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Iteration of the modular period of a second
order linear recurrent sequence

by

Doxatp W. Robinson (Provo, Utah)

0. Introduction. It is well known that the Fibouacei sequence
0, 1,1, 2, 3, 5, ... reduced modulo a positive integer m is periodie. {See
for example Dickson [2], Chapter 17, Hardy and Wright [5), pp. 148-150,
or Robinson [6].) Let z(m) be the period modulo m. Fulton and Morris
[3] have recently demonstrated two faets about = as a function of m.
The first is & fixed point theorem: if m > 1, then m(m) = m if and only
it m = 245" for some i3> 1. The second is an iteration theorem: for
every positive integer m there exists a non-negative integer w such that
7T (m) = 2”(m), where a°(m) = m and ="+ (m) = a{n"(m)) for n > 0.
Thus, if w(m) is the smallest such w, then x “0™ (m)is a fixed point of .
In this note we extend these observations and prove the following:
THEOREM. Let g, %y, U, ... be the sequence given by the indegers wy, u,, t,
and d and the recurrence relation wu,., = Bty —du, for n=0, For m
@ positive integer, let m(m) be the period of the sequence modulo m.
(I) Then there exisis a non-negative integer i such that

7 (m) = 22 (m).

Let i(m) be the smallest such i and define o(m) = 2™ (m),
(I1) Then =®(m) = m if and only if m is the least common multiple
of elements drawn from ' :
{1} U {e(®), e(3); e4), o(8); v {o(p*): p = prime, ¢> 0, p* [ n(p)}.

Tn the case of the Fibonaceci sequence, the prime power p* divides m{p®)
if and only if p = 5. Also, '

of2) = o(3) = o(4) = o(B) =24, (5 =24+ 5° = g(5)- 5°,

and m is a fixed point of #* if and only if it is a fixed point of 7.

Prior to the proof of the theorem, we comment on the fact that only
second order recurrences are considered here. Indeed, in the case of first
order limear recurrent sequeneces, it is easily shown that an ieration
theorem is applicable, but that the only fixed point of the period function
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“is the trivial value 1. On the other hand, for linear sequences of order

exceedmg two, the iteration result need not apply. For example, if 4, = 0,

=0, %y =1, and ,,, = %yl —U,, then =F(2) =251 Thus,
we restrict our attention in thiz paper to linear recurrent sequences of
second order.

1. Preliminaries. Let Uy, Uy, 1, and d be integers, and let u,, Uhyy Ygs - oo
be the sequence of integers that satisfies the linear recurrence
Upya = tuﬂ-{—l_ duu
for » > 0. For convenience, define matrices
0 —d
W=, A=(} 7Y

and note that (u,, %,.,) = w4" If m iz a positive integer, then there
is & term of the sequence u, uwd, uA® ... that iy congruent modulo m to
a preceding term. Specifically, if !

u AT = 4 4% (mod )

is the first such term, then «%4°™), ¢A°t™* . iz periodic of period

#(m) modulo m. The sequence g, %,, Uy, .. 18 sa@id to be of index o(m)

and period m(m) module m. (See also Ward [8], [9] and Hall [4].)
Similarly, there is 2 term of the sequence I, 4, 4% ... that is congruent

modulo m 6 a preceding term. If ATm () —A’(m)(mod m) is the

first such term, then 4™, 4™+ ig periodic of period. »(m) modulo

m. The sequence I, A, 42, ... is said to be of index =(m) and period »(m)
modulo m.

Some well known facts about these periods are now stated. (For
proofs see for example Ward [9].) The least common multiple of the
positive integers m and = is denoted by {m, nl. _

Lenwa 1.1, Let n(m) and v(m) be the periods of gy, Uy, Uy, ... and
I, A, Az .. modulo m.

(1) If m|n, then m(m)|n(n) and &(ﬂ@)[w(n).

(2) w([my n]) = {m{m), w(n)] and »([m, n]) = [»(m), »(n)].

(3) s(m){r(m). :

(4) If wgu,—wui is relatively prime to m, then m(m) ="»(m). '

_ In view of property (2), the problen of determining the periods modulo
m i reduced to the problem of determining the periods modulo the prime

power factors of m. The next lemma provides o statement of the properties
of the period »(p®) of I, 4, A% ... modulo & prime power p°.

