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I. Introduction. Let .#° be the set of all non-negative integers and
let B be the family of all non-negative measures on .#° whose total mass
is less than or equal to 1. We say that a sequence of measures {P,} converges
to a measure P if and only if the relation

lim P, (k) = P(k)

holds for all ke #". It is very easy to verify that under this convergence
B is a compact metrizable space.

In the sequel, we denote by E, the measure concentrated at a point
ke #, and by 0 the measure vanishing on 4. Further, by P we denote
the subset of B consisting of all probability measures. Moreover, let
B, = B\{0}.

A generalized convolution * is a commutative and associative B-valued
binary operation defined on B and satisfying the following conditions:

(i) Eo*P = P for all PeB;

(ii) (aP+bQ)*R = a(P*R)+b(@*R) for all P,Q,E<®B and for
a,b>0, a+b<1;

(iii) if P, — P, then P,*Q — P *Q for all QB;

(iv) P*Qe P provided Pe P and Qe P.

Let D be an open unit disk in the complex plane. Generalized con-
volution * is said to admit a generating function if there exists an injective
map &: P +— Pp from B to the space of analytic functions on D such
that:

(@) Pyprog = aPp+ 0Dy for all P,QeB and a,b >0, a+b<1;

(b) @p,o = PpP for all P,QeB;

(¢) im®, = @, uniformly on every compact subset of D if and
”n n

only if P, —P.

The function @, is called a generating function of P. Generalized
convolutions admitting generating function were considered in [3].

Let us quote some simple examples of generalized convolutions.
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It is clear that a generalized convolution is determined uniquely
by its values on the measures E,*E, (n,m =0,1,2,...).
Further on,

E,xE, = E,,, (ordinary convolution),
En*Em = Enm+n+m’

E +E, = E

max(n,m)?

cosha(n+m) cosha(nm —m)

E xE = E
n¥ S 2 cosh (an) cosh (am) nimt 2 cosh (an) cosh (am)

In—mi?

where a is a non-negative constant.

Another example of a generalized convolution can be obtained in
the following way:

Let 8 = (A7, o) be a commutative semigroup of non-negative integers
with 0 as a neutral element. Moreover, we assume that for every pair
i, ke & the set {j: 10j = k} is finite. Then the formula E, *E, =E,_,
defines a generalized convolution which is called an S-convolution. It was
proved in [3] (theorem 3.1) that an S-convolution admits a generating
function if and only if the semigroup 8 is isomorphic with a denumerable,
discrete subsemigroup containing 0 of the additive semigroup R™.

In [4] Kendall introduced the concept of delphic semigroups, i.e.,
commutative, topological semigroups for which, roughly speaking, the
central limit theorem for triangular arrays holds.

The aim of this note is to prove that each generalized convolution
admitting generating functions defines a delphic semigroup.

Now we give a precise definition of a delphic semigroup.

Let G be a commutative topological (with Hausdorff topology)
semigroup having a unique neutral element e¢. The semigroup operation
will be denoted by wv (u,ve@).

By a triangular array we understand a system {u (7, j):j =1, 2,...,¢;
i =1,2,...} of elements of G and we call (i) = u(¢, 1)u(s, 2)... u(7, 1)
the i-th marginal product of the array.

We say that the array is comvergent if its marginal products u(1),
u(2), ... converge to some element of G. An element  of G is called infi-
nitely divisible if it has a k-th rooth in G for every k =2, 3, ...

We say that such a G is a delphic semigroup if:

(A) There exists a continuous homomorphism 4 from G into the
additive semigroup of non-negative real numbers such that A(u) = 0
if and only if % is the neutral element e¢ of G.

(B) For each # in G the factors of » form a compact set.
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(C) If a convergent triangular array is null, i.e.,
limsup 4[u(i,j)] = 0,

i 1<i<i
then its limit is infinitely divisible.

It was proved in [4] that delphic semigroups have all general prop-
erties discovered by A. Ya. Khintchine in his study of the arithmetic
of probability measures on R. In particular, the elements « of G can be
classified as follows:

(I) » is indecomposable,
(IT) w is decomposable and has an indecomposable factor,

(ITT) « is infinitely divisible and has no indecomposable factors.

The elements of the class (III) form a subset of G which is usually
denoted by I,.

In the next section we shall prove the main result of this note. The
last section contains an analogue of the famous Raikov’s theorem for
S-convolutions.

The author is deeply obliged to Professor Kazimierz Urbanik for
his valuable advices and encouragement in preparing this paper.

II. Generaliz:d convolutions and delphic semigroups. We have the
following

THEOREM 1. Suppose that a generalized convolution * admits a gener-
ating function. Then (B,, *) with the topology induced from B is a delphic
semigroup.

Before proving the theorem we shall show some simple lemmas.

