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Let f be areal function defined in an open interval I and let I, = [a, b]
be a closed subinterval of I. Let

f(®+h)—f(x—h)
2h ’

p(x, ) = vely,xt+hel,h #0.

Then lim supy(x, ) and lim infy(x, h) are called the wupper and

h—0 h—0
the lower symmetric derivative of f at x and are denoted by f®(x) and

f®(x), respectively [8], and limy(w, k), if exists, is called the symmetric
= h—0

derivative [2] of Schwarz derivative [10] of f at x and is denoted by fV (x).
Let us suppose that f® (z) is finite for each e I,. Write

(@+h)—f(@—h)

—f@
- 7o),

@(x, b) =

where & may be taken positive without loss of generality. Now, for each
xel, and for each ¢ > 0, there is a d(x) > 0 such that ¢(x, h) < e when-
ever 0 < h < 6(x) and x+hel. It may happen that, for a fixed ¢ > 0,
d(x) has no positive lower bound in I,. If, however, é () has a positive
lower bound in I, for each & > 0, then f) is said to be the uniform upper
symmetric derivative of f in I,. _

&e I, is said to be a point of uniform upper symmetric defferentiability
of f if for each ¢ > 0 there is a neighbourhood of & in which J(x) has
a positive lower bound. So a point in every neighbourhood of which §(x)
has no positive lower bound for some sufficiently small ¢ > 0 is said to
be a point of a non-uniform upper symmetric differentiability of f. It
is clear that f( is uniform or non-uniform at &eI, according to as

lim sup ¢(x, k) = 0 or > 0.
(Z,h)—b(E,O)
Letting

W (£) = lim sup ¢(w, h),
(z, h)—(%,0)
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we shall term W (&) as the measure of the non-uniformity of f® at £ and
the function W (z) is defined as the measure funetlon of the non-uniformity
of fU. Similarly, for finite o, ), we define

(f(m—l—h)—f(a:—h) —I(l)(w))'

W (&) = lim inf ”

(z, B)—(&,0)

It is clear that if the symmetric derivative f) exists finitely in I,
then a point &eI, is a point of uniform symmetric (or Schwarz) differen-
tiability of f if and only if f¥) and f® are both uniform at & [6].

Recently, Mukhopadhyay studied some properties of symmetric
derivative by help of the notion of uniform symmetric differentiability
[6, 7). He showed that for a continuous and symmetric differentiable
function f, if £ is a point of uniform symmetric differentiability of f, then
the symmetric derivative f® is continuous at &, and that the uniform
symmetric differentiability of f in an interval implies the uniform differ-
entiability of f therein [6]. He also proved that for a continuous and
symmetric differentiable function f, the set of points of the non-uniform
symmetric differentiability of f is of the first category [7], and that if f®
is continuous, then f is uniformly symmetric differentiable [9]. He also

.raised the question whether the uniform symmetric differentiability of f

implies the continuity of f. Swetits showed that under certain conditions
the uniform symmetric differentiability of f implies the continuity of
f' [11]. In the present paper, these results are sharpened and some further
consequences are studied by help of the notions of the uniform upper
and lower symmetric differentiability of f. It may be of interest to note
that Manna obtained analogous generalization of the concept of uniform
differentiability by considering Dini derivates [5].

THEOREM 1. The function W(x) 18 upper semi-continuous on the interval
I, = [a, D]

Proof. Let £¢ I, and let ¢ > 0 be arbitrary. Since

W(E) = lim sup¢(z, k),
(x, h)—(&,0)

there exists a neighbourhood D of £ and a positive number 6 such that

(1) (p(a:,h)<W(§)+§ for allze D and 0 < h < 6.

B Suppose that there is #'e¢ D such that W(x) > W(§)+¢ Then
W (x') > W (£)+¢/2. This implies that there are points xe D and h, 0 < h
< 0, such that

&

(2) @(z, h) > W(f)"" E
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Since (1) and (2) are contradictory, we conclude that
W) < W()+e for allze D.

Hence W (x) is upper semi-continuous at & This completes the
proof.

