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An ordinary differential equation homeomorphic
with an essential control system

by M. E. P18 (Krakéw)

The main result of this paper is the existence of the ordinary differ-
ential equation

(1) o' = f(t, z)

with a family of solutions equivalent with respect to homeomorphisms
R? > R* (but obviously not with respeet to diffeomorphisms) with the
family of all trajectories of the (essential) control system

(2) o =u, |ul<1

(Theorem T).

This problem and many ideas of the paper have been suggested by
A. PIi§.

If f(t, ) is a bounded function on R? uniformly Lipschitz-continuous
in %, then the family of solutions for the ordinary differential equation (1)
is homeomorphic with the family of parallel straight lines. Obviously
if the solutions of the initial problem for (1) are non-unique (as is the-
case in our example) such a homeomorphism does not exist. In the general
case it is difficult to find the topological structure of solutions. Therefore
our construction of (1) is not straightforward.

Denote by S(f) the family of all solutions of (1) and by L a family
of Lipschitz-continnous functions mapping R in R with the Lipschitz
constant equal to 1. The set L is identical with the family of all trajec-
tories of the control system (2).

In this paper we give the following theorem:

TuroreM T. There ewist a continuous function f: R* — R and a homeo-
morphism h: R*— R® suoh thai the mapping k*: L —~ 8(f) induced by h
(i.6. for ve L, h*(v) = h({v}), v = R?) is a bijection.

Theorem T gives an example of an ordinary differential equation
possessing distinet maximal and minimal integrals depending continuously
on the initial points. The straight lines # = ¢+ const .are mapped by h*
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in the maximal integrals of (1) and the straight lines # = — it const
in the minimal integrals of (1). Theorem T therefore answers the problem
(it is not known to me who was the first to pose the problem) whether
the maximal integral can depend continuously on the initial points in
the non-trivial case of an ordinary differential equation without the
uniqueness property.

The function f constructed in this paper also furnishes such an example:
every point of R® is a point of non-uniqueness of the solutions of (1);
other functions with this property were constructed for instance jn [1], [2],

Proof of Theorem.T. Let r: [0, o) — [0, o0) be a continuous
increasing function satisfying the following conditions:

(3) r(0) =0, Vi,s=0 |r(@)—r(s)i<r(t—s|), lmr{l)=oc0 ag t—> oo.

In constructing of the function f the following well-known lemma will
play an essential role.

LeMmA 1. Let A be a compact and non-emply subset of a metric space
(X, o). If the fundtion v: A — R satisfies condition

(4) [v(m)—v(y)|<r(g(w, y))’ Vo,ye 4,
then the functions v* and v« given by the formulas

(5) v* (@) = min{o(y)+-7(e(@, ¥)); y < 43,
(6) vu(m) = max{o(y)—r(o(w, ¥); ye A}

provide extensions of the function v on the whole space X, with condition (4)

satisfied on X and every extension w of v which satisfies (4) on X fulfilling
the imequalitios

(7) S w<Lyt on X,

LevmA 2. Let B be the union of finite number curves on a common
compact interval I and let for te I

(8) B = {we R; (¢, ») e B}.
Let f be continuous on B and v(w) = f(t, ®) (tel) satisfy (4); then the
Sfunotions
(9) f*(8,2) = min{f(¢, y)+r(lo—yl); y « B},
(10) Su(ty @) = max {f(t, y)—r(lo—yl); y < B}
are continuous on Ix R,

Proof. Lemma 1 implies that the functions f* and fi are continuous

in » uniformly with respect to . Consider arbitrarily fixed numbers i, s, .
Let ae B, g¢ B® be such points that

f; a)+r(ls—af) = min{f(t, y)+r(jo—yl); y« BY},

f(8,0)+r(lo—¢|) = min{f(s, y)+r(lx—y|); y e B}.
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From the definition
f*‘(t: w)'—f*('g, w)
= min{f(t, ¥)+7(lo—y|); y « B'}—min{f(s, y)+#(lv—y]); y « B}
it follows for any ye B! and ze¢ B® that

f(t, ) +r(le—a)—f(s, 2)—r(jo—2|) <f* (¢, 2)—*(s, 0)

<f@ y)+r(o—y))—f(8, 0)—r(lo—d]);
hence

(11) f(t, a)—f(s, 2)—r(le—a) < f* ¢, 0)—f* (s, ®)
< f y)—F(sy 0)+r(ly—ol).