LEMMA 1. Let

27

A(P) = — [ Log|®p(re'®)| s,
(i}

where Pe B, and r i8 a given constant, 0 < r < 1. Then A is a sequentially
continuous homomorphism of (B,, *) to the additive semigroup of mon-
-negative real numbers.

Proof. First we have @, = 0. Let PeB,, s0 P # 0. In view of the
analicity of generating functions and of the injectivity of the map @ we
can write @, in the form ®p(z) = 2*¢(2), where ¢ is an analytic function
in D and ¢(0) # 0. Moreover, we have

Log|®p(re’®)| = log(r*) + Log ¢ (re'®)|.

Both parts of the last sum are summable on the circle K (0, r) = {z:
|2] = r}, the second by virtue of the Jensen’s formula (see [7]), whence
we infer that A(P) < oo for all Pe%B,. Further, A(P)> 0, because
|Pp(2)] <1 for ze D (see [3], formula (2.1)). Additivity and sequential
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continuity of 4 are simple consequences of conditions (b) and (¢) from
the introduction

LeEMMA 2. A(P) = 0 if and only if P = E,.

Proof. Suppose that 4(P) = 0. From the fact that |Pp(2)| <1 for
all ze D and the definition of the homomorphism 4 we infer that |®p(2)|
=1 for all ze K(0, r), because the integrand is continuous.

By virtue of the maximum principle, it follows that |Pp(2)| =1
for ze D, because |Dp(2)| attains its maximum inside an analicity area
of @p. On the other hand, @5 =1 and thus theorem 2.1 (see [3]) implies
P =E,.

The converse implication is obvious.

Lemmas 1 and 2 assure that the Kendall’s axiom (A) holds for the
semigroup (B, *).

Now we show that (B,, *) is a sequentially delphic semigroup in
the sense of Davidson [1]. It is rather simple (see also [1]) that a sequen-
tially delphic semigroup is a delphic semigroup if its topology is metriz-
able. This will give us the assertion, since the topology of a weak conver-
gence of a measures is metrizable (for instance, by Levy’s metric).

In order to prove that (B,, *) is a sequentially delphic semigroup
we shall make the use of theorem 3 (see [2]), namely we shall show that
(B, *) is an L-semigroup satisfying some additional conditions. In fact,
we shall prove that almost all axioms of a sequentially delphic semigroup
are satisfied by (B,, *) and the additional conditions (lemmas 4 and 6)
assure that the central limit theorem holds.

Let I be the family of all convergent sequences {P,} of measures
from B, whose limits P also belong to B,; so P = 0. For {P,}« M, P, — P,
let us define the mapping £: I — B, by the formula L({P,}) = P.

LEMMA 3. Semigroup (B,, *, M, L) is an L-semigroup (see [2]).

Proof. If we put ¥ = M and L =  in the Davidson’s definition
of L-semigroup, his axioms read:

(i) If {P,} e M and {n'} = {n}, then {P,.} ¢ M and L({P,}) = LU{P,})-

(ii) If {P,} is such that there exists PeB, with the property that
for each {n'} = {n} there is {n"'} = {n'} with {P,.}e¢ M and L({P,.}) = P,
then {P,}e¢ M and L({P,}) = P.

(ili) If {P,}e M and {Q,}e M, then {P,*Q,}e M and L({P,*Q,.})

(iv) If P, = P for each n = 1,2, ..., then {P,}e¢ M and L({P,}) = P.

These axioms are satisfied in the obvious way. In particular, condition
(ii) is a simple consequence of a metrizability of a weak convergence of
measures.

For PeB let F(P) be the set of factors of P in B, i.e., the set F(P)
= {Q«B: there exists RePB such that @ * R = P}.
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LEMMA 4. If {P,}e M and Q,c F(P,) for n = 1,2, ..., then there is
a subsequence {n'} = {n} such that {Q,.} ¢ M and L({Q,.})e F(L{P,}).

Proof. Let P, - P, PeB, and P, = Q,*R,. By the compactness
of the semigroup B, there exists a subsequence {n'} = {n} such.that a
sequence {Q,,} is convergent with @, — @. Likewise we can choose a con-
vergent subsequence {R,.} of the sequence {R,} with R, — R. Then
P,, =@, *R,. >Q*R, whence P =@x+R. Because PeB,, we have
P +# 0, whence @ # 0, R # 0. Therefore we have got a subsequence
{@.} = {@,} convergent to @ #* 0, which implies that

{Qn'} e M and {Qn} = Qe F ) F [g({P'n})]

LemMmA 5. If A(P,) — 0, then P, — E,.
Proof. Suppose P, does not converge to E,. By the compactness of
B, there exists a convergent subsequence {P, } of {P,} with P, — P # E,.
Then
A(Py)  A(P) =0,

by assumption, and hence lemma 2 implies P = E,, which yields a con-
tradiction. '

Let K (2y,7) = {2: |2—2, =7r}. Let us consider the family of circles
{K(2,r) <« D: 2 = a+bi, a,b,r — rationals} and arrange it in a single
sequence {K;(z;, 7;)}.

