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ACTA ARULIIMIVTICA
KXTT (1073)

Exponenits of the class groups of complex quadratic fields
Ibb" )

FooWeinsgraur (Ann Arbor, Mich.)

1. Let ~d be the diseriminant of a complex quadratic field. Denote
the class num@g}; of Q(V - d) with h{—~d), and the exponent of the class
group of Q(V —d) with B{—d). Then F{-—d) is the smallest positive
integer »n such that ¢ is principal for all ideals a of @ V_ZZ_ ). Despite the
1mpormnce of the class group in algebraic number theory, surprisingly
little is known about ity structure, oven for complex gquadratic fields,
which, having regulator one, are the simplest fields to deal with. Heil-
bronn [5] showad that as d goes to infinity, so does h{—d). T shall show
that lim B( - d) == oo, but only by making strong and anproved assump-
tiong abont the zeros of L-functions. Upper bounds for the 4 such that
B{—d) << 2 ure kiown. ([2], [8]), and I ghall give weaker results for £(—d)

Each discriminant - d factors uniquely into relatively prime elements
of the sob

""“»Lr 89 -3, (“"1)('%_1)12.377 )
of fundamental digeriminants, It —d is the product of g fundamental
digeriminants, then it 18 well known, that there axe exactly 27~ 2-power
groups in the decomposition of the clags group of @(V —d) into cyelic

groups of prime power order.
Lot

with p an odd prime,

2(n) = goglit) = (—~din)
be the Krongcker symbol. Throughout this paper I ghall assume d > 4.

Then. it ‘
5a o0 —d
(8, ) == Z"‘;‘i"l’: 14 sm)’

Re(s) > 0,
" ;

Hna )l He ]l
it is well kmown thatb
(L) (-
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Some of the results in this paper depend on unproved hypotheses
about the zeros of L{g, y) near s = 1. There are no zeros with Re(o) = 1,
and I shall denote by H{s, —d) the statement that L(s, z) = 0 implies
Js—1| > ¢ with y =y 4. _

Lisama 1 ([6]). Assuming H (e, — d), there is a constant oy, depending
only on s, such that

!
Db 2> i dlogloniogd

The following two vegults, due to T. Tatuzawa [10], are nob s dtrong
as Lemma 1, bubt do not have any unveritiable hypotheses.

Levma 2. If dz e 0 <e<1/2, and if L(L,yx) < .6060sd” then
Lis, y) has a real zero s, with L—c/4 < ¢ < L.

LEsa 3. There is af most one d with &> Max (e, e and L(1, z)
< .65bed ™" ﬁ

2. B(—d) = 2 is equivalent to having one ideal class in each genus.
Chowla [3] showed that this happens for only finitely many d. When. d ix
even, the d/4 with E(—d) =2 are essentially the idomeal numbersy of
Euler. If E(—d) =2 and —d is the produet of ¢ fundamental diseri-
minanty, then :

@) B(—d) = 201

while
d2dy =Py Par e Dy

where p, is the wnth prime {p, = 2). It is eagy o see that if g 11,
then
d, = 4,377 2 220 3771,

Lemma 4. If Lis, ¥) #0 dn the inderval 1 —

a2 dyy, thew B(—~d)>2 for all 42 dy,.

Without any hypothesis, there is at mosi one d 2= dyy such that
B(—d) = 2.

Proof. Suppose that 4 = dyy and — 4 ig the product of ¢ fundamental
discriminants. '

loai % & < 1 awith

1
To prove part one, Lemma 2 with ¢ = oad gives
log

655 Vd _ 655 Vd,
we logd = me logdy,

207 = h(—d) > - > 1315,

icm
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80 g > 11. Then Lemma 2 and the inequa,lity for d, give

655 Vi, - 370101

we logdyy (g —11)log37
655 Ve 60"

ne  logd;+ (g—11)log37 ~

29 = h(—d) >

g0 that
.655 Vd,, 301

2l0 .
= e logdy;+(g—11)log37

> 1315,

since the middle term iz an increasing funetion of g. This contradiction
proves the first part of the Lemma.

To prove the second part, let ¢ =
. 0g gy
logd,, > 26. Then, except for at most one d = d,;,

655 Vdy,
2071 = h{—d) > 2 = 1315,
e logdy;
80 again g > 11. Then
: 1
901 = B(—d) > .6bb ) Vidy . {¢—11) (%_]mogd“)
ne  logdy, !
50
655 Vi
gomiy 2200 P goen qgi5.90-1 QED.
we logdy, _

THEOREM 1. There is at most one complex quadrotic field with d > 5460
and B(—d) =2, If L{s, ) # 0 for d = dy, > 2-104 and 1——1—1—;—@@ 8
< 1, then B{—d) = 2 implies d < b460.