LevmA. 1.2, Let v{m) be the pemod of I, A, A%, ... modulo m. Let p be
& prime and let D =12 —4d.

(1) If p|D, then v(P)l(P—l)p-
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2) If p1D, then »(p)l{p—1) (p+1). :
(3) If p is odd, then either »(p°) = »(p) for e =1,2,... or there is
& positive integer e(p) such that

»(P°) = 2(p) pm PR for e =12, ...

(4) If »(2) = »(4), then either »(2°) = »(2) for ¢ =1,2,... or there
18 an integer e(2) > 1 such that

v(2°) == #(2) - PO g =13,

(4" If »(2} 41}(4),\ then »(4) =2 - v(2) and either »(2%) = »(4) for
& = 2,3, ... or there is a positive integer €' (2) such that

»(2°) = p(2) - omax{Le—ECl  fop o =2 3, ..

Proof. (1) Since D is the diseriminant of the minimum polynomial
of 4, it p|1), then A has but one characteristic value 1, and A is similar

A0 '
"to the matrix (1 2) modulo p. By Fermat’s theorem,

A% = AP =37 (modp) and  w(p)i(p—p) = (P—1)p.

(2) Let p 1+ .D. In this case, either A has two distinet characteristic
values or A has no characteristic values modulo p. In the first instance,
4 is similar to & diagonal matrix, 4¥ = 4 (med p), and »{p)|{p—1).
In the second, if u = (u,, %,) is not zero modnlo p, then {u, uAd} is linearly
independent. Hence, by part (4) of Lemma 1.1, z(p) = »(p). Since there

_are p*>—1 distinet non-zero pairs # modulo p, and each belongs to a eycle

of length »(p), it follows that »{p}i{p2—1). (See also Cornwall [1], state-
ment (3.4), p. 105, or Robinson [7].)

‘We now proceed with the proofs of the nexf three parts of the lemma
For p a prime, since

AT = 4707 (mod p%)
implies '
AT = 4200 (o potly,

it follows that
(P <pr(pt)  and  »(p")pr(pY).

In particular, since v (p%)|»{p*T), eitlier »(p®*!) = »(p®) or »(p°t%) = pr(p%).
Furthermore, since ’

Af(jﬂc+1)+u(pg) j____‘,ELz(;rJG-f-I) “!‘PEB
for some integral matrix B,

Avret Y pen®) Am(pe+1)_'1_ petl A1t g (mod P+
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provided ¢>1 if p = 2. Consequently, if also »(p***) = »(p°™"), then
AE-UEY B = ¢ (mod p), |

AP0 g o-De(pt ) gt ) e

— APt »° APt B _A"""(”H"l)(mod P,
and
v(p"th) = »(p°).
In other words, if ¢ > 1 when p = 2, then

(p*) = pr(p°)  mplies  y(p") = pr(p”t).

Paxrts (3), (4), and {4') of the lemma now follow.

For convenience we may subsume the first alternative of part (3)
into the second by the convention e(p) = 4 oc. Similar agreements
may be made for the cases (4) and (4).

We have as a consequence of this lemma and the fact that z=(m)|»(m).

CoroLLARY 1. Let w(m) be the period of uqg, ts, U, ..
Let p be a prime and D = 12— 4Ad. Then

(1) 7(29)]2° 3.

(2) If p #+2, g is @ prime, and gin(p®), then q < p.

(3) If Pla(p®), then f<e. '

(4) If p°|=(p®), then p|D.

2. Iteration Theorem. Let.m = 2% 3%% p 2l 4 %) he the prime
power factorization of m, where p; is the jth prime exceeding 3, and

a(0}, b(0), ¢,(0),..., ¢,(0) are non-negative with 6,(0) > 0. From (1) and
(2) of Corolary 1,

. modulo .