COROLLARY 1. If W (x) is unbounded from above on the closed interval
1,, then there exists at least one point &, where W (£) = oo.

COROLLARY 2. The set of points, where W (x) = oo, is closed.

THEOREM 2. A necessary and sufficient condition that ¢ (x, h) is bounded
from above for all x in [a,b] and for all h, where 0 < |h| < & for some
sufficiently small 8, is that W (x) # oo in [a, b].

Proof. If ¢(, h) is bounded from above, W (x) is also bounded from
above. So we may suppose that W(x) < oo for all ze[a, b]. Then, for
every x,e[a, b], there is a neighbourhood Dz, of z, and a é(x,) such that
@(x, h) < W (®,) + ¢ for all ze Dz, and for all h # 0, |h| < 6(x,). From the
family of neighbourhoods {Dxz,: x,¢ [a, b]} we can choose a finite number,
say Dz,, Dz,, ..., Dz, such that

n
[a,b] = U Dx,.
r=1

Let 6 = min [d(x,), 6(2,), ..., (2,)] and k = max[W (x,), W(x,), ...,
W (w,)]. Then ¢(x, h) < k+¢ for all xe[a,b] and for all h, 0 < |h| < é.

THEOREM 3. If f is continuous in a neighbourhood of & and if W (§) = 0,
then fO is lower semi-continuous at &.

Proof. Since W (&) = 0, corresponding to &> 0 there is a 6 > 0
such that

1) o k)< g—for all we(£— 8, £+ 6) and for all b, 0 < |h] < 6.

Then we may suppose that f is continuous in (§— J, £ ). Since
lim supg(&, h) = 0, there is h,, 0 < |hy| < } 4, such that
h—0

&€
(2) 9 (&) ha)l < 3

And since f is continuous in (£ — 6, £+ ), the function y, defined by

f(@+hy) —f(z—hy)
2h, !

p(or) =
is also continuous at & and so there is a §y, 0 < 6 < d, such that

(3) Ip@ =y <5 for allwe(t—dy, £+).



262 N. K. KUNDU

From (1), (2) and (3) we infer that
J@+h)—f@—hy) | fl@+h)—f(x—h,) i

£(1) —_f) — £() -
FO(z)—fV (&) = fD(w) 2%, + T
FEFR)—FE—h) 40 FE+HR)—F(E—hy)
+ o, () — o,

= — (@, hy) + (& hy) + v (@) —p(£)

E € )
>_.§_-3———-3—=—8 fOr a;]lwe(f—doyé"*'ao)'

Hence f is lower semi-continuous at &, which completes the proof.

COROLLARY. If f is continuous and fO exists in some neighbourhood
of & and if & is a point of uniform symmetric differentiability of f, then fO
i8 conlinuous at §&.

Note. This result is proved in [6].

THEOREM 4. Let f be continuous in some neighbourhood of &. Then
a necessary and sufficient condition that f) be continuous at & is that

im {f(m—i—h)—f(m—h) —f(‘)(w)} 0.
(@, h)—>(£,0) 2h

Proof. Let f be continuous in (£ — 6, £+ 6). Let us suppose that f&
is continuous at & We shall first show that for each we[&— 44, £+ 16]
and for each &, 0 < |h| < 34, one of the following must be true:
h)—fx—h
() Dtfarom < EENTEZD ) pogm,
J(@+h)—f(x—h)
2h

= D™f(x+3h),

(ii) D, f(z+0h) >
where —1 <9 < 1.
Let ce [6—136, £+ 30],0 < |h] < 36, and let

fle+h)—f(c—h)
v(@) = f(@)— — @,

Then p is continuous in [¢—h, ¢+ h]. Also y(c—h) = p(é+h). Let
M and m be the upper and the lower bounds of y in[¢—h, ¢+ h]. If M = m,
then y is constant in [¢ — h, ¢+ k] and hence the conclusion remains valid.
So we suppose that at least one of M and m is different from y(c— ).
If M # yw(c—h), then thereisad, —1 <d < 1, such that p(¢+3h) = M and
hence
Dt y(c+9h) <0< D_y(c+9h),

fle+h)—f(e—h)
2h

i e., D*f(c+0h) < < D_f(c+90h).



