov boundary of A consists of joint topological

divisors of zero.

All algebras in this paper are assumed to be commutative complex Banach algebras with unit elements. If A and B are such algebras then B is called an *extension* or a *superalgebra* of A if there exists a map φ of A into B, sending the unit element of A onto the unit element of B, the map

being an algebraic isomorphism and a homeomorphism. We write in this case $A \subset B$ and call the map φ an imbedding of A into B. Two extensions consisting of the same algebra B and two different imbeddings are considered to be different. When the imbedding φ is an isometry we speak

A proper ideal $I \subset A$ is called a non-removable ideal if for every extension B of A there is a proper ideal J in B such that $I \subset J$ meaning $\varphi(I) \subset J$. The concept of a non-removable ideal was introduced and studied by Arens in papers [1] and [2]. Actually Arens considered only

isometric extensions, so his class of non-removable ideals is formally less restrictive than that of this paper. It seems that both classes coincide, this would follow from a positive answer to the following question: Let B

be an extension of A under an imbedding φ . Does there exists an equivalent Banach algebra norm on B under which φ becomes an isometry? (1)

In this paper we introduce and study a class of non-removable ideals that is the class consisting of *joint topological divisors of zero* (shortly j.t.d.z., cf. definition below). We do not know whether the introduced class coincides with the class of all non-removable ideals and, in fact, we expect that this is the case. Basing upon our earlier result [5] we obtain the main result of this paper stating that every ideal in $\Gamma(A)$ (the Šilov

⁽¹⁾ A positive answer to this question is given in the paper [7] (added in proof).

boundary of A) consists of j.t.d.z. As corollaries we prove that the radical of A consists of j.t.d.z. and that any functional in $\Gamma(A)$ can be extended to a member of $\Gamma(B)$ if B is an extension of A (we identify maximal ideals with corresponding multiplicative-linear functionals).

DEFINITION. We say that a non-void subset S of a Banach algebra A consists of joint topological divisors of zero if for any finite subset $\{x_1,\ldots,x_n\}$ $\subset A$ it is

(1)
$$\delta(x_1, \ldots, x_n) = \inf \left\{ \sum_{i=1}^n \|zx_i\| \colon \|z\| = 1 \right\} = 0.$$

This is equivalent to the fact that there is a net $(z_a) \subset A$, $||z_a|| = 1$, such that $\lim_a z_a x = 0$ for every $x \in S$ (cf. [5]). We say in this case that the net (z_a) annihilates S.

We denote by $l^{\#}(A)$ the family of all ideals of A consisting of j.t.d.z., by l(A) — the family of all closed ideals in $l^{\#}(A)$, and by $\mathcal{L}(A)$ the intersection $\mathfrak{M}(A) \cap l(A)$, i.e. the class of all maximal ideals in l(A).

LEMMA 1. If S is a non-void subset of an algebra A and S consists of j.t.d.z. then S is contained in an ideal I belonging to $l^{\#}(A)$.

Proof. Taking as I the smallest ideal containing S, i.e. the collection of all finite sums of the form $\sum_{i=1}^{n} a_i s_i$, where $a_i \in A$, $s_i \in S$, we see that any net (s_n) annihilating S also annihilates I and thus $I \in l^{\#}(A)$.

LEMMA 2. The closure \bar{I} of any ideal $I \in l^{\#}(A)$ belongs to l(A).

Proof. Let $x_1,\ldots,x_n\!\in\! I$ and for a given $\varepsilon>0$ choose $y_1,\ldots,y_n\!\in\! I$ in such a way that $\|x_i-y_i\|\leqslant \varepsilon/n$. For any $z\!\in\! A$ with $\|z\|=1$ we have

$$\sum_{i=1}^n \|x_iz\| \leqslant \sum_{i=1}^n \|(x_i-y_i)z\| + \sum_{i=1}^n \|y_iz\| \leqslant \varepsilon + \sum_{i=1}^n \|y_iz\|$$

and the infimum on the right-hand side with respect to $z \in A$, ||z|| = 1, equals ε . This means $\delta(x_1, \ldots, x_n) \leq \varepsilon$ for every $\varepsilon > 0$, where $\delta(x_1, \ldots, x_n)$ is given by the formula (1), thus $I \in l(A)$.

