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Some theorems on the estimate and existence of solutions
of integro - differential equations of parabolic type

by H. Ucowskr (Gdansk)

In papers [7], [8] some theorems were proved concerning the “local”
existence of solutions of the first Fourier problem in a bounded domain ()
for a system of parabolic equations with a linear main part and with
a non-linear operator depending on unknown functions. These theorems
involve a system of integro-differential equations as a particular case.

The abovo results are generalized in the present paper. Here we
remove the regtrictions, made in [7], [8], concerning the quantity of some
constants related to the equations and the domain, and prove the existence
theorems for the whole domain. At first we extend some a priori estimates
of Friedman’s type. These estimates enable us to apply the Leray-Schauder
fixed point theorem and to prove the existence mentioned.

1. A priori estimates. Let G be a bounded domain of the Euclidean
space of the variables (w,?) = (@,,...,%,,?) whose boundary consists
of the domains R, and R, of hyperplanes { = 0, { = T = const > 0, and
of a side surface § situated in the strip {(»,?): 0 << T}. By 0(Q) we
shall denote the set of all functions v (%, ) which are continuous in a set
Q@ < B,,,, and by 0p,,,(@) (p = 0,1) the set of all functions ve (' (Q)
possessing in @ the continuous derivatives D! D7 v, where I+ 2m < p+1.
The symbols OV (Q), OF,, ,(@) will denote the sets of all vector-functions
w(m,1) = (u(w, 1), ..., u" (@, 1)) such that all «* (k =1, ..., N) belong to
C(Q) and O, (@), respectively.

In this section, applying a method similar to Friedman’s {[3], p. 200),
we deduce an a priori estimate for the norm |u|¥, 5(?), where « = (11, ...,
vooy %N) s a solution of the problem:

n

(1.1) IFuk = Z ali (@, t)uﬁ‘,ia,j—u;‘ = B*u, (@,1)eO\Z,
7=

(1) ILe., the existence of solutions in a part of the given domain contained in
the slrip {(z,?¢): 0< t < 7}, where = > 0 is a sufficiently small number,
(®) In sections 1, 2 the notation of sections 1, 2 of [7] will be used.
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(1.2) u*(x, 1) =¢t(w, 1), (v,t)eZ (k=1,...,N),

Z being the nnion R,uUS.
The following assumptions are introduced (¢,j =1,...,2;k =1, ...
. N
(1.I) For any (x,1)e@ and &¢I, we have

oy (@, 1) = afi(a, 1), 2%(«: 1) &> Aglél

1,J=1

(4, is a certain positive constant).

(1.II) The coefficients of, satisfy the uniform Hélder condition with
the exponent a (0 < ¢ < 1) in G and the uniform Lipschitz condition on
the surface S.

Then for some constants 4,, 4, >0

n n
Ml <Ay, D lahlf <4

1,J=1 1,1=1

(1L.JIT) The surface 8§ belongs both to EH,, and to C,_,.
(1.IV) For any »,7 (0<» <7< T) B* is an operator defined on the
set OF, @ *) with values belonging to the set O(G” *), where

G =Gn{x,1): »r<t<1}.

Moreover, there are constants Ay, A, >0 (independent of » and )
guch that for any we OYy(G"")

(1.3) 1BFul§"" < At Ag Julfy
‘where

N n N
i = D fid+ D) Y k8

(L.V) The vector-function ¢ = (¢1, ..., (pN ) defined on X possesses an
extension @ e CY ,(F)NOY, () (0 < f < 1).

(L.VI) If a vector-function @ Cp,(G) is an extension of ¢, then
B*® = I*®" (s, 0)¢0R,.

TuEOREM 1. Let assumptions (1.I)-(1.VI) be satisfied and lot the fwn(’-
tion u(w 1) e 0, (G) be a solution of problem (1.1), (L.2). Then ue C‘M(G)
and |u|% +a < K, K being o constant depending only on , A; (i = 0,1, ..., 6)
and @, where
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Ag > I‘pl?ﬁﬂ’ Ag > lolfy (3).
Proof. Let the function @ (@, {) be such an extengion of ¢ that
|¢|1+ﬂ AB, |¢'gl < A

Then the function v(w,t) = u(v,?)— D(x,?) is the solution of the
problem
(1.4) I*v* = Bru—L*®% (2,1)e G\Z,
(1.5) v(2,t) =0, (x,0)eX (bk=1,...,N).

