Some structures on an f-structure manifold

by U. C. Vohra and K. D. Singii (Lucknow, India)

The idea of f-structure on a differentiable manifold was initiated and developed by Yano [3, 5]. Koto [4] defined and studied certain structures on almost Hermitian manifold, some of which were reformulated by Gray [1] in terms of exterior and co-derivatives. In the present paper we define and study some structures on a differentiable manifold in terms of exterior, Lie, and co-derivatives.

Section 1 is introductory and in Section 2, we define certain structures and prove their inclusion relations, corresponding to the inclusion relations in Gray [1].

In the last section we define a conformal diffeomorphism between two differentiable manifolds and obtain some interesting results relating their structures.

1. An *n*-dimensional differentiable manifold V is said to possess an f-structure [5] if a non-null (1, 1) tensor field f of constant rank r is defined on it which satisfies $f^3+f=0$. If the rank of f is such that $n-r \ge 1$, then there exist two complementary distributions L and M corresponding to the projection operators l and m respectively, defined as [5];

$$(1.1) l = -f^2 and m = f^2 + I,$$

where I denotes the identity operator. These projection operators satisfy the following relations:

The above relations show that f acts as an almost complex structure on L and as a null operator on M. If the rank of f is r, then the dimensions of L and M are r and (n-r) respectively [5].

Let F(V) denote the ring of real-valued differentiable functions on V and $\mathfrak{X}(V)$ the module of derivations of F(V). $\mathfrak{X}(V)$ is then a Lie algebra

over real numbers and elements of $\mathfrak{X}(V)$ are called *vector fields*. The (1, 1) tensor field f is then a linear map over $\mathfrak{X}(V)$;

$$f: \mathfrak{X}(V) \to \mathfrak{X}(V).$$

Yano [5] has defined a positive definite Riemannian metric \langle , \rangle in V, with respect to which the distributions L and M are orthogonal. Such a Riemannian metric satisfies the following relations [5]

$$(1.3) \langle X, Y \rangle = \langle fX, fY \rangle + \langle mX, Y \rangle \text{for all } X, Y \in \mathfrak{X}(V).$$

Since L and M are orthogonal, (1.2) yields

$$(1.4) \langle fX, Y \rangle = \langle f^2X, fY \rangle, \langle X, fY \rangle = \langle fX, f^2Y \rangle.$$

A 2-form F has been defined as [5]

$$(1.5) F(X,Y) = -F(Y,X) = \langle fX,Y\rangle,$$

and it is easy to verify that

$$(1.6) F(mX, Y) = 0 = F(X, mY).$$

The Nijenhins tensor N of type (1, 2) is defined as [4]

(1.7)
$$N(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y]$$
 for all $X, Y \in \mathfrak{X}(V)$.

2. Using the definitions of the Riemannian connexion V_X and the Lie derivative \mathcal{L}_X , we have the following relations:

$$(2.1) \ \mathcal{V}_X(f)(Y) = \mathcal{V}_X(fY) - f\mathcal{V}_XY, \quad (\mathcal{L}_X f) Y = [X, fY] - f[X, Y].$$

In view of (1.2) and the above relations, we have

$$mV_X(f)(mY) = 0$$
 and $m(\mathcal{L}_X f)(mY) = 0$.

Since f^2 is also a (1,1) tensor, we have

$$(2.2) V_X(f^2)(Y) = V_X(f^2 Y) - f^2 V_X Y.$$

We can easily check that the covariant derivative $V_X(F)$ and the exterior derivative dF of F are given by the following:

$$(2.3) V_X(F)(Y,Z) = \langle V_X(f) Y, Z \rangle$$

and

$$dF(X, Y, Z) = \mathscr{C}_{X,Y,Z} (F)(Y, Z),$$

where \mathscr{C} denotes the cyclic sum over X, Y, Z.