In the sequel we consider only ideals from l(A) and such ideals we call sometimes l-ideals. Corresponding facts on l[#]-ideals follow immediately from the above lemma.

Proposition 1. If $I \in l(A)$ and B is an extension of A then there is an ideal $J \in l(B)$ such that $I \subset J$.

The proof follows immediately from Lemmas 1 and 2 since the ideal I, treated as a subset of B, consists of j.t.d.z.

COROLLARY 1. Any ideal in l(A) is a non-removable ideal.

LEMMA 3. Every ideal $I \in l(A)$ is contained in an 1-maximal ideal, i.e. in an ideal $J \in l(A)$ such that if $J_1 \supset J$ and $J_1 \in l(A)$, then $J = J_1$.

Proof. Consider l(A) as a partially ordered set with inclusion as order relation. If $\{I_a\} \subset l(A)$ is a linearly ordered subset of l(A) then $\bigcup_a I_a$ consists of j.t.d.z. and so, by Lemmas 1 and 2 it is contained in a certain ideal $I_1 \in l(A)$ which contains all ideals I_a . The conclusion follows now from the Kuratowski–Zorn lemma and from Lemma 2.

Proposition 2. Every t-maximal ideal is a prime ideal.

Proof. Let I be an t-maximal ideal in A and let $xy \in I$ with $x \notin I$. We have to show that $y \in I$. Let (z_a) be any annihilating net for I. There is an index a_0 and a positive real δ such that $\|z_a x\| \geqslant \delta$ for all $a > a_0$. Otherwise there would exist a subnet $(z_{\beta}) \subset (z_a)$, cofinal with (z_a) , which annihilates $S = I \cup \{x\}$; this, by the Lemma 1 contradicts to the t-maximality of I. Setting now $z'_a = z_a x/\|z_a x\|$ we obtain a net annihilating $I \cup \{y\}$ since it annihilates I and $\|z'_a y\| = \|z_a xy\|/\|z_a x\| \leqslant \delta^{-1} \|z_a xy\| \to 0$. This, as before, implies $y \in I$.

Actually we do not know whether any l-ideal of A is contained in an ideal belonging to $\mathcal{L}(A)$, i.e. whether any l-maximal ideal is is a maximal ideal in A. It would be interesting to know whether a corresponding fact is true for non-removable ideals, i.e. whether every non-removable ideal is contained in a maximal ideal which is also non-removable. This problem is connected with some questions posed by Arens in [1], where he asked whether a family of removable ideals of A can be a non-removable family in the sense that there is no single extension B of A which "removes" all ideals in this family(²). If I is a non-removable ideal in A such that every maximal ideal containing I is a removable ideal then the family of all these removable ideals is a non-removable family. On the other hand it can be shown that if every non-removable ideal is contained in a maximal ideal which is a removable ideal, then every finite family of removable ideals is a removable family.

PROPOSITION 3. The set $\mathcal{L}(A)$ is a closed subset of the maximal ideal space $\mathfrak{M}(A)$.

Proof. If $M_0 \in \overline{\mathcal{L}(A)}$, then for a given neighbourhood U of M_0 in $\mathfrak{M}(A)$ there is an element M' in $\mathcal{L}(A)$ belonging to the neighbourhood U. So for a given $\varepsilon > 0$ and elements $x_1, \ldots, x_n \in M_0$ there is an $M' \in \mathcal{L}(A)$ such that $|\hat{x}_i(M')| < \varepsilon/2n$ for $i = 1, 2, \ldots, n$. If we put $y_i = x_i - \hat{x}_i(M')\varepsilon$ we have $y_i \in M'$ and $||y_i - x_i|| < \varepsilon/2n$, $i = 1, 2, \ldots, n$. Since $M' \in \mathcal{L}(A)$, there is an element $z \in A$ such that ||z|| = 1 and ||z|| = 1

 $\sum_{i=1}^{n} ||zy_i|| < \varepsilon/2$. This implies

$$\sum_{i=1}^{n} \|zx_i\| \leqslant \sum_{i=1}^{n} \|zy_i\| + \sum_{i=1}^{n} \|z(y_i - x_i)\| < \varepsilon/2 + \sum_{i=1}^{n} \|y_i - x_i\| < \varepsilon.$$

⁽²⁾ It follows from a construction given in [6], that the answer to this question is negative (added in proof).