Let ¢ be an arbitrarily fixed positive number. The function f being contin-
uous on B-and r on [0, o), there exists such a positive number & that
it |[z—7'], lu—w'| < 4, (v, u), (7', w)e B, then |f(z, u)—f(z', w')| < ¢ and
r(lu—u']) < 4s. For a given ¢ there exists such a positive number 5 < 4
that if |[{—s| <%, then |k(f)—%(s)] < é for any curve k = B. Hence,
putting @ = &(t), ¢ = I(s), we get |k(f)—k(s)| < & and |I(t)—1(s)| < & for
lt—s| < . For s = k(8), y = I(t) inequality (11) implies

(12) 5@ 8)—f*(s, o) <e,

i.e. f* depends continuously on # and therefore, in virtue of the uniform
continuity in w, it is continuous on I X R. The continuity of fi is proved
similarly.
Remark 1. If outside any neighbourhood of ¢ =0 the function
7 i3 uniformly Lipschitz-continuous, then outside any neighbourhood
of B the functions (9), (10) are uniformly Lipschitz-continuous in .
We put r(s) = s2. This function satisfies conditions (3). Consider
curves @, , @y , Yo , Y1 defined as follows:
2
(—t_‘iﬂ)- s 20/2 < 1< (2k+1)V3,
(13) m, (1) = k=0, 41, +2,...,

— —2 o D)
_ (t__iiﬁl/_%)_ +ky  (2B—1)V2 <1< 20V2,

wy (1) = @, (t—1),

' - ted = [0,2V/2+1].
Yo 1) =0,y (1) =1,

(14)

Denote by K’ < R? the closed set bounded by the curves @, 2,
vy ,y> and K = K'uy, Uy, , 0K = K\int X,

(15) o =0, NK', y, =y; "K' (i =0,1).



252 M. E. Plié

LemMA 3. Let the functions b and g and sels H,G = K possess the
following properties (properties (16)-(24)):

(16) h, g are continuous and satisfy (4) (for v(x) = h(t, ) and v(x)
= g(t, 3)) on K.

(17)  Oulside any neighbourhood of H the function h is uniformly Lip-
schitz-continuous in .

(18) h(t,®) < max {h(t, y)—r(lo—yl); y« G}.

.(19) The set H 148 such a union of a finite family of solutions minimal
to the right (*) and simultaneously mawmimal to the left for the equation

(19a) o = h(t, ),

and the set G is such a union of a finite family of solutions maximal to the
right and simultaneously minimal to the left for the equation

(19Db) o =g(t, x),

that there ewists a homeomorphism of the square {0 < o,y <1} onto K’
mapping o finite number of segments {® = const, 0 <y < 1} on the solu-
tions contained in G and a finite number of segments {0 < » < 1,y = const}
on the solutions contained im H. The segment @ = j is mapped on »; and the
segment y = j is mapped on y; (j =0,1) (g = G, y; c H).

If lc @ (or H) and 1 is defined in [a, b] = J, we deofine:

l wn [a, b],
I ={0 (orm) in [0, a],
1 (or @) in [, 2V2+1].

(20)  If I, m are solutions from G (from H) not separated by any third
solution from @ (from H), then

1° () —m® ()| < a,
where a 18 a positive number.

(21) g is the ewtention of h|(HUOK) (the restriction of h to HUAK) on the
set IC given by (9) for B = HUJK.

(22) If 1, @ are arbitrary solutions, | <« G, ¢ = H and s is a point suoch

that 1(s) = @(8), then there exists a 6 >0 such that the inequalily
[t— 8| < 6 implies

(*) A solution y(2) of (1) defined on the interval a < ¢t < b iz called a solution
of (1) minimal to the right if for any solution w(f) of (1) defined for ¢ < ¢ < d, where
a<c<b we have %(?)> y(1) for ¢ < t< min(b, d). Solutions minimal to the loft
and maximal to the right or left are defined in an analogous manner.
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(23) g(t, 1) = h(t, p (&) +r(lp(t)=1(2))).
(24) h(t, ®) = g(t,») < (1, v)e HUQUIK .