The functions B*u— L*¥ @* are continuous in @ and vanish on AR®
(by assumption (1,VI)). Hence, by Lemma 2 of {7] and by the remark
to that lemma, we have
(1.8) 0¥ < K (B) PR B (v &) — L*OMT,

where G° = G** (0 < v < T), K(p) is a constant depending only on g, 4,,
A,, A, and on the domain &. Inequality (1.3) applied to (1.6) yields

N
(1) [olfes < B (8)e* PP (N Aol s+ N Aot NAOIT 4 3] ITFSHT).
It =
NA,K(BTEPE < 1,
then from (1.7) follows the estimate
wf < K,

which completes the proof in this case.
In the case where 3
NAKBTAR>1,

we proceed step by step to estimate the norm |v|§, ;. Let us put
1 =
= -};[2NA4K(/3)12""“",

where p > 1 is such a number that T is an integer multiple of 7. We then
have from (1.7)
(1.8) l”llq s << Iy (1)

(%) These norms aro defined as

"p|_|_-| i) = ]nrlq’ll g ﬂ! |‘P|G = 1nfl¢|2 1!

where the inf is taken with respect to all @ (of the indicated classes) which coincide
with ¢ on X, whereas

N N
Py = 2 1P 191, = vW’"l”&-kZl Zlfb" |G+k2,: 2 125010+ 219015
= =]1qi= =1 q,f= =

() K;, ki will denote constants depending on the same parameters as K.
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Now we are going to estimate the norm |'v|1 +p *, where » = v/4. For
this purpose let us consider the function w (2, t) = £(t)v(w, t), where
— 412 (t—) (t—By), << 3y,

£(t) -
B 3 <1< by,

Tt is easy to see that
Fub = EQ)[B*(v+ @) — LFO*]— £ ()" = g"(m, 1), (@, 1) e GFN\Z",
wh(z,8) =0, @,1)eZ"” (k=1,...,N).
Therefore, as before, we have
whEs < B (8) 7P g™
Hence, recalling that
wb(w,1) = o*(@,t) for (@, 1) G
and using relations (1.3), (1.8), we obtain the inqualities
1M1 < KB (8) 2 B (0 0) - I 4T,

which easily imply the estimate

il Sv
oy <

The next step is to estimate the norm lvlﬂgdv We use the previous
method with G"* and &(3) replaced by G*® and &(t—v), respectively.
Proceeding in the above manner, step by step, we obtain the estimates

v, (14-2)¥ * . .
I”Iﬂ-yp < K, 1 =0,1,...,1,

T
where i, = — — 2. Hence it follows that
v

S
oifys T <maxK;, 0<u<T-—v,

which implies

|’0|1+ﬂ K.
Thus

|ulfyp < K+ A
and the proof of Theorem 1 is completed.

Remark 1. Theorem 1 holds true for problem (1.1), (1.2) with L*u
replaced by

N
Z ol (2, ) '“‘wifcj'i'z Zb () t)uf,i-{-Zc_,’f(w, 8w —uf,

1, =1 i=1 =1 Feal

if we fuddmonaﬂly assume that the coefficients bf%(w, 1), of (x,t) are con-
tinuous in @.
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Remark 2. Let all the assumptions of Theorem 1 be fulfilled and
suppose that

(1.VII) the operators B* map the space OF ,(&)into the set U 0.(G)..
0<<s<l
Then it follows from Lemmas 1 and 2 of [7] that any solution ue 07, (F)

of problem (1.1), (1.2) is of class 02+,(G), 0 < &< 1, being a constant.

Remark 3. If the assumptlons of Theorem 1 are satisfied and the
operators B* map the space OV ,(@) into 0,(G), then the assertion of
Remark 2 holds with ¢ = a.

Now corollaries to Theorem 1 concerning special cages of operators
B¥, which were considered in paper [7], are deduced. We introduce the
following assumptions:

(LVIII) For any %7 (0<»<t<T) ¥Yo,t2(-,1) ((z,t)eG,
1< k< N)is afunctional defined for functions 2 € 0, ,(6"°) and continuous
with respect to the parameter (z,t), i.e., for any ze 01,0(@7’), e >0 and
(0, Ty) € @ there is such a number 6 > 0 that if

| — @o|*+ [t —1,| < 4,
then
|!P (2,85 20, 1) — % (@, 295 2(*, to))| < &.