SYMMETRIC DERIVATIVES 263

Similarly, if m # y(¢—h), then, for some ¢ (—1 <4< 1)

fle+h)—fle—h)
2h

Thus, for each xe¢[é— 46, £+ 36] and for each h, 0 < |h| < 44, at
least one of the following must be true:

(i)’ D*f(@d+h) —fD (x) St h)z—hf(w— h)

fe+h)—f(@—h)
2

D, f(c+0h) > > D~ f(c+9h).

—fO(2) < D_f(2+0h)—FO (),

—f (@) > D~ f(w+8h)—F ().

(i) D, f(z+8h)—fO (z)>

Since the function f¥)(x) is continuous at &, it follows from [3] that
D*f,D.f, D~f and D_f are also continuous at & and f® (&) = D*f(¢)
= D_f(§) = D™ f(§) = D_f(§). Hence letting x - & h — 0, we get

lim {f(w+h)—f(w—h)

—f® (w)} = 0.
(x, h)—(&,0) 2h !

To prove the converse, suppose

lim {f(“"kh)_f(””_h) _fm(w)} — 0.

(@, h)—(£,0) 2h

Then, for every ¢ > 0, there is a neighbourhood D, of ¢ and a §,,
0 < 8, < 39, such that |p(z, h)| < ¢/3, whenever xe D, and 0 < |h| < J,.
Fix h,, 0 < |hy| < ;. Then the function y, where

_ fl@+h)—fle—h)
N 2h, ’

v(2)

is continuous at £ and hence there is a neighbo‘urhood D, of & such that
lw(®) —p(&)] < ¢/3 whenever xeD,. Hence, for xe D = D,NnD,, we get
as in Theorem 3

IF @) —fP (&) < lp(, k)| + o (& b+ |9 (@) — (&) < &

showing that f is continuous at & This completes the proof.

COROLLARY 1. Let f be continuous and f exist in some neighbourhood
of &. Then & is a point of uniform symmetric differentiability of f if and only
if & is a point of continuity of fO.

It is known that if f is continuous and f® exists in some neighbour-
hood of & and if £ is a point of uniform symmetric differentiability of f,
then f'(£) exists [7]. So from this corollary we get

COROLLARY 2. If f is continuous and f") exists in some neighbourhood
of & and if fV) is continuous at &, then f' (&) exists.
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Note. This result is obtained by Aull [1].

THEOREM 5. If f exists and is bounded in some neighbourhood of &
and if & is a point of uniform symmetric differentiability of f, then f s
continuous in some neighbourhood of &.

Proof. Let ¢ > 0 be arbitrary. Since £ is a point of uniform symmetric
differentiability of f, there is a 4 > 0 such that

1) (2, h)| < e for all wxe(&— 6, £+ ) and for all b, 0 < |h| < 4.

We may suppose that f) is bounded in (£—4, £+ d). So there is
M > 0 such that

(2) IfW(z)] < M for all ze(&— 0, £+ ).

If possible, suppose that there is no neighbourhood of £ in which f
is continuous. So, there is a point &,e(&—%46, £+ 4 J) and a positive num-
ber ¢, such that the relation

(3) 1f (@) —F(ED] > &

holds for a sequence of points {z,} such that x, — &, as n — oo. We may
suppose {x,} = (§— %46, £+ 16). Now, from (2) and (3), we have

(z 2t &1 %y —51)‘ J(@a) —f(£1) f(l)(“" +51)
4 2 '’ 2 - x,— &

(4)

&

>———— M for alln.
la’ln_fll

Since x, can be taken sufficiently near to &,, (1) and (4) are contra-
dictory. This completes the proof.

APPLICATION OF COROLLARIES 1 AND 2 OF THEOREM 4

COROLLARY. If f") exists and is bounded in some meighbourhood of &
and if & i8 a point of uniform symmetric differentiability of f, then f® is
continuous at & and f'(&) exists.