Under these assumptions we have

( ) For am arbitrary number a*, 0 < a* < 1, such continuous funotions
B g* and sets H*,G* < K' can be defmad that oondmons (16)-(24) are
satisfied, where a, h, g9, H, @ are replaced by o*, b*, g*, H*, @* and H < H*,
G < Q"

(ii) Tor every solution A < Q*(H") and amy two solutions », u from
H*(G") not separated by any third solution from H* (G*), if v(t) < At < u(d)
on an interval I, then the length of I is smaller than 9r(a*).

Proof. Consider the extension »*: K — R of the function g|(GUAK)
on the whole set K given by formula (10) for B = GUIK and consider
the equation

(25) @ = h*(t, o).

PROPERTY 1. h* > h.

Proof. Since A*(¢, ) = max{g(t, y)—r(lx—y|); y¢(GUIEK)"}, ine-
quality (18) and g > & imply %" > h.

PROPERTY 2. If b = H s a solution of (19a), then b 18 a solution

of (25).
Proof. The equality b'(f) = h(f, b(t)) and b < H implies
b'(t) = g(t, b(t)). Hence the inequalities

h(t, ) <H*(t,8)< g(t,®), V(,0)eK
imply b'(t) = R* (¢, b(2)).
PROPERTY 3. h* (¢, 2) = max{g(t,y)—r(jo—v|); yeG}.
Proof.

gltyye @) —r(le—yi O) = h{t, vz @) —=7(lv—y; @) < h(t, o)
and from (18) there exists such a yeG® that
h(t, ) <h(t, y)—r(lo—yl).
Hence, in virtue of the inequality & < g,
gty (0)—r(lo—y7 (1)) < max{g(t, y)—r(lz—y)); y < 6*}.

Remark 2. Obviously all the solutions of (19b) contained in @ are
solutions of (25) and, since g = k", they are maximal to the right and also
minimal to the left.

ProPERTY 4. The family of all solulions ¢ of equation (25) (on K')
minimal to the right is homeomorphic with the family of all segments parallel
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to the x-axis and contained in the square {0 <,y <1} (i.e. there ewists
a homeomorphism from K' to the square, mupping solutions onto segments),
and each solution minimal to the right is mawximal to the left.

Proof. Let I be any solution, ! = @, and suppose at first that I + s,
(¢ = 0,1); 16t ¢ be any solution, ¢ = H, and suppose at first that ¢ - y,.
Let s be such & point that I(s) = @(s). It follows from (19) that 1(?) > (1)
for t > s and 1(#) < () for ¢t < s. In virtue of (23) there exists a positive
number & such that ¢ < disti(l, G\I) and that (23) is satisfied for [t—s| < 4.
We shall prove that if [{— 8| < & and @ is between 1(i) and ¢(?), then

(26) Bty @) = g(t, 1) — 7 (lo—1(2)]).
Suppose that k() <) <e<I@) or <o) <E(E), kcd.
We have g(t, k(1)) < h(t, (@) +(/%()—(t)|). Hence
g(t, k() —r (la— k@) < h{t, e O)+ 7 (BB — @ @)) =7 (l0— T B)])
<Rt @) < At e @)+ (L) — e @)) — 7 (lo—10)))
= g(t, 1) —r(lz—1())-
Now suppose that g(t) < o < 1(#) < k(2) or I(2) < 1(?) < # < (). Then
the properties of the function 7(s) = §*? imply
. (|5 @)— @ @)l) 47 (lo— 1)) < (k@) — o))+ (|1E) — @ (9)]),
1.e.
Rty o)+ (k@) —@())— (k@) — o))
< h(t, @)+ (1O —@@®))—r(la—10)),

i.e.
(27) glt, k@) —r (k@) —al) < g(t, 1) —r(lo—1(2)]).-

Therefore max{g(t, y)—7(ly—2|); y< @} = g(t, 1) —r(lv—1@)|) for
[t—s8| < 6, where x ig between 1(¢) and ¢(?).