Moreover, there are constants 4,, 4; >0 (independent of #, 7) such
that for any ze 0, (G"")

|P*(, 85 8, D)7 < Art Aq 2l

(1.IX) The functions f*(=,t, p, q,r) are defined and continuous in
the set G X Hy,,n.n and there exist constants A, 4,, >0 such that

F4(@, 8Dy €5 1) < Agt Ao Zum + 2 Zlqﬁ|+2 i) -

e il F=1

(1.X) Assumption (1.VI) for operators B* of the form:
(1.0) B*u =f"(w,t Wy oy WD UGy ey Uy e uﬁ,
ey Ugy Wy 5wl (5 2))y (w,t;uN(~,t))).

TuroREM 2. Let assumptions (1.1)-(1.III), (1.V), (1.VIII)-(1.X) be
satisfied. Suppose that we C1(G) is a solution of problem (1.1), (1.2) n
the case (1.9). Then ue O'1 +a (@) and the norm Iu]?” 18 bounded by a constant
depending only on B, A; (1 =0,1,2,5,...,10) and on the domain G.

In order to prove this theorem it suffices to observe that assumptions
(1.VIII), (1.IX) imply (1.IV) and then to apply Theorem 1.
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For operators B* given by the formulas
(L10)  BFu = fo(wy 1y Uy ooy N Uy ey Uy ey UDL 5 oy U

[ury, Yur@, b5 dy), ..oy [u @, )u? (@, dy)
& G

the following assumptions are introduced concerning the measure
p(@,t; D) = (Ml(mt D)y vy w (@, 4 D))

(cf. section 1 of [7]):
(1.XI) There is a constant 4., > 0 such that for any (z,t)e @

Hk(w’ 1; Dy) < 444.

(1.XII) There exists a finite non-negative measure p (defined on
M) with the following property: for any & >0 and P, (%, t)e G there
is a number 8 >0 such that if P(w,t)e @ and d&(P,P,) < 4, then for
any De N
|u* (@, t; D)— u*(@q, ty; D)| < eu(D).

(1.XTIII) There is a constant 4., > 0 such that for any De I
”k(my t; D) < 4,,m(D),

m (D) being the Lebesgue measure of D (5).
Moreover, we shall use the following condition:
(1.XIV) Assumption (1.VI) for the case (1.10).

Remark 4. A simple example of measures satisfying conditions
(1.XT) and (1.XTII) are the measures given by the formulas

y’“(m,t;l)) = f@k(w: 1, y) u(dy),
D

g"(m, 1, y) being functions non-negative and continuous in the domain
GX Do. Then

sz(y, 0w, t; dy) = [o(y, 1)e" (@, 1, 9) G (dy).
¢ Gy

Remark 5. According to the Radon-Nikodym theorem (see, for

example, [6], p. 299) assumption (1.XIII)implies the existence of functions
Qk(m’ t, 'y) =0 such that

W@, 4 D) = [ @, t,y)dy.
D

() If @ is a cylindrical domain, then condition (1.XIII) is superfluous in all
the theorems of this paper concerning integro-differential equations.
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TurorREM 3. Let assumptions (1.I)-(1LIIL), (1.V), (LIX), (1.XI)-
(LXIV) hold true and let we OY,(@) be a solution of problem (1.1), (1.2)
in case (1.10). Then the assertion of Theorem 1 remains true with K depending
only on 8, A, (1 =0,1,2,5,6,9,...,12) and G..

For the proof we need the following

LeMMA 1. We assume that the measures u* satisfy conditions (1.XI)
and (LXII), or, if @ is not & cylindrical domain, we assume that u* satisfy
oonditions (L.XI)-(1.XIII) and that Se O,.,. Under these assumptions, if
the function z(», t) is continuous in G, then the functions

wh(@,1) = [2(y, )u(@, t; dy)
Gy
are continuous in G as well.
The method of proving this lemma is the same as for Lemma 4 of [7].
Now, by Lemma 1, Theorem 3 follows immediately from Theorem 2.

2. General existence theorems. In this section we shall prove some
existence theorems for problem (1.1), (1.2) which constitute generalizatipn
of theorems obtained in section 2 of paper [7]. Besides the agsumptions
of section 1, we shall use the following ones:

(2.I) The vector-function ¢ = (¢4, ..., @") is of class C 1” ()N 0P, (@),
where 0 < a < f < 1.