THEOREM 2.1. By using above formulae we get the following results:

(2.5)
$$N(X, Y) = V_{fX}(f) Y - V_{fY}(f) X + fV_{Y}(f) X - fV_{X}(f) Y,$$
$$= (\mathcal{L}_{fX}f) Y - f(\mathcal{L}_{X}f) Y,$$

$$\begin{aligned} (2.6) \qquad & V_{fX}(F)(fY,fZ) \\ & = dF(fX,fY,fZ) - dF(fX,f^2Y,f^2Z) + \langle fX,N(fY,f^2Z)\rangle, \end{aligned}$$

$$\begin{split} (2.7) \quad & 2 V_{fX}(F)(fY,fZ) + 2 V_{f^2X}(F)(f^2Y,fZ) \\ & = dF(fX,fY,fZ) - dF(fX,f^2Y,f^2Z) + dF(fY,f^2Z,f^2X), \end{split}$$

$$\begin{split} (2.8) \quad & 2 \overline{V_{f^2 X}}(F)(f^2 \, Y, fZ) - 2 \overline{V_{fX}}(F)(fY, fZ) \\ & = \langle N(fX, f^2 \, Y), fZ \rangle - \langle N(fX, fZ), f^2 \, Y \rangle - \langle N(f^2 \, Y, fZ), fX \rangle. \end{split}$$

Proof. The proof of (2.5) follows from (2.1) and

$$\nabla_X Y - \nabla_Y X = [X, Y],$$

while (2.6), (2.7) and (2.8) are consequences of (2.5) and the formula

(2.9)
$$V_X(F)(f^2Y, fZ) = V_X(F)(fY, f^2Z).$$

We shall call an f-structure manifold fK-manifold iff

$$V_{fX}(f) = 0,$$

fAK-manifold iff

$$dF(fX, fY, fZ) = 0,$$

fNK-manifold iff

$$\nabla_{tX}(f)(fY) + \nabla_{tY}(f)(fX) = 0$$

fQK-manifold iff

$$V_{fX}(f)(fY) + V_{f^2X}(f)(f^2Y) = 0,$$

and fH-manifold iff

$$N(fX, fY) = 0$$

for all $X, Y, Z \in \mathfrak{X}(V)$.

As a consequence of theorem (2.1) and the definitions of fH and fQK-manifold we get the following

THEOREM 2.2. $(\mathcal{L}_{f^2X}f)(fY) = f(\mathcal{L}_{fX}f)(fY)$ for all $X, Y \in \mathfrak{X}(V)$ if and only if the manifold V is fH, while

$$V_{fX}(F)(fY, fZ) = -V_{f^2X}(F)(f^2Y, fZ)$$

for all $X, Y, Z \in \mathfrak{X}(V)$ if and only if the manifold V is fQK-manifold.

We next study the inclusion relations between the special f-structure manifolds defined above and prove

THEOREM 2.3.

$$fK \left\{ egin{array}{l} \subseteq fAK \\ \subseteq fNK \end{array} \right\} \subseteq fQK \quad and \quad fK \subseteq fH.$$

Furthermore,

$$fK \subseteq fH \cap fQK \subseteq fAK \cap fNK$$
.

Proof. That $fK \subseteq fAK$ follows from (2.3) and (2.4); $fAK \subseteq fQK$ follows from (2.3) and (2.7); while $fK \subseteq fH$ follows from (2.5). It is obvious that $fK \subseteq fNK$, while $fNK \subseteq fQK$ is a consequence of (2.9).

Furthermore, $fK \subseteq fH \cap fQK$ is obvious.

If the (1, 1) tensor field f satisfies

$$(2.10) V_{fX}(f) Y = f V_X(f) Y,$$

then from (2.5)

$$N(X, Y) = 0,$$

and we get

THEOREM 2.4. An f-structure manifold V is fH-manifold if the (1, 1) tensor field f satisfies

$$\nabla_{fX}(f) Y = f\nabla_X(f) Y.$$

Also, if the f-structure satisfies (2.10), then

$$V_{fX}(f)(fY) + V_{f^2X}(f)(f^2Y) = fV_X(f)(fY) + f^2V_X(f)(f^2Y).$$

In view of (2.1) and the above result, we get

$$\nabla_{fX}(f)(fY) + \nabla_{f^2X}(f)(f^2Y) = 2f\nabla_X(f)(fY),$$

which provides the proof of the following

THEOREM 2.5. An f-structure manifold V which satisfies (2.10), is fQK-manifold iff