If | = w; or ¢ = y;, then inequality (27) holds for » between ! and ¢
either for 0 <t—s < d or for 0 K<s—1 < 4.

If ¢ and b are two distinet solutions contained in H not separated
by any third solution from H,a°< b” and ¢, s are numbers such that
a(q) =1(g) and b(s) = I(s), then for any te(q, s) there exists an () > ¢
such that the inequality |v—1(#)| < e(t) implies A*(¢, ») = g(t, I(t))—

—#(lo—1(t)]). Indeed, we have g(t, 1(t)) = g(t, o)+ #(lo—1(t)]) for a fixed
te(q,s) and for a certain ¢e¢ H. The inequalities

g(t, 2)—r () —=2l) < g(t, 0)+-7(le—2))—r (|1 (t)—2])

<g(t, o)+ r(L(t)—ol) = g(t, 1(3))
are satistied for all ze G\ {I(1)}; therefore the inequality
(28) g(t, 2)—r(lw—2l) < g(t, L&) —r{lw—1(2)|)
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is satisfied for every ze @*\{I({)} and & = I(i). The functions appearing
in the above inequality are continuous in @ and the set @ is finite; there-
fore such a function e = ¢(¢) can be chogen that inequality (28) is satisfied
for |w—1(?)| < e(?). Moreover, ¢(f) can be chosen so as to be continuous
because the functions appearing in (28) are.

Now let f be an arbitrary solution of (25) minimal to the right, d()
= f(#}—1(¢) and d(6) = 0 for a number 0. We have d'(t) = f' ()1 (¢).
If oc(q,8) in virtue of the equality f'(f) = &*(t, f(#)) the inequality
[f(?) )—1(t)| < &(t) on a neighbourhood N of o implies

@) = g(t; 1) =r(IfO—1@®)) = V@O —r(fR)=10))

or

&) = —r(lde)),
i.e.
(29) 76 =1+ 27

on N;i.e., the solution f is maximal to the left on N and, simultaneously,
ig (locally) the unique solution of (2b) crossing ! at ¢ = ¢. Condition (26)
implies that if f(?) is between I(¢) and a(f) on the interval [q, g+ d) (or
between 1(#) and b(#) on the interval (s— 48, 5]), we have (29) and there-
fore f is maximal to the left. The solutions a, b being minimal to the
right and maximal to the left (Properties 1 and 2), if f(¢g) = a(g) (or f(3)
= b(s)), then f(t) = a(t) on the interval [q, g+ &) (or f(t) = b(f) on the
interval (s— &, 8]), i.e., a i3 a (locally) unique solution crossing ! at t = ¢
(analogously b is a locally nunique solution crossing I at ¢ = 8). Now Prop-
erty 4 of solutions of H is true because the function h* is Lipschitz-
continuous in # outside the set &.

PROPERTY b. A*(¢, ®) = g(t, @) < (¢, #)e HUGUIK.

Proof. In virtue of (21), the definition of function %* and Property 3
it follows that there exists a ye (HUAK)" such that g(t,z) = g(3, ¥)+
+7(lw—y|) and a we G such that 2*(f, #) = g(¢, u)—r(|o— u|). Therefore
B, @) —g(t, @) = g(¢, u)—g(t, y)— (r(lv—ul) +¢(Iw—yl)) < r{ju—yl)—
—(r(je—ul|)+r(jo—y])) < 0 for #¢ (HUGUIK)". Now suppose that e H'.
Property 2 implies that g(t x) = h*(¢, ). If xe (QUIK), then the defi-
nition of A* implies A*(¢, ) = g(¢, #). Thus the proof of Property 5 is
complete.