(2.IX) The operators B* (k = 1, ..., N) are continuous in the space
O o(@) in the following sense: if u, u,e 01, ,(G) and

lim |’M |1+a = O!

then
lim [B*u,,— B*ul$ = 0.
M—=>00
THEOREM 4. If assumptions (1.I)-(L.IV), (1.VI), (L.VIL), (2.1) and
(2.I1) are satisfied, then there exists a solution u(w 1) = (u (@, 1),
oy (@, 1) of problem (1.1), (1.2); furthermore, ue Oﬁﬂ(G)nGﬁ,.(G) for
some g,0 < e < 1.
Proof. We apply the method of Leray-Schauder. Let us denote by 2
the set of all functions we O, ,(G) sueh that u(»,1) =¢(z,?) on X. For
ue 2 and Ae[0, 1] let us consider the problem:

(2.1) LEy" = A(Bfu—LFO*) - IF ¥,  (2,1)e O\Z,
(2.2) "*(w,1) =, t), (v,0)eX (k=1,...,N),

where @ ¢ 075 ()N O, N «(@) is an extension of ¢. It follows from Lemmas 1
and 2 of [7] that this problem possesses a unique solution v (v, ) = (v*(2,1),
..y v¥ (0, 1)) and, moreover, ve O 4(G) N 1l (@) for some 0 < & < 1.
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Now we define on the set 2x[0,1] a transformation Z setting
Z(u, A) =2, We have to prove that Z fulfily all the assumptions of the
Leray-Schauder theorem (see, for example, [3], p. 189).

The transformation Z(u, A) is continuous with respect to u, i.e. the
condition

Lim Wm_ulﬂa =0
m—ro0
implies
L (Z (g A)—Z (%, }')lﬁl-u =0.

m-—ro0

Indeed, by the definition of Z, we have Z(uy, ) = v,,, where
IFok, = A(Bu,— LFOY L LFD*,  (0,1)e G\Z,
ok (w,1) =@, 1), (m,1)eX (k=1,...,N).
Hence and from (2.1), (2.2) it follows that
(2.3) IF vk, — %) = A(B*u,— B*u), (@,t)eG\Z,
(2.4) (@, )—v*(@,1) =0, (2,0)¢Z (k =1,...,N).

Applying to (2.3), (2.4) Lemma 2 of [7] and using assumption (2.II),
we obtain the relations

lim [of,—o%f, =0 e lm|Z(Up, )—~Z(u, 1), =0.

M0 merc0

Now let v, = Z(u, 4;) and vy, = Z(u, 4;). Then
IF@f—of) = (A,— Ay) (B¥u—LF DY), (,1)eG\Z,
(@, t)— v (2,1) =0, (w,8)eX (k=1,...,N).

Hence, by Lemma 2 of [7] and by condition (1.3) we get
[0h— v5|Fha < K(a) | Aa| (Aot Aq|ulto+ | LF D¥(F) .

- With the aid of these inequalities it easily follows that for « in the
bounded set of £ the transformation Z(w,A) is uniformly continunous

in 4, i.e., that for any bounded subset 2, = 2 and 5 > 0 there exists such
a number & > 0, that if

Ue .Qo a:nd. Ill—lgl < 6,
then

2wy 2)—Z (%, Ja)lFya < -

Note further that for any fixed Ae[0, 1] the transformation Z(u, A)
is compact. This fact is a consequence of Lemma 2 of [7] and of condition
(1.3) applied to (2.1), (2.2), since the transformation Z(u,A) maps (for
fixed 1) every bounded subset Q, = Q into a set £, which is bounded
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in the space CY,,(G), whence, by virtue of Theorem 1 of [3], p. 188, the
closure @) is a compact set of the space OF.,(G).

The uniform boundedness (in the space O, ,(&)) of all possible solutions
of the equation Z (u, Ay = w (ue £, A¢ [0, 1]) is guaranteed by Theorem 1.

Finally, it follows from Lemma 1 of [7] that the equation Z (%, 0) = u
has a unique solution in £. Therefore, according to the Leray-Schauder
theorem, there exists (in the set 2) a solution « of the equation Z (u, 1) = u.
Observe that u satisfies (1.1), (1.2) and wue OY 4(G)NCY., (@) for some
0 < e < 1, which was to be proved.