$$f\nabla_X(f)(fY)=0.$$

3. Conformal diffeomorphism of f-structure manifolds. Let (V, \langle, \rangle) and $(V^0, \langle, \rangle^0)$ be two Riemannian manifolds and $\Phi \colon V \to V^0$ be a diffeomorphism. If $X \in \mathfrak{X}(V)$, we denote by $X^0 \in \mathfrak{X}(V^0)$ the vector field corresponding to X induced by Φ . Then Φ is called a *conformal diffeomorphism* provided there exists $\sigma \in F(V)$ such that

$$\langle X^0, Y^0 \rangle^0 \cdot \Phi = e^{2\sigma} \langle X, Y \rangle$$

for all X, $Y \in \mathfrak{X}(V)$. For $g \in F(V)$ we define grad g by

$$(3.2) \qquad \langle \operatorname{grad} g, X \rangle = X(g)$$

for all $X \in \mathfrak{X}(V)$. The Riemannian connections V^0 and V of V^0 and V satisfy the following relation [1]

$$(3.3) V_{X^0}^0 Y^0 = \{ V_X Y + X(\sigma) Y + Y(\sigma) X - \langle X, Y \rangle \operatorname{grad} \sigma \}^0.$$

Let V and V^0 be f-structure manifolds respectively. Suppose that $\Phi\colon V\to V^0$ in addition to being a conformal diffeomorphism also preserves the f-structure, i.e. there exists a (1,1) tensor field $f^0\colon \mathfrak{X}(V^0)\to \mathfrak{X}(V^0)$ in V^0 such that

$$(3.4) f^0 X^0 = (fX)^0.$$

If \langle , \rangle^0 is the Riemannian metric in V^0 , then this metric satisfies following relations:

$$\langle f^{0}X^{0}, Y^{0}\rangle^{0} = \langle (f^{0})^{2}X^{0}, f^{0}Y^{0}\rangle^{0}$$

and

$$\langle X^{\scriptscriptstyle 0}, f^{\scriptscriptstyle 0} \, Y^{\scriptscriptstyle 0}
angle^{\scriptscriptstyle 0} = \langle f^{\scriptscriptstyle 0} X^{\scriptscriptstyle 0}, (f^{\scriptscriptstyle 0})^{\scriptscriptstyle 2} \, Y^{\scriptscriptstyle 0}
angle^{\scriptscriptstyle 0}.$$

If Φ^* is the map induced by Φ which takes differential forms on V^0 back to the differential forms on V, then we have the following

THEOREM 3.1. The structures of the spaces V and V^0 are related by the following:

(3.5)
$$F^{0}(X^{0}, Y^{0}) \cdot \Phi = e^{2\sigma} F(X, Y),$$

$$\Phi^* F^0 = e^{2\sigma} F,$$

$$\Phi^*(dF^0) = e^{2\sigma} \{2d\sigma \wedge F + dF\},\,$$

$$(3.8) \quad \overline{V}_{X^0}^0(f^0) \ Y^0 = \{ \overline{V}_X(f) \ Y + f Y(\sigma)_X - Y(\sigma)(fX) + \langle fX, \ Y \rangle \ \mathrm{grad} \ \sigma + \\ + \langle X, \ Y \rangle f \mathrm{grad} \ \sigma \}^0,$$

$$(3.9) \qquad V_{X^0}^0(F^0)(Y^0,Z^0) \cdot \Phi = e^{2\sigma} \{ V_X(F)(Y,Z) + fY(\sigma) \langle X,Z \rangle - Y(\sigma)F(X,Z) + F(X,Y)Z(\sigma) - \langle X,Y \rangle fZ(\sigma) \},$$

$$(3.10) N0(X0, Y0) = \{N(X, Y)\}0$$

for all X, Y, $Z \in \mathfrak{X}(V)$, where N^0 is the Nijenhuis tensor and F^0 is a 2-form in V^0 defined by

(3.11)
$$F^{0}(X^{0}, Y^{0}) = \langle f^{0}X^{0}, Y^{0} \rangle^{0}.$$

Proof. The proof of (3.5) follows from (3.1) and (3.4); (3.6) and (3.7) follow from the definition of Φ^* and (3.4); (3.8) follows from (2.1) and (3.3); (3.9) is a direct consequence of (2.3) and (3.8); while (3.10) follows from (2.5) and (3.8).

