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A subset F of a topological space X is called non-meager if it cannot
be written as a countable union of sets which are nowhere dense in X.
E is condensation point dense in X if the intersection of EF with every
non-empty open set in X is uncountable.

Aiming for a more symmetric decomposition of the reals R than
the rationals and irrationals, we ask: can R be decomposed into two
condensation point dense sets both of which are non-meager ? An affirma-
tive answer is provided by

THEOREM 1. Every locally compact Abelian group G which is not totally
disconnected has a subgroup H for which

(i) H and its complement meet every neighborhood of G is a mnon-
meager set, )

(ii) H and its complement meet every neighborhood of G which is mea-
surable with respect to completed Haar measure in a non-measurable set.

In particular, H decomposes G into two mon-measurable, non-meager,
condensation point dense subsets of the same cardinality.

Proof. First, we show G has a proper dense subgroup. G is topolo-
gically isomorphic with B" X G’, where G’ contains a compact open subgroup
([31, 24.30, p. 389). If n > 0 and @ denotes the rationals, Q" X G’ is a proper
dense subgroup of G. If » = 0, G contains a compact open subgroup,
so that the non-zero component C of 0 in @ is a compact connected sub-
group. It follows that C is a divisible subgroup of G([3], 24.25, p. 385),
and hence G = C+ A for some subgroup A whose intersection with C
is 0 ([4], Theorem 2, p. 8). It therefore suffices to show C has a proper
dense subgroup K, since K+ A4 is then a proper dense subgroup of G.

Let I' déenote the infinite discrete dual of C. Let D denote the proper
dense subgroup of the circle 7' consisting of all n-th roots of unity,n=1, 2,...
For fixed y,el'— {0}, set K = {xeC: yo(r)e D}. K is proper subgroup
of C. For since C is connected and y, # 0, y,(C) = T. K is also dense
in C. By duality, it suffices to show that for each xe¢C, ye I’ and ¢ > 0,
there is an #'e« K with |y(2') —y(2)] < e.
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Suppose first that y, and ¢ are independent elements of I'. Let 8
denote the subgroup generated by {y,, y} and define f: § - T by f(ny,+
+my) = E"y(2)™, where &£e¢D is fixed. Because y, has infinite order,
fis a well-defined character on § (cf. [6], 5.1.3, p. 98). Because I'is discrete,
f extends to some &' l”, x'¢C. Since y,(2') = &' (o) = f(¥o) = £e D, @’ ¢ K.
But also |y(2")—y (@) = [f(y)—ry@)| =0<e.

On _the other hand, suppose y and y, satisfy a relation ny,+my = 0,
where ny,, my # 0. Since D is dense in T = y,(C), there is a sequence
{z,} on K with yo(z,) = y,(2). Observe that y (z,)™ = yo(@)" — vol2)" = y (@)™
By taking a subsequence, we may assume {y(x)} converges to some
aeT. [ay(x)]" = lim,y(2,)"y ()™ =1, so that y(x) = af, where f is
an m-th root of unity. Since my # 0, we have y(C) =T and y(y) =
for some yeC. Notice y,(y)" = y(y)™ = ™ =1, so actually yeK. Thus
z,+yeK and y(z,+vy) = y(x,) B — af = y(@) as required.

Let L denote a proper dense subgroup of G and 4 a non-zero countable-
subgroup of G/L. Embed A in a countable divisible group £, and extend
this embedding to a group homomorphism 3 :G/L — 2([6], 2.5.1, p. 44).
Let H = p~! (kerd#), where p : @ — G/L is projection. H is a subgroup
of G containing L, and since

G/IL  G|L
H|L — kerd

H has countable index in @. H is proper since 4 * 0 implies kerd = G /L.

(i) Let U = z,+V be a neighborhood in G, with V a neighborhood
of 0. Let W < V be a symmetric open neighborhood of 0. Since z,+ H
is dense in G, we may choose a y,eW Nzy+H. y = yo+h (he H) and
a computation shows that U N H = h+[H Nny,+V]. Since —y,e—W
= W cint V, y,+V is a neighborhood of 0. Therefore to show U N H
is non-meager, we may assume U is a neighborhood of 0.

Choose an open neighborhood V of 0 for which V-V <« U.G = E+H,
where F is a countable set. For each x¢ E choose a yeV N x+ H, and let
F denote the countable set so obtained. For yeF,he H and y+heV,
heV—yc V—V<cU. This means V=V Nn[E+H]=V n[F+H]
=U{Vny+H:yeF} «c J{y+UNnH:yelF}. If U N H is a meager
in G, with U N H the countable union of nowhere dense sets K, tel,
then the open set V< |J {y+ F;:yeF,iecl} is meager in G. But this is
impossible, since G is a Baire space ([2], p. 249).

The complement H° is dense in @, since if be H’, then b+ H < H°
Choosing ae—V N H°, we have a+VNHc Una+HcUnH so
that U N H® is also category II in G by the above.

(ii) Let ¥ denote the completion of the o-algebra generated by the
open sets in G with respect to Haar measure m. Let U be a neighborhood

~ 3(G|L) = 2,
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in @ with UeZ. Since U NH = U n (U n H% it suffices to show

Un H¢Z. Since Z is translation invariant, we may assume, exactly as

above, that U is a neighborhood of 0. If ¥V is an open neighborhood of

0 with V—V < U,and D = {y,} = V is chosen countable, so that @ = D+

+ H, then V is contained in the union U Y.+ UNH.If UNHeZ, then
m(U N H) > 0, since

0<m(V)< Y m@E,+ U nH) =) m(U nH).