Now, under stronger assumptions than those of Theorem 4, we shall
prove the existence and uniqueness of solutions of problem (1.1), (1.2).
We retain assumptions (1.I)-(1.IV), (1.VI), (1.VII) and (2.I), whereas
(2.II) is replaced by the following one:

(2.IIT) For every bounded set 2 in Of.,(@) there exists a constant
A, >0 such that for any », 7 (0<r<t<T)

|Bku_ Bk""om < A1a|“—"7|ﬂ:y
if w,ve Q.
TusorEM 5. If assumptions (1.I)-(1.IV), (1.VI), (1.VII), (2.I) and

(2.11Y) are fulfilled, then problem (1.1), (1.2) has a unigue solution u = {u*}
in the space Oy (F). Moreover, ue O 5(G) N O, (G) for some & (0 <e< 1).

Proof. The exigstence of a solution is an immediate consequence of
Theorem 4. We sghall show the uniqueness step by step in a standard

manner. _
Let u, ve 0y, (@) be the two solutions of problem (1.1), (1.2). Then

for any 7 (0 << T)
(2.5) IF(uF—o*) = Btu— B, (z,1)e G\,
(2.6) wW—v*=0on X (h=1,...,N).

Since, by Theorem 1, we have w,ve 0Y ,(G"), applying the remark
of [7] (p. 2568) to (2.5), (2.6) and using assumption (2.I11I) we get

(2.7) lu— 0| < NAp K (a) 70 ju—0ffL,.
It
NAZK(a) T < 1,

then inequality (2.7) implies the identity « = v in G.
In the case where
NAGK(a)TO92 > 1
set
7 = [2NA K ()]0 D,

Consequently, from (2.7) it follows that v = v in &.
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Next we consider the domain G“**. Since
I* (W — %) = B'u—B¥v, (2,1)e G\ I
wW—t* =0 on I (b =1,..,N),
we have, as before,
lu—o|e < NAu K ()50~ ju—olfys

Hence, by definition of 7, » = » in G**.

The finite number of iterations of the above argument suffices to
prove the uniqueness of solutions of the problem in question.

Further, let ns consider the special cages of operators B* given by
formulas (1.9) and (1.10), for which Theorem 4 as well as Theorem 5 hold
true. The following assumptions will be needed:

(2.IV) The functions f*(z,t, p,q,7) (5 =1, ..., N) satisfy a uniform
Holder condition in every bounded set @ X H (H < Ey,nyin)-

(2.V) For any z¢ 0, () the functions g*(z,?) = ¥*(v, ¢; 2(, 1)) sat-
isfy a uniform Hélder condition in @.

(2.VI) There exists a finite measure x (defined on ) such that for
any D¢ and any points P(z,?), P'(2',1') of the domain G we have

(@, 4; D)— p* (@', ¥'; D)| < Ay (D)[4(P, P)T,

Ay >0, 0 <y <1 being some constants.

THEOREM 6. If assumptions (1.I)-(1.III), (1.VIII)-(1.X), (2.I), (2.IV)
and (2.V) are fulfilled, then the assertion of Theorem 4 holds true in case
(1.9).

Since assumptions (1.VIII), (1.IX), (2.IV), (2.V) imply (1.IV), (1.VII),
(2.IT), this theorem follows from Theorem 4.

THroREM 7. Under assumptions (1.I)-(1.II1), (1.IX), (1.XT), (1.XIII),
(1L.XIV), (2.I), (2.IV), (2.VI) the conclusion of Theorem 4 is irue in case
(1.10).

The proof consists in applying Lemma 4 of [7] as well ag Theorem 6.

Note that Theorem 7 includes Chabrowski’s result [2].

To end this section, we formulate Theorem 5 for cases (1.9) and
(1.10). For this purpose, instead of assmmnptions (2.IV), (2.V), we mako
the following ones:

(2.VII) For every bounded set H < Hy ..y there exists such a con-
stant 4,5 >0 that for any (x,1)e@, (p,q,7), (B,§,FleH

lfk (,t,2,4q, "')_fk(.“" 1,P,4,7)]

<Ay Zm Bil+ 2 3 lty—a41-+ Zm—m) (k=1,.