THEOREM 6. Let f be such that

(i) fO ewists in some neighbourhood of &;

(ii) if

lim sup |f(#)| =
x—>§

then either there exists x, < & such that f is locally bounded in [z, &) or
there exists x, > & such that f is locally bounded in (&, x,];

(iil) & 48 a point of uniform symmetric differentiability of f.

Then f'(£) exists.
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Proof. Suppose that & is a point of umiorm symmetric differentia-
bility of f. Then we assert that

lim sup [f(2)] # oo.

x-»&

For, if possible, let
lim sup |f(x)| = oo.
¢

Since & is a point of uniform symmetric differentiability of f, there
isa d, 0 < 6 <1, such that

f(@+h)—f(x—h)

27 —fW(x) | <1

(1) lp (2, b)| =

for all xe(&— 8, £+ 6) and for all A, 0 < |h| < 6.
Let us suppose by Condition (ii) that f is locally bounded in [z,, &)
< (§—196, &).
Let ¢y = (b E—{—wl) /6. Then f is bounded i in [z, o] So there is M>0
such that |f(z)| < M for all xe[x,, x,].
Fix hy, 0 < |hy| < (§ —2,)/3, such that

|f (@ + ho)| > 1+ M+ |f(l)(mo)|-
Then
(2) o (@0, ko)l = | I @0+ o) —f (@0 — ho)

20,

—|f M ()] > 1.

.Since (1) and (2) are contradiétory, we conclude

lim sup |f(x)| < oo.
z—>§

So there is a > 0 and a positive number M such that
If(x)] < M for all xe(&— 9, £+ ).

Since & is a point of uniform symmetric differentiability of f, there
is dg, 0 < 69 < 34, such that |p(x, h)| <1 for all xe(&— 8y, £+ J,) and
all k, 0 < |h| < d,.

Fix h,, 0 < |hy| < 8y. Then, for all ze(&— 6y, £+ J,), We have

feth)—fle—h) _, M

If (@) | < 1+
2h LA

Thus f@ is bounded in (&—é,, £+ 6,). Hence, by Theorem 5, f is
continuous in a neighbourhood of é&.
So, by Corollaries 1 and 2 of Theorem 4, f'(&) exists.

Note. The above result sharpens a result of Swetits [11].
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THEOREM 7. If f 48 continuous on I, = [a, b], then the set
{w: @e I,; W(z) >sup [fO(2)—fD ()]}
zel
18 an F,-set of the first category.

Proof. Let
K = sup [f®(@)—f® ()]

ZGIO

and let a > K. Then since W (x) is upper semi-continuous, the set S,
= {@w: xely; W(x) > a} in closed. Suppose, if possible, that the set S,
is not non-dense in I, = [a, b]. Then there exists a subinterval [a’, b']
< [a, b] in which the set S, is every where dense and since the 8§, is closed,
[a’,b'] = 8,. Let & be any point of the interval (a’, b’). Then W (&) > a.
Choose K < a’ < a and a positive null sequence {4, }. Then since W (£) > a’,
there is a point & in some neighbourhood of & contained in (a’, b') and
a number h,, 0 < h; < J,, such that

f(E +h)—f(§ —h)
2h,
Hence, there is an h,, 0 < hy, < h,, such that

FIE+h)—f(&—h)  f(E+h)—F(£ —hy) S o
2h, 2h, )

_f_(l)(s’) > a'.

Since f is continuous on I, = [a, b], both the functions

f@+hy)—f(z—hy) and f(@+hy) —f(x—hy)
2h, ' 2h,

are continuous at &. So there exists a small neighbourhood D, of &' conta-
ined in (a,’ b’) such that

f@th)—fla—h) F@t+h)—fl@—h) _ .

f 1 zeD,.
o, ohy or all ze D,

’

Again since W(&')> a corresponding to the positive number o,

= min[d,, h,], there exists a point £’ ¢ D, and a number kg, 0 < hy < 4,,
such that '

F(E" +hg) —f(&" —hy)

_F@ g ’
2hg fOE)>a.