Then put
21t
D;(P) = [ Log|®p(2)|dz = —f Log |®p(r;6" +2;)| dd
Kj(ij,)
g =1,2,...),
where PeB,.

LEMMA 6. For each j = 1,2, ... the mapping D;: (B, *) > (R, +)
18 a sequentially continuous homomorphism. Moreover, the sequence {4, D,,
D,, ...} separates points of the semigroup B, and, for each ¢ >0 and j > 1,
there is 6; > 0 such that, for each PeB,, if A(P)< é;, then D;(P) < e.

Proof. The proof of the fact that each D; is a well defined, sequen-
tially continuous and additive homomorphism is analogous to that of
lemma 1. ' .

Suppose now that the last assertion does not hold. Then there are
€o >0 and j, such that for each n there exists P, B, with 4(P,) <1/n
and D; (P,) > &,. Since 4(P,) -0, we have, by lemma 5, P, - E,, and
it follows from the sequential contmmty of D that D; (P ) >0 which
yields a contradiction with D o(Pn) = ¢e>0.

Let us now suppose that D;(P) = D;(Q) for j =1,2,... and
P y Qe %o-
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For 0 <7 <1 let us denote by D@ the circle D" = {z: || < r}.
Given a measure R from B, it is clear that its generating function @p(z)
vanishes only in a finite number of points ze D). Therefore we can choose
from {K,} infinitely many circles, whose centers are dense in D™ and in
whose interiors the function Log|®x(2)| is harmonic.

Then

Di(R) = — [ Log|®x(2)ldz = —Log|®p(z)l.
Kj(zj,rj)

" Since P,Q # 0 (P,QeB,), we have |Pp(z)| = |Dy(2)| for a dense
subset of D", i.e., for infinitely many centers of the circles {K,} contained
in D™, and this implies, by the continuity of generating functions, that
|@p(2)| = |DPy(2)| for all ze D). Taking » — 1, we obtain the last equality
for all ze D. Hence, from theorem 2.1 (see [3]), we infer that P = @,
which completes the proof of the lemma.

By virtue of theorem 3 (see [2]), it follows that in the semigroup B,
the central limit theorem holds, so B, satisfies the Kendall’s condition (C).
Axiom (B) is a simple consequence of lemma 4 if we take P, = P for
each n. The theorem is thus proved.

Let us note that the assumption of admitting a generating function
by a generalized convolution * is essential. In fact, consider the example
of a convolution given by the formula E,*E, = E, . umn- This convo-
lution does not admit a generating function, because E,*FE, = FE, and,
consequently, either &5 =1 or &, =0, a contradiction with the in-
jectivity of the map @. Moreover, if 4 would be a homomorphism of
a delphic semigroup, then A(E,*FE,) = A(E,) and hence A4(E,) =0,
which is impossible by axiom (A).

III. Some examples of the elements from the class I, for S-convolution.
Let * be an S-convolution admitting generating function and defined
by the formula

E.*E, =E,, for n,meAN,

and let h be the corresponding to this S-convolution isomorphism of the
semigroup S = (A4, 0) into a subsemigroup containing 0 of the additive
semigroup R*.
For the given convolution * let us denote by P(4, E) a *-Poisson
measure, i.e., the measure
=< ln
P(i,E) = ¢ Ey+ Ze“——'E*",
: n!
n=1
where Ee¢ P and 1 > 0. The power E*" is taken in the sense of the con-
volution *.
We have the following
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THEOREM 2. Let * be an 8S-convolution admitting generating fumction
and let ke &' If P(A, E;) = @Q*R with Q, Re ‘B, then Q and R are *-Poisson
measures and Q = P(a, E;), R = P (B, E;), where a, 3 >0 and a+p = A.

The proof of the theorem needs some simple lemmas.

By supp8 we denote the support of a measure Se¢B, i.e., the set

suppS = {ne A": 8(n) > 0}.

LemMA 7. If P(A, E,) =Q*R, then supp @ < supp P(A, E,) and,
analogously, supp R < supp P (4, Ey).

Proof. supp P(4, E,) = {0, k, k%, k%, ...}, because
(B = Ex*Ep* ... % By = By o = Ejon.

