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Some structures on an f-structure manifold

by U. C. VorrA and K. D. Singit (Lucknow, India)

The idea of f-structure on a differentiable manifold was initiated
and developed by Yano [3,5]. Koto [4] defined and studied certain
structures on almost HHermitian manifold, some of which were reformu-
lated by Gray [1] in terms of exterior and co-derivatives. In the present
paper we define and study some structures on a differentiable manifold
in terms of exterior, Lie, and co-derivatives.

Section 1 is introductory and in Section 2, we define certain struc-
tures and prove their inclusion relations, corresponding to the inclusion
relations in Gray [1].

In the last section we define a conformal diffeomorphism between
two differentiable manifolds and obtain some interesting results relating
their structures.

1. An n-dimensional differentiable manifold V is said fo possess an
f-structure [5] if a non-null (1, 1) tensor field f of constant rank » is defined
on it which satisfies f3°+f = 0. If the rank of f is such that n —r> 1,
then there exist two complementary distributions L and M corresponding
to the projection operators I and m respectively, defined as [5];

(1.1) l=—f* and m =f2+1,

where I denotes the identity operator. These projection operators satisfy
the following relations:

f=fl=f, mf=fm=0,
fil=—1 and f2m =0.

(1.2)

The above relations show that f acts as an almost complex structure
on L and as a null operator on M. If the rank of f is r, then the dimensions
of L and M are r and (n—7) respectively [5].

Let F'(V) denote the ring of real-valued differentiable functions on V
and X(V) the module of derivations of F(V). X(V) is then a Lie algebra
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over real numbers and elements of X(V) are called vector fields. The (1, 1)
tensor field f is then a linear map over X(V);

f: (V) > X(V).

Yano [5] has defined a positive definite Riemannian metric {, )
in V, with respect to which the distributions L and M are orthogonal.
Such a Riemannian metric satisfies the following relations [5]

(1.3) (X, Y)={X,fY)+(mX,Y) forall X,YeX(V).
Since L and M are orthogonal, (1.2).yields
(1.4) X, XY) =<f2X,fY), <(X,fY)=<(fX,f*Y).
A 2-form F has been defined as [5]

(1.8) F(X,Y)=-F(¥,X) = (X, Y),
and it is easy to verify that
(1.6) FmX,Y)=0=FX,mX).

The Nijenhins tensor N of type (1, 2) i3 defined as [4]

(1.7) N(ZX,Y)=[fX,fY]-fUSX, Y]-f[X,fY]+ (X, Y]
for all X, YeX(V).

2. Using the definitions of the Riemannian connexion Vy and the
Lie derivative ¥y, we have the following relations:

(21) Vx(I(X) =Vx(fY)—fVxY, (£x/)Y =[X,fY]- flX, Y]
In view of (1.2) and the above relations, we have ‘ |
mVx(f)(mY) =0 and m(Lxf)(mY)=0.
Since f2 is also a (1,1) tensor, we have
(2.2) Pe(PIE) = Vx(fPY)—fVxY.

We can easily check that the covariant derivative V x(¥) and the
exterior derivative d¥ of F are given by the following:

(2.3) Ve (F)Y,Z) = (Px(f) Y, 2>

and

(2.4) dFr(X,Y,Z) = ¥ VX(F)(Y,Z),
XY,z

where ¥ denotes the cyclic sum over X, Y, Z.
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THEOREM 2.1. By using above formulae we get the following results:

(25) N, Y) =Vix(NY -V (NX+fVe(HX-fVx(H T
= (L)Y —f(Z=xf) ¥
(2.6) Vx(F)(fY,[Z)
= AP (fX, 1Y, f2) - dF(fX, f* ¥, f22)+ (X, N(FY, [*2)),

(2.7) 2fo(F) (fY,fZ) +2VI2X(F) (f2 nyZ)
- =dF(fX,fY,fZ)—dF (X, f*Y, f*2)+dF(fY, f*Z, f*X),
(2.8)  2Vpx(F)(f2Y,fZ)— 2V x(F)(fY,1Z)
= (N(fX, f2X), f2) - N (fX, f2), P X) —<N(f* Y, fZ), fX>
Proof. The proof of (2.5) follows from (2.1) and
VXY_VYX = [X7 Y]a
while (2.6), (2.7) and (2.8) are consequences of (2.5) and the formula
(2.9) V() Y, [Z) =V (F)(fY, f2). |
We shall call an f-structure manifold fK-manifold iff

Vix(f) =0,
fA K-manifold iff .
' ar(fX,fY,fZ) =0,
JNK-manifold iff ’

Vex(HfY) -V, (F)(fX) =0,
fOK-manifeld iff _
L Pa(DOUD e (N (T =0,
and fH-manifold iff

N(fX,fY) =0
for all X, Y,ZeX(V).

As a consequence of theorem: (2 1) and the defmltlons of fH and
f@K-manifold we get the following

THEOREM 2.2, (Lpexf)(fY)=f(Lxf)(fY) for all X, Ye% ) if and
only if the manifold V is fH, while
Vix(P)(fY,fZ) = —V2x(F)(f* Y, fZ)

Jor all X, Y, ZeX(V) if and only if the manifold V is fQK-manifold.
We next study the inclusion relations between the special f-structure
manifolds defined above and prove
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THEOREM 2.3.

c fAK
fK l < fNE SfQK and fK < fH.

Furthermore,
fK s fHNfQK < fAKNfNK.

Proof. That fK = fAK follows from (2.3) and (2.4); fAK < fQK
follows from (2.3) and (2.7); while fK = fH follows from (2.5). It is ob-
vious that fK < fNK, while fNK < fQK is a consequence of (2.9).