Since ε was choosen arbitrarily it means that $\delta(x_1,\,\ldots,\,x_n)=0$ and so $M_0\,\epsilon\,\mathcal{L}(A)$.

We pass now to our main result stating that there are "sufficiently many" ideals in $\mathcal{L}(A)$, i.e. that if two elements of an algebra A can be separated by functionals from $\mathfrak{M}(A)$, then they can be also separated by functionals from $\mathcal{L}(A)$. This result is contained in the following

THEOREM. If $\Gamma(A)$ designates the Silov boundary of A, then $\Gamma(A) \subset \mathcal{L}(A)$.

Proof. It is sufficient to show that if $\delta(x_1,\ldots,x_n)>0$, then the elements x_1,\ldots,x_n cannot belong to the same maximal ideal $M\in \Gamma(A)$. Without loss of generality we can assume $\delta(x_1,\ldots,x_n)\geqslant 1$ which is equivalent to

(2)
$$\sum_{i=1}^{n} \|x_i z\| \geqslant \|z\|$$

for all $z \in A$. Consider extension B of A consisting of all formal power series $s = \sum_{i_1 \dots i_n \geqslant 0} a_{i_1 \dots i_n} t_1^{i_1} \dots t_n^{i_n}$, $a_{i_1 \dots i_n} \in A$, with $\|s\| = \sum_{i_1 \dots i_n \geqslant 0} \|a_{i_1 \dots i_n}\| < \infty$. It can be easily verified that B is a Banach algebra under Cauchy multiplication of formal power series, which contains A under an isometric imbedding given by

$$\varphi(x) = x + \sum_{i_1 + \ldots + i_n > 0} 0t_1^{i_1} \ldots t_n^{i_n}.$$

If we put $w = x_1t_1 + ... + x_nt_n$ we obtain an element of B and from (2) we see that $||wx|| \ge ||x||$ for all $z \in A$. We want to estimate from below the expression $||w^kz||$, $z \in A$. Writing

$$w^{k-1} = \sum_{i_1 + \ldots + i_n = k-1} C^{(k-1)}_{i_1 \ldots i_n} x_1^{i_1} \ldots x_n^{i_n} t_1^{i_1} \ldots t_n^{i_n}$$

we have $C_{i_1...i_n}^{(k-1)} > 0$ and

(3)
$$||w^{k-1}z|| = \sum_{i_1+\ldots+i_n=k-1} C_{i_1\ldots i_n}^{(k-1)} ||x_1^{i_1}\ldots x_n^{i_n}z||.$$

By use of (2) and (3) we have

$$\begin{split} \|w^kz\| &= \left\|w \sum_{\substack{i_1 + \ldots + i_n = k-1 \\ s=1}} C_{i_1 \cdots i_n}^{(k-1)} \, x_1^{i_1} \ldots x_n^{i_n} \, zt_1^{i_1} \ldots t_n^{i_n} \right\| \\ &= \left\| \sum_{s=1}^n \sum_{\substack{i_1 + \ldots + i_n = k-1 \\ i_1 + \ldots + i_n = k-1}} C_{i_1 \cdots i_n}^{(k-1)} \, x_1^{i_1} \ldots x_s^{i_s+1} \ldots x_n^{i_n} \, zt_1^{i_1} \ldots t_s^{i_s+1} \ldots t_n^{i_n} \right\| \\ &= \sum_{\substack{i_1 + \ldots + i_n = k-1 \\ i_1 + \ldots + i_n = k-1}} C_{i_1 \cdots i_n}^{(k-1)} \sum_{s=1}^n \|x_s x_1^{i_1} \ldots x_n^{i_n} z\| \\ &\geqslant \sum_{\substack{i_1 + \ldots + i_n = k-1 \\ i_1 + \ldots + i_n = k-1}} C_{i_1 \cdots i_n}^{(k-1)} \|x_1^{i_1} \ldots x_n^{i_n} z\| = \|w^{k-1} z\|. \end{split}$$