Let «* be an arbitrary positive number and let 6 > 0 be such a number
that if ¢ is an arbitrary solution contained in @ and d an arbitrary solution
of (25), then the inequality [¢(t)—d(?)] < ¢ and the equality ¢(s) = d(s)
imply the inequality |t—s| < a*. Write

G = {(tr w)e IC; (2, Yel, lov—y| < 6}'
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On the set K\G,, the function A" iy uniformly Lipschitz-continuous
with the Lipschitz-constant M = M (8); therefore there exists a constant g

such that if « and # are arbitrary solutions of (26) contained in K\G,,,
then
max (¢—
max(e—p)
min (¢ — )
Consider the continuous function

f@,o,2) = h*(t7 2)+r(lo— Z|)—h*(t, ).
The sets

A = {({,m,2); (, ) e L\Gy, (7, z)er},

—— —_— 1
B = {(t, @, 2); (t, ®)e KNGy, (t,2) e KNGy, lo—2| > SM"}
are compact, and therefore we can consider the numbers
v, = min{f(u); we A}, vy =min{f(u); ue B}.

For every ¢, © there exists such a number y ¢« ¢ that 1" (1, 2) = A* (¢, y)—
—7r(|o—y|). Hence

ft, @, 2) = B(t, 2)— b (¢, y)+r(jo—2)+7(je—y])
Zr(la—yh)+r(lo—ez)—r{ly—2l);
therefore f(t,®,2) >0 for #¢ @ and @ # 2, i.e. vy, v, > 0. Write
2 n2 ] 2 1y92 1 142
(30) P = min{a*,%,%, 8;[“ Zq , D’(s);{l’(s)] ’ [r(izljzl }
We define the set H* in the following manner:
H*=HVUH',

where H' is a set of points belonging to a finite number of solutions of (25)
minimal to the right (and maximal to the left). We choose them in such

a way that if a, # are solutions of H* not separated by any third solution
of H*, then

max |o” (1) — B°(¢)| < P,

and if, for any solution b contained in @, a(t) < b(t) < f(t) on an interval I,
then I is shorter than a*.

The extention ¢* of the function »*|(H*UdXK) can be defined on the
whole set K by formula (9). We shall consider the equation
(31) a' = g"(t, @),

For this equation properties analogous to Properties 1-5 can be
obtained:
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PrOPERTY 1. ¢* < yg.

PrOPERTY 2'. If b = @ 48 a solution of (19b), then b i8 a solution of
(31).

PROPERTY 3. ¢ (t, @) = min{h* (¢, y)+r(lo—yl); ye (H" Vy; Ly}

PrOPERTY 4'. The family of all solutions @ of equation (31) mawimal
to the right is homeomorphic with the family of all segments parallel to the
w-ami8 and contained in the square {0 < w, y < 1}, and each solution mawimal
to the right is minimal to the left.

PrOPERTY B5'. ¢*(t, ®) = 1'(t, @) < (t, ®)e GUH"UIK.

We define the set G* in the following manner:

G* — GUG,,

where @' is a set of points belonging to a finite number of solutions of (31)
maximal to the right (and minimal to the left simultaneously). We choose
them in such a way that if a, § are solutions of G* not separated by any
third solution of @, then max|a’(t)— °(?)| < o* and if, for any solution b
contained in H*, a(t) < b(¢) < f(¢) on an interval I, then I is shorter
than a*.

PROPERTY 6. If ¢, 0, are two solutions from H* not separated by any
third solution from H* and, for a certain i, ¢,(1)¢ G (¢ =1, 2), then for
®e [0,(1), 05(2)] the following formula is true:

(32) g*(t, @) = min{h*(t, os(2) 4 (Jo— 02 (3)]), 2" (¢, 6a())+7(l2— 02 (1))}
Moreover, if for a number v we have 0,(3) < & < &(cn(t)—ol(t)), then

(33) g"(t, @) = B (¢, 0y (¥)) 47 (lo— 1 (2)])
and if oy(t)—%(62(t)— 01 (2)) < @ < ea(t), then
(34) g*(t; @) = 1*(t, 03(t)) + 7 (Jo— ea(2)]).