I=1 i=1 §=1 1=l
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(2.VIII) For every bounded set 2 < (,,,(G) there is a constant
A >0 such that for any », 7 (0 <rv <7< T)

W@, 85 20, 1) — P*(0, 620, 0)[] " < Adlo—2Fe  (k=1,...,N),
if 2,ze Q.
THROREM 8. Let assumptions (1.I)-(1.III), (1. VIII)-(L.X), (2.1), (2.VII)
and (2.VILY) be satisfied. Then Theorem 5 holds true in case (1.9).
TuRoOREM 9. If assumptions (1.I)-(1.XII), (1.IX), (1.XI), (L.XIII),
(LXIV), (2.1), (2.VI) and (2.VII) are satisfied, then the assertion of Theo-
rem b remaing valid in oase (1.10).

This theorem constitutes a generalization of Kusano’s [4] and
Bodanko’s [1] results.

3. Existence theorems for the maximum solution and the minimum
solution. In this section we generalize the “local” existence theorems of
paper [8] obtaining the existence theorems for the whole domain.

TusoREM 9. Let assumpiions (L.I)-(1.IV), (1.VIY), (2.II) be satisfied
and supposo that

(3.I) the vedtor-funotion ¢ is of class CN (@) NCY, () (0 < a< f< ).

Then problem (1.1), (1.2) possesses a solution ue OF (@) N Wi () (*),
where 0 < £ <1 i8 some constant.

Proof. Proceeding in the same manner as in the proof of Theorem 1
and using, instead of Lemma 2 of [7], Lemma 2 of [8], one can derive
an a priori estimate of the norm ju|7,; for a solution « of problem (1.1),
(1.2). The further argumentation is similar to that which was used in
the proof of Theorem 4 ; namely, we apply the method of Leray-Schauder,
making use of the above estimate and of Lemmas 1 and 2 of [8].

In order to formulate a theorem on the existence of the maximum
and minimum solutions we make the following assumption:

(3.IT) Xf the functions u = (%!, ..., ") and v = (¥, ..., ") of class
O, (@) fulfil the inequalities

Ltu*— By > L — Bky, (2,1)e\X (k =1,...,N),
u(w,t) < v{z,t), (v,t)el,

then. u(w, 1) < v(w,1) in G.

TuURoREM 10. If the assumpilions of Theorem 9 and (3.IL) are satisfied,
then there ewist a mawimum solution v = {v*} and a minimum solution
u = {4¥} of problem (L.1), (L.2); moreover, v, ue Cr, 4(G) N W3 (@) for
some 0 < &< 1. ‘

(®) The notation of the previous sections and of paper [8] will be used.
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The above theorem can be proved by the same considerations as
those for Theorem 2 of [8], by making use of Theorem 9.
For the special cases of operators B given by the formulas

(31)  B*u =f*(n,t, u, uf, Plo, t;u(, 1))

(3.2) Bk“=fk(‘”’-t1 U, U, f’“(?/) tyu(@, t; dy))
Gy

where u; = (uj,, ..., 4 ), We introduce the following assumptions:

(3.III) The functions f*(»,t,p,q,7) (¢ =1,...,N) defined on
GX Hyynen Satisfy a uniform Hblder condition in every bounded set
Gx H (H < By, n.y) and are non-increasing with respect to the variables
Dry ey D1y Prry s Py Tay v ooy Py Moreovez, there are congtants
Alﬁ; A-17 >0 S}lch th&t fOIf any (my t) b, q, r)‘ GXEN+n+N

N n N
@5ty P, €5 1) < Angt Ao tZ,‘mw g+ ird).
=1 jul 1=l

(3.IV) The functionals ¥*(w, ¢; 2(-, %)) (¥ =1, ..., N) are non-decreas-
ing with respect to the functions 2(x,1)e 0, ,(&).

THEOREM 11. Let assumptions (1.I)-(1.IIL), (1.VIII), (2.V), (3.I),
(3.IIT) and (3.IV) be satisfied. Then the assertion of Theorem 10 holds true
m oase (3.1).

TEEOREM. 12. If assumptions (1.I)-(1.III), (1.XI), (L.XIIL), (2.VI),
(3.1) and (3.IIY) are fulfilled, then the conclusion of Theorem 10 remains
valid in case (3.2).

The method of proving Theorems 11 and 12 is the same as the method
used to prove Theorems 4 and 8 in [8].

As in paper [8], one can obtain theorems on weak inequalities for
the whole domain & which are the counterparts of Theorems 3, 5 and 10
of [8].
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