Thus, by induction we obtain

$$(4) ||w^k z|| \geqslant ||z||$$

for all $z \in A$ and all k = 1, 2, ... and thus also $||w^k z^k|| \ge ||z^k||$. By passing to the spectral norm $||u||_s = \lim_n ||u^n||^{1/n}$ we get

$$||wz||_s \geqslant ||z||_s$$

for all $z \in A$. Since $||t_i||_s = 1$ we obtain

(6)
$$||z||_{s} \leq ||wz||_{s} = \left\| \sum_{i=1}^{n} z x_{i} t_{i} \right\|_{s} \leq \sum_{i=1}^{n} ||x_{i} z||_{s}$$

and so the relation (2) holds also for spectral norm in A.

Designate by \overline{A} the completion of the algebra \widehat{A} of Gelfand transforms of elements of A in the sup-norm on the maximal ideal space $\mathfrak{M}(A)$. It is known that every multiplicative linear functional $f \in \mathfrak{M}(A)$ "extends" to a member \widehat{f} of $\mathfrak{M}(\overline{A})$, so we can identify $\mathfrak{M}(A)$ with $\mathfrak{M}(\overline{A})$. Under this identification we have $\Gamma(A) = \Gamma(\overline{A})$, i.e. the elements x_1, \ldots, x_n are in an ideal M belonging to the Šilov boundary $\Gamma(A)$ if and only if their Gelfand transforms $\hat{x}_1, \ldots, \hat{x}_n$ are in a Šilov boundary ideal of \overline{A} . We apply now the main result of [5] which states that for every function algebra A it is $\Gamma(A) = \mathcal{L}(A)$. The formula (6) proves now that the elements $\hat{x}_1, \ldots, \hat{x}_n$ cannot be in a maximal ideal $\overline{M} \in \Gamma(\overline{A})$, and so the elements x_1, \ldots, x_n cannot belong to a maximal ideal $M \in \Gamma(A)$.

Denoting by $\operatorname{cor} A$ the cortex of A i.e. the set of all non-removable deals in $\mathfrak{M}(A)$ (cf. [1]) we have the following relation

$$\Gamma(A) \subset \mathcal{L}(A) \subset \operatorname{cor}(A)$$
.

An example due to Šilov [4], reproduced also in [1] shows that it may be $\operatorname{cor} A \neq \Gamma(A)$ and in this case $\operatorname{cor} A = \mathcal{L}(A)$, so there be $\mathcal{L}(A) \neq \Gamma(A)$. On the other hand we do not know whether it can be $\operatorname{cor} A \neq \mathcal{L}(A)$, and, as mentioned above, we expect that both sets coincide.

COROLLARY 2. If rad A denotes the radical of A, then rad $A \in l(A)$.

COROLLARY 3. If f is a functional in $\Gamma(A)$ and B is an extension of A then f extends to a member \bar{f} of $\Gamma(B)$.

Proof. As in the proof of the theorem the problem can be reduced to the case when A and B are function algebras. The zero set of f is contained in an t-ideal of B (Proposition 1), so in a non-removable ideal (Corollary 1). But $B \subset C(\Gamma(B))$ and this proves thus also that any non-removable ideal of B is contained in an $M \in \Gamma(B)$.

Remark. We do not know whether Corollary 3 holds true if we replace there $\Gamma(A)$ by $\mathcal{L}(A)$ or cor A. It is also possible to have a functional

 $f \in \Gamma(A)$ which has an extension \bar{f} not belonging to $\Gamma(B)$, or even $\operatorname{cor} B$ for some superalgebra $B \supset A$. To see this take as B the sup-norm disc algebra of all continuous functions on the unit disc of the complex plane. holomorphic in its interior and let $A = \{x \in B: x(0) = x(1)\}$. The maximal ideal space of A is the closed unit disc with identified 0 and 1 and the Silov boundary of A is the unit circle (with 1 identified with 0). So the functional f(x) = x(0) = x(1) is in $\Gamma(A)$ and it has two extensions onto B: $f_{\bullet}(x) = x(1)$ and $f_{\bullet}(x) = x(0)$ such that $f_{\bullet} \in \Gamma(B)$ but $f_{\bullet} \notin \operatorname{cor} B$.