Proof. The definitions of the funetion 4* and the set H* imply that
for e [0,(t), 62(1)]

R (t, 6 (1) + 7 (lo— 0, (1)) — B* (4, @) < 2r(lz— 6, (D)) < 2¢(P) (1 =1,2).
We define the functions
fi(t,m,2) = B (t, 2)Fr(Jz—2)—B*(t, (1) —(lo— (D)) (¢ =1,2)
The definition of f(¢, w, 2) implies
filt, ®, 2) = f(t, &, 2)— [B* (¢, ;) + 7 (lo— ¢, (1)]) — k" (¢, )]

If we[ey(), 62(t)], (¢,2)e Gy we have (f,x,2)e A and therefore, in
virtue of (30),

(35) filt, @, 2) = v,—2r(P)>0.
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If (t,2)¢ G4 and [w—2| > 1/8M*, we have (,,2)e B and therefore
(36) fi(t, @, 2) = v,—2r(P) > 0.
Now suppose that dist(z, [e,(?), ¢2(¥)]) < 1/8M*. Then
(37) i, 2, 2) = "(la’_zl)_"’(la’_ oi(t)l)‘l" n* (¢, 2)—h" (ty 0¢(t))
1 1
2 (lo— &}) 2 (jw— &)
for 1 =1 if z < 0,(¢) and for ¢ = 2 if 2 > 0,(t), where £; is between ¢(f)
and 2. Therefore, from (35), (36) and (37) it follows that, for ze H* and
we [04(1), 0:(2)],
(38) fi,w,2) =0 or fi(t,m,2)>0.
This means that formula (32) holds true. To prove (33) and (34) let
us fix @, 0,(8) < 0 < 64(t)+ 3{ca(¥)— 0,(?)). Then
n* (t’ Ga(t))+"'(|,ca(t)‘ “"])" w* (trc1(t))— T(lw—' 01 (t)1)
> B (2, 0a(t) — ¥ (£, 02 (1)) + 7 (300 () — 01 (1)) — 7 (¥ (02 (1) — 01 ()
= 7(0a(t)— 01 (1) (f @ —r(3)— M (ea(t) — 0, (8))
=r(0(t)— 0, () [r §)— r(}) — Mr{e. () — e (2))] > 0.
Similarly, for @, ¢,(t)-F3(c, (1) — 6, (2)) < @ < ¢, (8), we have
¥ (2, oy ()47 (lo— o0y (8)]) — B* (2, 02 (3))— 7 (e (t)—a]) > 0.
Thus the proof of Property 6 is complete.
Now (i) in Lemima 3 is an immediate consequence of Properties 1-6.
To prove (ii) let A =« @ and a, 8 c G be such solutions not separated by
any third solution from @ that «(t) < A() < f(?). Let I = [z, ¢]. From
the definitions of H* and the number § it follows that
(39) a(®)+o<v(t) <p()<B@E)—9

on the interval I” = [z 2a*, 0—2a*]. We are now going 1o evaluate the

length of I” provided I” is non-empty. Let us divide I into three sets,
I, Iy, I: )

(40) Iy = {teI7; u(®)—A0) < 3{u(t)— ()},
41) L ={teI75o()+ $u®)—2(®) < A0 < p)—Hr®)—r @)},
(42) Iy ={teI75 () —v(1) < }(u(®)—» (@)}
Suppose that I, is non-empty and teI,. From Property 6
(43) () =g* (¢, A@) = B*(t, w(®)+r(p(t)— @)
= u (1) +r{u®)—A0).

> loy{t)—#] — Mloy(t)—#] = los(t)—7] ( M);o
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If, for a number seI;, A(8) = u(s)—%(u(s)—»(s)), then (from (43))
A (s) > u'(8)— k(' (8)—»'(s)); therefore the set I, is an interval and
c—2a*e I;. In an analogous way we find that the set I, is an interval
and 4 2a%e I, or I, is empty. Hence I, is also an interval. From (43)
we have, for tel;, u(t)—A(t) = }(t—o0)? for a certain o. The inequality
in (40) implies (1— ¢)® < §{u()—»(3)), Le., |t—o| < 2r(}a*). Hence

(44) 11| < 27 (3a").