THEOREM 3.2. Let $\Phi: V \to V^0$ be a conformal diffeomorphism between f-structure manifolds. If $V \in fH$, then $V^0 \in fH$. On the other hand, suppose

dim $V \geqslant 3$ and Φ is not homothetic; then if V is in one of the classes fK, fAK, fNK or fQK, then V^0 is not in any of the classes fK, fAK, fNK or fQK.

Proof. If $V \in fH$, then from (3.10) it follows that $V^0 \in fH$. Next, if V is in one of the classes fK, fAK, fNK, fQK, then in view of theorem (2.3) V is necessarily fQK, and consequently theorem (3.1) shows that V^0 is not fQK and therefore cannot be in any of the classes fK, fAK, fNK or fQK.

Since V^0 is also an f-structure manifold, we define the complementary projection operators l^0 and m^0 in V^0 corresponding to the projection operators l and m in V, as follows:

(3.12)
$$l^0 = -(f^0)^2$$
 and $m^0 = (f^0)^2 + I^0$,

where I^0 is the identity operator in V^0 . From (3.4) we get

(3.13)
$$l^0 X^0 = (lX)^0 \quad \text{and} \quad m^0 X^0 = (mX)^0.$$

Let L^0 and M^0 be the distributions corresponding to operators l^0 and m^0 in V^0 respectively. Then from (3.11) and (3.13) we have the following

THEOREM 3.3.

$$(3.14) N^{0}(m^{0}X^{0}, m^{0}Y^{0}) = \{N(mX, mY)\}^{0},$$

$$(3.15) N^{0}(l^{0}X^{0}, l^{0}Y^{0}) = \{N(lX, lY)\}^{0},$$

$$(3.16) N^{0}(l^{0}X^{0}, m^{0}Y^{0}) = \{N(lX, mY)\}^{0}.$$

The above theorem together with relation (3.10) provides the proof of the following

THEOREM 3.4. The distribution L is integrable in V if and only if the distribution L^0 is integrable in V^0 .

THEOREM 3.5. The distribution M is integrable in V if and only if the distribution M^0 is integrable in V^0 .

THEOREM 3.6. The distributions L and M are both integrable in V if and only if the distribution: L^0 and M^0 are both integrable in V^0 .

If the distribution L is integrable and, moreover, if the almost complex structure f' induced from f on each integral manifold of L is integrable, then we say that the f-structure is partially integrable [3]. A necessary and sufficient condition for an f-structure to be partially integrable is [3]

$$N(lX, lY) = 0;$$

using equation (3.15), we have the following

THEOREM 3.7. The f-structure in V is partially integrable if and only if the f-structure is partially integrable in V^0 .

Also the f-structure is integrable in V [3] iff

$$N(X, Y) = 0$$

and consequently in view of (3.10), we have

THEOREM 3.8. The f-structure is integrable in V if and only if the f-structure is integrable in V^0 .

References

- [1] A. Gray, Some examples of almost Hermitian manifolds, Illinois J. Math. 10 (1966), p. 353 366.
- [2] N. J. Hicks, Notes on differential geometry, New York 1969.
- [3] S. Ishihara and K. Yano, On integrability conditions of a structure f satisfying $f^3 + f = 0$, Quart. J. Math. 15 (1964), p. 217 222.
- [4] S. Koto, Some theorems on almost Kahelerian spaces, J. Math. Soc. Japan 12 (1960), p. 422 433.
- [5] K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying $f^3 + f = 0$, Tensor 14 (1963), p. 99 109.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY LUCKNOW UNIVERSITY Lucknow, India

Reçu par la Rédaction le 21. 5. 1971