Proof. The theorem will follow from Lemma 4 when it is shown that
B(—d) 2 for 5460 < d < d,;. Each ideal elagg of Q(Vq-?) containg
an integral ideal with norm < V&ﬁ If (—~dip) =1, then (p)} = pp. If p?
is prineipal, say p*= (a), then p?= N(a) = d/4, s0 p > 1/3'71. Hence, if
d > 19707, l/ﬂ> 163, so for each p <163, B(—d) =2 implies (—d|p)
# 1. Using hig delay line sieve D, H. Lehmer has found there are no such
d < dy;- The range 5460 < d= 79707 contains no 4 with B(—d) = 2,
as J. D. Bwift [9] showed. QED. ' g

" This theorem is an improvement on the results of Briggs and Chowla

[4].

in Lemma 3. Note that
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3. LemmA 5. Let a be an integral ideal of Q(l/—wd) and ¢ a positive
integer such that o is principal. If a is not a principal ideal gemerated by
o rafional integer, and if a is prime to d, then (Na)® > d/4.

Proof. Suppose a° = (a) where a is a rationusl integer. Then in Q(V—;::-r?:)

(3) (@) = [Tt [ ] @™ [ ] o)

where the p;,qq,(7;) are ramified, completely split, and inert primes of
Q(V'—a), respectively. But the 7, ave all 0 since @ is prime to d, and, by
hypothesis, all the m; and I, are divisible by e. This implies that a iy gon.
erated by a rational infeger, which is a coniradiction, so a iy not rational,
o {Na)® = Na > dj4. QED.
The next theorem proves o conjecture of D. Shanks [7].
TH:EORDM . There are only finilely many compler quadratic fields with
B{—d) =

Proof. Suppose B{ —d) = 3, and let p be the smallest rational primd

with { —d|p) = 1. Then {p) == pp, and p is not a principal ideal generated
by a rational integer. Lemma 5 implies that p* = (¥p)® > d/4. But for
large enough d this contradicts the result of A. Y. Vinogradov and Ju.
V. Linnik [11] that p < 4“4, QED.

4, Lemma 6. Let o be o positive rational integer with the prime decom-

position (3). Then the number of distinct integral ideals of Q(l/ d with
norm a ond no non-trivial principal ideal factors is at mos't

Oifan L,>0 or an n;> 1, and

2Ms if all 1; = 0 and all n; < 1, where M, 4s the number of non-zero m,
in (3). -
Proof. From (3) it follows that if @ = Nb == bb, then each I; is oven

and |
b= 17 pit [ [aligraie [ [ (rpf

where 0 < ;<< m;. XL any 1, > 0, then (#,)(b 8o all I; = 0. If L << j; < iy,
then {g,)|b, 80 each of the M numbers j; may be 0 or m,. If some #, = 2,
then (g,)b. QED.

Lmyvwa 7. If w(n) is the number of distinel prime factors of w, then

: . 2 gotn) 21082 aloga
log?y ’

p!?bp;av:u

where the implied eonstant is absolute.
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Proof.
? polm) _ 2(d
2 E w2 (d)
new :u{'r, din -
Dln=pz=y Pl p2y
' n 2 1
E u*(d) 1 < 2 prd)—-
d logy
= k<_ s
P[d=-:a>y N pld=pa=y
Dlh=pzy
since
: x
E 1 < 1 .
N Ogy
Pln=pa=y

Hence the sum of the Lemma is

d P 1 T 1 @ logm
Ty 2 7%y 1)
Ogy d<m, pid=02y Ogy Y PET Ogy Ogy

d sqoarefree -

gince
logn <€ n(1+ ) < logn. QED,
. pre

Let —d = [ ]d;, where the d; are fundamental discriminants, and leb
=1 -
; be the unique rational prime dividing d,.

Lunwra 8. With the above notakion, if (—dip) = 1 for a prime p implies
that p > y, then
V&logdlog(g +1)
log?y

H

h(—d) <€

where the implied constant is absolute.

Proof. During this proof, adopt the convention that 2°¢) =0 if »
is not an integer. Let b({¢) denote the number of integral ideals a with
norm a, such that a is the integral ideal of smallest norm in its ideal class.
Such an a can have no non-trivial prinecipal divisors, so that b(a) is at
most the number of Lemma 6. Since every ideal class confaing an ideal

with norm less than }/E]g,
=)< D bw).
Lot ) M:@/dm
g{a) = {fn. <Vdf3: n = Hp?inqﬁ’f, with a; = 0 or 1,

=]

i=1

b:> 0, (—dig) =1, and Z’a.::a.}
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g
Let 3 = () s{a). Thern by Lemma 6,

a=0
' g
—d) < oMy, . \7 zm(n)+ nwn{pg) +
é nezs(lo) g nezs(:)
+ Z 2’ Qv 4.y N7 getning.mg)
legi<y=gy nesll) 'nﬁ;('yfj)
Valogd 91 '
0g"y ) Py 1< ¢—j< pvpy VENER .‘pu