In an analogous manner the length of the interval I, can be eval-
uated:

(45) L] < 27 (3a¥).
Now suppose that te I,. Property 6 implies that
M) = g*(t, A(2)
= min{&* (¢, (1)) -7 (A(0)—» (1)), B*(t, w () +r(0@)—1(2))}
> min v’ (1), @' (0} +7 (4 (s () —» ()
> 9" (1) — [ () — ' @)+ ({u () —» (1))
Therefore
K@) —v' (@)= @—r ) — ' (5)~' ()]
>7(§(w(t)—» (1) — M (u(®)— (1)) > 4 (u () —»(2)
in virtue on the inequality

rlu(t)—v (@) <

r(§)—4
T
Hence

A (@)y—' (1) = dminr (u(t)—»(2)).
This means that if s is an arbitrary point of I,, then for A >0

max (u(t)—»(t) = A(s+h)—»(s+ &) > thminr (u(t)—» (1)),

2max (u(t)—»(1)) < 2r(g) max (1 (8)— » (1))
= minr(u(t)—s@) maxr(u()—» ()

= 27 (g)maxr (u(t)—» (1) < a*
Formulas (44), (45), (46) imply that
17| < 4r(3a*)+a",
and in virtue of the definition of I~

1| < Ba*+4r(3a*) < 97r(a¥).
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For A<= H* and », u = G it follows from the definition of the set
G"* that |I| < a* < 9r(a*). Thus the proof of Lemma 3 is complete.

Let a; be such a decreasing sequence of positive numbers that lima,
=0, a, =1. Write H, = y,Vy,, G4 = a,Vn,. Let A({, ) = min{r(z),
r(w—1)} for (¢,a)e K. We define the functions Ay, g,: K — I by the
formulas

hy(ty ®) = max{h(t, y)—r(lo—y|); ¥« (G,VIK)},
91(t, @) = min{hy (¢, )+ 7 (lo—y|); y < (HU0K)T.
The curves ¥, and y, are solutions of the equation
(47) o' = hy(t, )

minimal to the right (and maximal to the left) and the curves @, and o,
are solutions of

(48) o' = g,(t, @)

maximal to the right (and minimal to the left). The funections 4,, g, and
the sets H,, G4 possess properties (16)-(24), where a = a, = 1.

Suppose that the continuous functions 4,, g, and the subsets H,, G,
of K satisfy conditions (16)-(24), where a = a,. Lemma 3 implies that
the functions h,,, =" for h =h, and g,,, =¢* for g =g, and the
subsets of K, H,,, = B* for H = H, and &,,, = G* for G = G, satisty
conditions (16)-(24) for @ = a,,, and H, c H,;,, &, < G,,,. The con-
structed sequence of the functions {A,},.n, {gn}ney and the sets {H,}..n,
{G,}ne has properties (16)-(24). Moreover, this sequence has the following
property, resulting from Lemma 3 and the construction.

OOROLLARY. The set | J (H, NG,) is dense on K'.

LeMMA 4. The seéquences h,, g, aré convergent on K' to the same limal.

Proof. ¥From Properties 2 and 2’ and the definition of &, and g,
it follows that for every = and (¢, w)e K’

hn(.t1 w) < hn+l(t1 93) < gn+1(t7 m) € g‘n(ta m) .

Hence both sequence are convergent. We shall show that the con-
vergence is uniform. We have b, (¢, ®)—h,(¢, ) = 0 V (¢, 2)e H,, where
n < m. For any y there exists an ze H’ such that |[w—y| < a,. Therefore

(s 9)— Fon (85 Y < B (85 Y)— B (85 8)| - [n (2, @) — B (2, 9)| < 27 (@)

and uniform convergence follows. The proof for g, is analogons. It is enough
to prove that lim 4, (¢, ) = limg, (¢, #). The sequence £, (¢, ®) = g, (t, ®)—
—hy, (2, &) = 0 for (¢, w)e H,U&, and for any n. The uniform convergence
of k, implies the continnity of & = lim %,. Obviously & = 0 on § = J (H,v
U@,) and therefore ¥ = 0 on K’ because 8 is dense in K.
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We define
(49) f =limh, =limg,.

The function f is continuous on K'. We have, for any ne X,
(50) ha < f< gn

This implies that each solution contained in | JH,, is a solution of the
equation

(61) ' =f(t, )

minimal to the right and each solution contained in |J@&, is a solution
of (61) maximal to the right.
The constructed function f has the following property:

If (t,#)ey,, then (t—2V2,5+1)ey, and

(52) fit, ) = f(1—2V2,24+1) (= 0).
If (¢, w)e @y, then (1—1, x)ex,; (formulas (13), (14), (16)) and.
(53) f(.t’ m) =f(t—1’m)-

The whole plane R? is the union of the following sets:
K(m,n) = {(s,¥); 8 =i+n,y = o+m for some (¢, x)e K'}

(m,neZ).
If (s,y)e K(m,n), we define

fts,9) =1(t, »).