Furthermore, fK = fH NfQK is obvious.

If the (1,1) tensor field f satisfies

(2.10) Vix(NY=fVx(NY,
then from (2.5)

NX,Y) =0,
and we get

THEOREM 2.4. An f-structure manifold V is fH-manifold if the (1, 1)
tensor field f satisfies

Vix(NNY =fVx(f) Y.
Also, if the f-structure satisfies (2.10), then
Vix(N(FX)+Vx (YY) = fVx(H(fY)+fVx(H) (P Y).

In view of (2.1) and the above result, we get

Vix(NUFY) + Vex(F)(PY) =2fPx(f) (),

which provides the proof of the following
THEOREM 2.5. Amn f-structure manifold V which satisfies (2.10), is
fQK-manifold iff
Vx(H(fY) =0. .
3. Conformal diffeomorphism of f-structure manifolds. Let (V, (, ))
and (V% { >°) be two Riemannian manifolds and &: V — V° be a diffeo-
morphism. If Xe X(V), we denote by X% X(V°) the vector field corres-

ponding to X induced by @. Then @ is called a conformal diffeomorphism
provided there exists oe F (V) such that

(3.1) (X% Y0 = (X, X)
for all X, YeX(V). For ge F(V) we define gradg by
(3.2) (gradg, X) = X(g)
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for all XeX(V). The Riemannian connections P° and V of V° and V
satisfy the following relation [1]

(3.3) VoY’ = (Fx Y+ X(0) Y+ Y ()X — (X, ¥) grad o).

Let V and V° be f-structure manifolds respectively. Suppose that
&: V — V'in addition to being a conformal diffeomorphism also preserves
the f-structure, i.e. there exists a (1,1) tensor field fo: X(V°) — X(V?
in V° such that

(3.4) X = (fX)".
If ¢, )? is the Riemannian metric in V° then this metric satisfies follow-
ing relations:
X X0 = (X 01
and
XY X0 = (X0 (f) X0
If @ is the map induced by @ which takes differential forms on V°
back to the differential forms on V, then we have the following

THEOREM 3.1. The structures of the spaces V and V° are related by the
Sollowing

(3.5) X% Y")® =¢“F(X,Y),
(3.6) P*F° = ¥F,
(3.7) @*(dF") = ¢ {2do A F +dF},

(3.8) Vio(f)Y' = {Fx(NY+fY(o)x— Y (o) (fX)+ {(fX, ¥) grad o +
+<{X, Y)fgrads}?,
(3.9)  Pxo(F')NTY,Z°) P = {Vx(F)NY, Z)+fY(0){X, Z) —
—Y(o)F(X,Z)+ F(X, Y)Z(0)— (X, Y)fZ(o)},
(3.10) X, Y) ={NZX, 1))
for all X, Y, ZeX(V), where N° is the Nijenhuis tensor and F° is a 2-form
in V° defined by
(3.11) FY(X°% Y% = (f°X° Y.
Proof. The proof of (3.5) follows from (3.1) and (3.4); (3.6) and (3.7)
follow from the definition of ®* and (3.4); (3.8) follows from (2.1) and

(3.3); (3.9) is a direct consequence of (2.3) and (3.8); while (3.10) follows
from (2.5) and (3.8).

THEOREM 3.2. Let @: V — V° be a conformal diffeomorphism between
f-structure manifolds. If Ve fH, then V°e fH. On the other hand, suppose
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dimV = 3 and D is not homothetic; then if V is in one of the classes fK, fAK,
INK or fQK, then V° is not in any of the classes fK, fAK, fNK or fQK.

Iroof. If VefH, then from (3.10) it follows that V'e fH. Next, if V
is in one of the classes fK, fAK, fNI(, fQK, then in view of theorem (2.3)
V' is necessarily fQK, and consequently theorem (3.1) shows that V° is
not fQK and therefore cannot be in any of the classes fK, fAIl, fNK or
fOI.

Since 1° is also an f-structure manifold, we define the complementary
projection operators I° and m® in VO corresponding to the projection oper-
ators [ and m in V, as follows:

(3.12) = —(f92 and m® = (f)2+1°,
where I° is the identity operator in V°. From (3.4) wo get
(3.13) PXO = (X)) and mOX°® = (mX)".

Let L° and M° be the distributions corresponding to operators I°
and m® in VO respectively. Then from (3.11) and (3.13) we have the fol-
lowing

THEOREM 3.3.

(3.14) N'(m* X% m®Y®’) = {N(mX,mY)}°,
(3.15) N(PX, 1Y) — {N(IX, 1Y)},
(3.16) NY(P°X% m* Y% = (N (X, mY)}".

The abovoe theorem together with relation (3.10) provides the proof
of the following

THEOREM 3.4. The distvibution L is integrable in V if and only if the
distribution L° is intsgrodle in V°.

THEOREM 3.5. The distribuiion M is integrable in V if and only if the
distribution M° is indegralic in V.

THEOREM 3.6. The distributions L and M are both integrable in V if
and only if the distribution: L° and BI° ave both integrable in V°.

If the distribution L is integrable and, moreover, if the almost complex
structure f’ induced from f on each integral manifold of L is integrable,

then we say that the f-struciure is partially integrable [3]. A necessary
and sufficient conditior for an i-structure to be partially integrable is [3]

N(X,1Y) = 0;

using equation (3.15), we have the following

THEOREM 3.7. The f-structure in V i8 partially mtegmble if and only
if the f-structure is partially integrable in V°.
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Also the f-structure is integrable in V [3] iff
NX,Y)=0

and consequently in view of (3.10), we have
TUEOREM 3.8. The f-structure is integrable in V if and only if the
f-structure is integrable in V°.
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