The following purely algebraic result can support the conjecture that l(A) coincides with the family of all non-removable closed ideals of A. Let R and P be arbitrary rings with unit elements. P is an extension of R if there is an isomorphic imbedding of R into P sending the unit of R into unit of P. Call an ideal I of R non-removable if in any extension Pof R the ideal I is contained in a proper ideal of P. A subset S of Rconsists of joint divisors of zero if for any finite subset $\{x_1, \ldots, x_n\} \subset R$ there is a non zero element $y \in R$ such that $x_i y = 0$ for i = 1, 2, ..., n.

Proposition 4. An ideal I of a commutative ring R is a non-removable ideal if and only if it consists of joint divisors of zero.

The proof can be obtained from a reasoning in [2].

References

- [1] R. Arens, Extensions of Banach algebras, Pacific J. Math. 10 (1960), pp. 1-16.
- Ideals in Banach algebra extensions, Studia Math. 31 (1968), pp. 29-34, [3] Г. Е. Шинов, О расширении максимальных идеалов, Докл. А. Н. СССР 29
- (1940) pp. 83-85.
- [4] О нормированных кольцах с одной образующей, Мат. сб. 21 (63) (1947). pp. 25-37.
- [5] W. Zelazko, A characterization of Silov boundary in function algebras, Prace Mat. 14 (1970), pp. 59-64.
- [6] B. Bollobás, Banach algebras and theory of numerical ranges, Ph. D. Thesis, Cambridge 1971.
- [7] J. A. Lindberg, Extension of algebra norms and applications, Studia Math. 40(1971), pp. 35-39.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

> Received June 15, 1971 (354)

On cosine operator functions and one-parameter groups of operators

Ъy

J. KISYŃSKI (Warszawa)

Dedicated to Professor Antoni Zygmund

Abstract. If A is a complex number then

$$(*) \qquad \exp\left(t \begin{pmatrix} 0 & 1 \\ A & 0 \end{pmatrix}\right) = \begin{pmatrix} \cos{(-A)^{\frac{1}{2}}t} & \int\limits_0^t \cos{(-A)^{\frac{1}{2}}\tau} d\tau \\ \frac{d}{dt} \cos{(-A)^{\frac{1}{2}}t} & \cos{(-A)^{\frac{1}{2}}t} \end{pmatrix}, \qquad -\infty < t < \infty.$$

The paper gives a generalization of this formula to the case, when A is an unbounded linear operator in a Banach space.

1. Preliminaries.

1.1. If E and F are Banach spaces over the same, real or complex, field of scalars then $\mathcal{L}(E;F)$ denotes the space of all linear bounded operators from E to F. Let $\mathscr{L}_{\circ}(E;F)$ denote $\mathscr{L}(E;F)$ equipped with the topology of pointwise convergence (called also the strong topology). An $\mathcal{L}(E; F)$ -valued function of a real variable is called strongly continuous, or strongly continuously differentiable, if it is continuous or continuously differentiable, when regarded as a mapping from $(-\infty, \infty)$ to $\mathscr{L}_s(E; F)$. For instance, by an application of the Banach-Steinhaus theorem, it follows that a function $K: (-\infty, \infty) \to \mathcal{L}(E; F)$ is strongly continuously differentiable on $(-\infty, \infty)$ if and only if for any fixed $x \in E$ the F-valued function $t \to K(t)x$ is continuously differentiable on $(-\infty, \infty)$ in the sense of the norm in F.

1.2. Let E be a Banach space. A strongly continuous mapping $G: (-\infty, \infty) \to \mathcal{L}(E; F)$ is called a one-parameter strongly continuous group of operators if G(0) = 1 and

$$G(t)G(s) = G(t+s)$$
 for every $s, t \in (-\infty, \infty)$.

The infinitesimal generator of the one parameter group G is the