In virtue of (62), (63) the function f is continuous on RZ.
LemmA 5. The equation

(54) v = f(t, )

has the following properties:

(I) The family of solutions mamimal to the right on R (they are simul-
taneously minimal to the left) and also the family of solutions minimal to
the right on R (they are simultaneously maximal to the left) are homeomorphic
with the family of all straight lines parallel to a given one.

(IX) Haoh mawximal solution meets any minimal solution at one and
only one point.

Proof. Property (I) results from Properties 4 and 4', the density of
the set | H, (U @,)in K’ and the definition of f on R*. To prove property
(IT) let @ be an arbitrary solution of (54) minimal to the right and let y
be an arbitrary solution of (54) maximal to the right. There exist sequences
of minimal solutions »,, w, < H, and of maximal solutions m,, I, c G,,
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U, < QK Wy My, < P< 1, The solutions contained in H, meet the solu-
tions contained in @,; therefore the solutions ¢ and ¢ meet at a point.
of K'. Lemma 3 (ii) implies that they meet at only one point. From prop-
erty (I) and the definition of the function f it follows that this property
also holds on R2.

Now we are going to define the homeomorphism %: R* — R’ Let
(t,m) be an arbitrary point of R? let ¢: B— R be the solution of (54)
maximal to the right, let v: R — R be the solution of (54) minimal to the
right, and let ¢, v pass through the point (¢, ). If ¢(8) = 0 for the number s
and v (g) = @, (g) for the number ¢, then we define the mapping &: R — R?
by the formula

(56) k(t, @) = (s, @5 (q))-

Lemma B implies that the mapping % is a homeomorphism R? - R?
and therefore the mapping I: R*— R? given by the formula

(56) l = (py+21, P.—P1)ok,

where p, are suitable (coordinate) projections, is a continuous injection.
Let k'(s,y) = $(s—y), k''{s,y) = $(s+y) and
(67) h=k1to(k, k).

It is easy to see that the continuous mapping h: R* - R? is an injec-

tion. It is enough to show that » = 17, i.e., that hol = loh = épz. From
the definition we have

loh = (Pa+Py1; Pa—Dpy)okok™ o (K'y B'') = (PatD1y D2—Pi)o (K, &)
=K'+ &' E'—F),
1.6,
(Toh) (s,9) = (R(s+9)+3(s—), 36+ 9)—1(6—v) = (s, 9).
Similarly

hol = k™o (', &' )o(py+p1, P—P1)Ok
= k—lo(‘%(f’z‘}‘.pl—(f’z—?l))a %(P2'|‘P1+1”2—171)) ok =k 'ok=eg.

Therefore the mapping % given by (57) is an automorphism of R
It follows from the definition of h (which is inverse to 1) that each straight
line ¢— a is mapped by & into an integral of (54) passing through the point
t = %a,» = 0 and maximal to the right, and every straight line b—?
is mapped into the minimal integral passing through (b, 4b) and vice
versa.

Now let ¢ be an arbitrary function Lipschitz-continuous with the
Lipschitz constant 1. It can be approximated by a sequence of Lipschitz-
continuous functions ¢, satisfying the condition ¢, (¢) = 41 with the
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possible exception of at most finite values of ¢. Then k(g,) is & piecewise
solution of (b4) and h(g,) - h(q); therefore h(q) is a solution of (54).
Similarly, if ¢ is arbitrary integral of (564), it can be approximated by an
integral piecewise maximal or minimal. Therefore h~'(p) = Lma~'(p,)
and 2 !(p) is a limit of continuous functions piecewise linear with the de-
rivatives equal to +1, i.e.,, A~}(p) is a Lipschitz-continuous function with
the Lipschitz constant equal to 1. Therefore the mapping A*: L — S(f)
is a bijection.
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