In a similar way, it is possible to find a neighbourhood D, = D,
of £ such that

J(@+ hy) —f(2— hy) . f(@+ hy) —f(x—hy) > o
2 hy 2h,

for all ze D,
and 0 < h, < hy.
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Proceeding in this way, we can select a decreasing sequence of
neighbourhoods {D,} such that, for every xeD,,

J(@+hyp_y) — (@ —hyp_y) _ J @+ hyp) —f (0 — hyy) >a' forzeD,,
Zh'zn—l 2h2n

0< hzn < hzn_1 < 6;; = min[an’ h2n—2]'

The neighbourhoods 'Dn can be so chosen that there exists a point 7
which belongs to each D, and 7 is a point such that

Fm4hgy_) —f(n—hop_y) _ F(n+hyy) —f(n—hyy) > o
2hep_y 2hyn

for all positive integer n.
Hence we have [f¥(5)—f®(5)]> «'. Again since 5e[a, b], [f¥ () —
—fOMI<KKE<ad. -
~ This is a contradiction. Hence we conclude that the set 8, is closed
and non-dense in [a@, b]. Let us choose a sequence {a,}, a, > K and
a, — K. Then the set

{x: ze[a, b]; W(x) > K} = U {x: ze[a, b]; W(z) > a,}

n=1

is an F -set of the first category.

COROLLARY 1. For a continuous function f, if fO ewvists, then the set
of points where f is not uniformly symmetric differentiable, i a set of the
first category.

Note. This result is also proved in [7].

Since it is known that for a continuous function f, if f¥) exists, then f’
also exists almost everywhere [2] and if, moreover, £ is a point of uniform
symmetric differentiability of f, then f'(£) exists (Corollaries 1 and 2 of
Theorem 4), we conclude from the above given corollary that, for a conti-
nuous function f, if f@ exists everywhere in an interval, then the set
of points where f' does not exist is of measure zero and of the first cate-
gory.

Example 1. Let a function g be defined in (0, 1] in the following

way:

o [ 1 1

¢ 1r 1
vt wengl(Zn’.‘Zn—l_’

g(x) = . L
0 if _—— .

! w‘ng(2n+1’2n_

Let

f@) = ofg(t)dt if 2€(0, 1],
0 if e[—1,0].
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Then f is continuous in [ —1, 1]. Also f® exists in (—1,1) and

o 1 1
if — -
0 we( 1’O]U{n91(2n+1’2n)}’

f@) =1z if ve G (—L ;),

nm1\2n 2n—1

r . 1
—E if $€{-;;’n = 2, 3, ...}.

Clearly, # = 0 is a point of uniform symmetric differentiability of f.
But f’ does not exist at each of the points %, 4, }, ... and hence each of
the points 4, 1, 1, ... is a point of non-uniform symmetric differentiability
of f.

This example shows that if f is continuous and f¥) exists in a certain
neighbourhood of a point & and if & is a point of uniform symmetric
differentiability of f, then & need not be a point of uniform differentia-
bility of f [4]; but if f' exists in a certain neighbourhood of &, then & must
be a point of uniform differentiability of f.

Example 2. Let a function g be defined in (0, 1] in the following

way: g+ 1 1 3
o) o]

3 oA T garT |2
9l = 2mts (] ) 3 1

3 —2—"——'.’17) if xe W,F y ’n=0,1,2,...
Let

g(») if #¢(0, 1],
fl@) =19(—2) iHwe[—1,0),
0 fax=0.

Then f is continuous in [ —1,1] except at # = 0. Also f® exists in
(—1,1) and lim sup |f(x)] = oo. Finally, f is locally bounded in every
x>0

deleted neighbourhood of 0 and hence f satisfies Conditions (i) and (ii)
of Theorem 6. But f'(0) does not exist which shows that Condition (iii)
of Theorem 6 cannot be omitted.

I wish to express my sincere gratitude to Dr. S. N. Mukhopadhyay
for his kind help and suggestions in the preparation of the paper.
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