"

_ _ Vilogd [[ N »3_ l/d]ogdlog(q 1-1)
log2 Iowﬂy '

by Lemma 7, and since H (1+»1—;) < log(g+1). QED.

f=a] 1

TeeoREM 3. If there 48 an &> 0 such that H{s, —~d) is true ﬁw all
sufficiently large d, then

. . 1z
B—-d)> €q (&) logd
loglogd \logloglogd

Proof. Let p be the amallest prime such that (-—dip) = 1. Let
(p) = pp. X p is principal, Lemma 5 gives p = Np > d/4 which contradicts,
for large enough 4, the result of Vinogradov and Linnik quoted in Theo-
rem 2. If p is not principal Lemma 5 gives

P8 = qd,
In Lemma 8 take y = (d/4)1%%, yo
o va Vi
h{—d / 4 - ‘
( ). < fogd E(—a)*log(g |1} € - “logd

I
-—loglogd,

since d > H Py implies g<logd. On the other hand Lewmma 1 gives

i==1
e &)V

h(—d) = .
loglogdlogloglogd

Gomhinj_ng the two estimates for h(—d) gives the conclusion. QED.

5. It is of gome interest to see how the conclusion of Theorem.
3 changes ‘when the hypothems ig mochﬁed
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THEOREM 4. If L{s, x) 550 for Re(s) > 1/2, then

E(—d) » logdfloglogd

for fundamental discriminanis — d.

Proof. The argument of N. Ankeny [1] shows that the smallest
prime p with (—d|p) =1 satisties p < (logd)2. Hence (logd)’®~% > d/4.
QED.

Finally, the hypothegis of Theorem 3 iz not the weakest under which
it is easy to see that H(—d) — oo a5 d — co. An easy modifieation of
Landaw’s proof of Lemma 1 shows that

2+
H((loglogd) ,—d
logd
implies
¢s(e) (loglog d)**°
1,x) =
L(1, x) logd 1

from which the proof of Theorem 3 shows that F(—d) is not bounded.

Notes added in proofs

1. Boyd and Kisilevaky (Proe. AMS 31 (1972)) also prove Theorems 2 and 4.

2. Montgomery (to appear) has recently shown that if IL(s,y) # ¢ when
o> 1—8, It < 02logd, for some &+« 1/2, then there is a prime p Wxth —dp) =1
and p® < Slogd. With this hypothesis,

. dlogd

B~y » ———F—m,
(—d) > log (dlogd)

which i3 Theorem 4 When § = 1/2. Further, if f(d) — oo and if H(f(d /logd —d)

holds for all large o, then F(—d) —oo.
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ACTA ARITHMETICA
XXIT (1673)

A remark on Hilbert’s Theorem 92
by

Doxarp L. MoQuirAN (Madison, Wise.)

Let I be an algebraic number field and & a cyclic group of auto-
morphisms of K of odd prime order p. Let U denote the units of K. Then
Hilbert’s Theorem 92 states that (G, U) is not trivial; however Hilbert’s
Zzhlbericht [3] does not contain a precise expression for the order of the
group. In Hasse's Zahlbericht [2] the following expression, due to Takagi,
is given: ‘

(G, U)] = pr+imarh,

Here r (= ry-7, —1 with the usual notation) is the rank of U, t iz 1 if K
contains a primitive pth root of unity and is ¢ otherwise, and gis defined
by the equation [N (U): UY] == p? where ¥ is the norm from K to K¢
and U, is the group of units of K%, ‘

The purpose of this short note is to derive another, quite different,
expression for the order of H'(&, U) which does not seem to have appeared
in the literature before. At the end we give a result on. H'(6, 6) where 6
is the maximal order in K. We need some notation. Tet w,, u#,, coey Uy
be a set of free generators of U and let o be a generator of 6. Then ou;
= {uyilug® ... w7 where {; is a root of umity and oy, ay,..., a; are
rational integers, 1 <C ¢ <C 7. The integral r X r matrix 4 = (ey) has period p
and so there exists [4] a unimodular matrix V such that

TAV ! = diag{l,, By, -ovy By By, e Sc}

where I, is the 4 X ¢ identity matrix, B,, ..., B, are (p—1) x (p —1) inde-
composable matrices, and 8, ..., 8, are p X p indecomposable matrices.
The integers @, b, ¢ depend only on U. We ghall prove

TeeorEM. The order of H*(G, U) is 7' where ¢ = 0,1 or —L.
If K contains no primitive p-th root of unity then ¢ = 0; if @ = 0 then ¢ = 0
or L.

Proof. Let U, denote the group of roots of unity in K. Then ¢ acts
on Uy, and it follows at once that the order of H"(@, U,), re Z, is p* where ¢
has the meaning assigned above, Next, U/U, is free on r generators, @ acts