But this means U N H+ U Nn Hc H has non-empty interior ([1],
Theorem 1, p. 648), so that H° is not dense. Contradiction.

Finally, H and H° are condensation points dense since every non-
meager set in G is uncountable. They have the same cardinality because
H has countable index in G: for ae¢ H®, card H°< card G =card G/H
card H gxo card H = card H = card a-+ H < card H".

Since every non-meager subset of G is non-meager in any containing
subspace, we observe

COROLLARY 1. H and its complement are Baire spaces.

COROLLARY 2. Every non-empty open set in such a group is the disjoint
union of two non-measurable sets.

Theorem 1 is not generic to groups which are not 0-dimensional,
but it may characterize those which are non-discrete. For we have

THEOREM 2. The conclusion of Theorem 1 holds if G is a non-discrete
LCA group which is either: (i) separable, (ii) compact, (iii) torsion free and
divisible or (iv) compactly generated.

Proof. As the proof of Theorem 1 reveals, it suffices in each case
to construct a proper dense subgroup of G. We may assume G is 0-dimen-
sional. If @ is separable, the group generated by a countable dense set
is proper since G is uncountable ([3] 4.26, p. 31). If @ is compact, its dual
I’ is a discrete torsion group, and hence the direct sum of its p-primary
components I,, p prime ([4], p. 5). Thus G~ [] f"p. If I, is non-zero for

A P
infinitely many p, @ I', is a proper dense subgroup of G. If only finitely

p
many I7’s are non-zero, at least one I, is infinite, since G is non-discrete.
Refer now to ([3], 25.22, p. 412). I, contains a subgroup B isomorphic
to a direct sum @ Z/p"iZ whose annihilator, Ann B, is a compact, pure
iel
subgroup of f“ Ann B is an algebraic direct summand of f'po ([31], 25.21,
p. 410), so that I'yy = H+Ann B for a subgroup H whose intersection
with Ann B is 0. If Ann B # 0, Ann B is topologically isomorphic with
4;, the direct product of the p-adic integers with itself a #* 0 number
of times. Since 4,, is monothetic and non-discrete ([3], 10.6, p. 111), it
has a proper dense subgroup. It follows that I', has a proper dense sub-
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group. If Amn B =0, I, =B ~ @Z/p”lZ so that F ~ [] Z|p™Z.
iel
I is infinite because I, is, and @Z /p"%Z provides a proper dense sub-

group of f’po. In either case, then, ~ [l T, ><F has a proper dense
p#P
subgroup. ’

If @ is generated by a compact neighborhood V of 0, then G contains
a closed subgroup H such that HNV = 0 and G/H is compact ([6], 2.4.2,
p. 41). Choose a neighborhood U of 0 such that U— U < V. Since G is
non-discrete and the quotient map p : @ - G/H injects U into G/H, G[H
is a non-discrete compact group. By the above, it has a proper dense
subgroup K. Plainly, p~!(K) is a proper dense subgroup of G.

If @ is torsion-free, divisible and 0-dimensional, G is topologically
isomorphic to the product of a direct sum of copies of the rationals and
a group F which is the minimal divisible extension of a group of the form
[] 437, p prime, a, a cardinal number (cf. [3], 25.33, p. 421]). If 2, denotes

p

the p-adic number field and 2;» denotes the minimal divisible extension
of Q, then E is the local direct product of the groups 23r relative
to the compact open subgroups A3; that is, B = {{z,} ][] 2P : w,e A5p

p
for all but finitely many p} ([31, 25.32 (d), p. 420). If the number of non-
zero a,’s is infinite, (—B Q%" is a proper dense subgroup of E. If not, E

= ” Q% and E W1]l have a proper dense subgroup if some Q23" does,
ap # 0. This follows essentially because Q% = U AP ([3], 25.32 (c),

k=—o0

p. 420), where the A, are defined as in ([3], 10.4, p. 110), because each
A, is monothetic and compact ([3], p. 111) and because A, c A4, if k > m.
In either case, it follows that G has a proper dense subgroup.

Other results are possible. For example, Theorem 1 holds if G is
a torsion group one of whose p-primary components G, contains a proper
dense subgroup. For the structure theorem ([5], 3.21, p. 494) implies that
G is topologically isomorphic to {{w,}e[][G,: x,e K, for all but finitely

p
many p}, where {K, = @,} is a family of open subgroups. In particular,

if H, is a proper dense subgroup of some G,, @ G,®H, is a proper
P#D
dense subgroup of G. Theorem 1 also holds if G cgntains a precompact

divisible subgroup H. For a computation shows that H is divisible, and
hence a compact, infinite algebraic direct summand of G([4], p. 8). Since
Theorem 2 implies H has a proper dense subgroup, G does also. Again
Theorem 1 holds if H = {xeG : nz — 0} is infinite and precompact. For
if @ is 0-dimensional, H is a closed, pure subgroup of G; hence an infinite
compact direct summand ([3], p. 410). We are lead to conjecture that
Theorem 1 holds for all non-discrete LCA groups. Of course in view of



LOCALLY COMPACT GROUPS 151

the argument in Theorem 1, the problem is whether every non-discrete
LCA group has a proper dense subgroup (P 764). Finishing off the re-
maining 0-dimensional cases will undoubtedly involve a structure theory
for non-compact 0-dimensional groups.
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