If ¥ = 0, then we have suppP (4, E,) = {0}, because P(4, E,) = E,
Suppose that F, = @* R, where

Q=SQ(m)Em and R:SR(%)E

Obviously, @ and R are not measures equal to 0. Therefore there
exist non-negative integers m’ and »’ for which Q(m’) > 0 and R(n’) > 0.
By the formula

Q*R ZZQ n)Emon7

we have (@Q*R)(m'on’)>=@Q(m')R(n’) >0 and, consequently, ' on’
e supp(Q*R) = {0}. '

If, for example, m' # 0, then h(m'on') = h(m')+h(n’) >0 which
implles m'on’ # 0, since h(r) = 0 if and only if » = 0. This yields a con-
tradiction. Therefore @ (m) = 0 for m >0 and R(n) = 0 for » >0, so
we get ) = R = FE,. Note that the just proved part of lemma 7 (for
the case k& = 0) completes the proof of theorem 2 for £ = 0. So it remains
only to show the validity of theorem 2 for & +# 0.

Now we return to the proof of lemma 7 in the case k +# 0. If k +# 0,
then h(k) > 0. By the formula k(k°") = rh(k) >0, we infer that (E,)*"
# (Ey)*" for m # n, m,ne ¥ (Ej) = E, by definition).

Thus we have P (4, E,)(0) = ¢ * = (Q*R)(0) =@ (0)R(0) > 0, and hence

€ (supp @) N (supp R).

If it would be m¢ supp P(4, E;) and, for example, m e supp @, i.e.,
Q(m) >0, then we would have

(@*R)(m) = Q(m) B(0) B,y (m) = Q(m)E(0) >0,

since 0 is the neutral element of the semigroup S. But this means that
me supp(Q * R) = suppP(4, E,); a contradiction to the assumption. This
completes the proof of the lemma.
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LeMMA 8. If for a measure P e P there is a constant ¢, 0 < ¢ < 1, such
that |Pp(2)] = ¢ for ze D, then P = E,.

Proof. It follows from the properties of the generating functions
that

|5, (2)] = ¢|Pg,(2)] = ¢ = |Pp(2)| for ze D,

which gives us, by theorem 2.1 (see [3]), P = c¢E,. Since both measures P
and E, are probability measures on .4, we have 1 = P(A") = ¢Ey(A") = ¢,
hence P = E,. '

COROLLARY. If PeB, and cP # E,, where ¢ = 1[P(A"), then Pp(D)
and |Pp(D)| = {|Pp(2)|: ze D} are sets of the power of continuum.

In fact, both sets are connected and each contains at least two points.

Proof of theorem 2 for the case k # 0. Suppose that P(A, E;)
= @*R. Then ®p; g, (2) = Po(2)Pg(2) for z¢ D. But

Ppo, £ (?) = exp{A[Pg, (2) — 1]}

and, by lemma 7,

-]

Po(2) = D (2) = Y QM) Py un(2)= D Q(m)[Pg, ()"
méoo(m)Ekom m=0 m=0
and, likewise,
Dp(2) = Y R(n)[Pg, ()]

Let us introduce the notation

Q(m) =q,, R =r, qu) = Dgu"
m=0

r(u) = Zrnu”, p(u) =l 1,
n=0

Then
Ppo,y (2) = eXp{A[Pg, (2) —1]} = q[Pg, (2)]1r[Pg,(2)] for ze D,

i.e.,, p(u) = q(u)r(u) for ue @Ek(D) c D.
Both functions ¢(u) and r(u) are analytic for |u| < 1, because

ijqm< 1 and i’l’né 1
m=0 n=0

with ¢,, > 0 and r, > 0. So the functions p(u) and g(u)r(w) are both
analytic on D and equal on the set D n(DEk(D). Since E, # E, (k # 0),
we infer, from the corollary of lemma 8, that this set is of the power of
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continuum, and hence, by analicity, the functions p(u) and gq(u)r(u)
are equal on D. _

Further, analogously as in the well-known Raikov’s theorem about
the Poisson-law (see [5]), it may be concluded that both functions q(u)
and r(u) are entire functions without zeros. Their order cannot exceed
the order of p(u), i.e., the order one. By virtue of Hadamard’s factori-
zation theorem (see [6]), we infer that q(u), as well as r(u), has exactly
order one. Since ¢(1) =r(1) = 1, we see that q(u) = "™~ and 7(u)
— eﬁ(u— 1).

The coefficients of q(«) are equal to g¢,,,i.e.,q, = ¢ *-a™/m!,and hence
0< Zm-qm = a.
m=0

A similar argument applies to »(«) and it can be seen that a > 0,
=0and a+p =4
Therefore

Do(2) = q[Ppg,(2)] = exp{a[Pg, (2) — 1]}
and, likewise,

Pp(2) = exp{B[Py, (») — 11}

Hence, finally, @ = P(a, E;), R = P(B8, E;), a, $ >0 and a+f = 4,
which completes the proof of theorem 2.

ProBLEM. Give a description of all probability measures ¢ for which
P(A,Q)eI,, A is a positive constant. (P 799)
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