Cim) = 240 MRl | e

where a(i), b(i), ¢,(3), ..., ¢/ (i) are non-negative, ¢ == 1,2,...
Lesma 2.1, If a'(m) = 2°0) 350 0@ p&@ wohere ¢, (0) > 0, then
. there exists an i such that

e(i+k) =all), .., oi+h) =ali) for

- Proof. Let m = - p®) . By part (2) of Lemma 1.1,
m(m) = [=(2), #(ppr™)].
Thus, by 42) and (3) Qf Corollary 1, ¢,(1) < ¢,(0). By repeating this argu-
ment,.c,(@-{-l) g_ ¢, (i) for each 4. Thus, there ig an ¢ such that ¢, (44-1)
~6f('t)c-(_i)1f ¢ (:)'= 0, then o, (i+k) =0 for k =1,2,...; if e, (4)>0
then i | m(p) and e, (i+k) = ¢,(i) for k =1,2, ... ’
‘ Next, suppose that there is an i such that ¢i+k) = (i) forj = s+
+1,..7 and all' B> 1. Define x — 2201 306 PR plep ) pt = pletd)
.. - ] ’

o==1,2,...

icm
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y = pl® L opr® and n = a'(m) = wpy. With an obvious extension

of thiz notation, m(n) = «'p%y. We now show that

wt(n) = p%y  with ¢’ <¢.
Indeed, '
m(n) = [m(@p), w(y)] = [@p™ n(y)] = #'p%y
requires :
m{y) = 2%y, e<$e, and ¢ = max {tx, 0*}.
Thus, '

@ (n) = [n(a'%), 2(y)] = [y > o*2™y] = "2y,

where ch<¢ and ¢’ = max{cy, ¢*}. Finally, either ¢’ = ¢, < ¢ or
¢’ = ¢* << ¢. That i§, ¢’ < ¢'. Hence, by repetition of this argument, we
conclude that for somed, 7 (n) = aFp™ y with 7} (n) = 7# 0y Again,
since py | m(p°y), it follows that =""F(n) = a*E@py for E>1.
That is, using the original notation of the lemma, there ig an ¢ guch that
e(i+k) =¢@),j=8...,nandk =12 ... Lemma 2.1 now follows by
induction on s, ‘ _

LuMMA 2.2, Let m = 298"y and m(m) = 293"y where 2 1 y and 3 1 y.
Them m%(m) = 2% 8%y with b <V wunless b’ = 0, in which case b'" =0
or b =1. : '

Proof. m(m) = [2(2°3%), m(y)] = 298Yy requives. =(2“3") = 2% 3%,
a(y) = 273y, b’ = max{bs, b*} with b, < b unless b =0, in which
case by Corollary 1(1), b« may possibly have value 1. Therefore,

22(m) = [m(2% 3Y), m(y)] = [87° 3, 278" y] = 2¢8"y

where b’ == max {b,, b*} with B, < b’ unless b’ = 0, in which cage, bl = 0

or b, = 1. Therefore, b’ = b* < b’ or b = b, < b’ unless b’ = 0, in which
case, b* = 0 and b" is either 0 or 1.
LEMa 2.3. Let 21w, 314, m =230y with 2°3%24, and =(m)
— 2% 8% ywith 2¥3Y|24. Then there is an i such that 7% (m) = ='(m).
Proof. Since m(m) = [w(2°3%), =(y)] = 2“8"y, it is clear that

mly) =298y  where 2%3%|273%24.

Also, since both z(3) and =(8) divide 24, n(d){24 whenever d[24. In
particular, @ {m) = d(i)-y where {(i)|24 for each i. Since there are only
o finite number of divisors of 24-y, then a***(m) = a'(m) for some
i4+k>4iz=0.

If o (m)| =t (m) for some j, them a’*Mm)|al™**1(m) for all k20
and hence a*(m) = o' (m). Similarly, if 27T (m)|=’(m) for some j, then
a1 (m) = =’ (m). Thus, in either case, ='(m) is a fixed point of =.

Therefore, suppose for all j, « (m) 4 «/™(m) and af'(m) + a’(m).
Sinee ='(m) = d(§)-y|24-y, this means that for every j, either o (1)
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or M*‘l(.m) is divisible by 3, but not both. Hence, for evéry J, either
7 (m)|a?**(m) or a”** (n)|7’ (m). Again, using the fact that ™" (m) = a*(m),
it follows that ='7%(m) = ='(m).

ITERATION THEOREM. For each positive inleger m there is @ non-negative
imteger 1 swch that o2 (m) = at(m).

Proof. We begin with an observation. If #™*!(m)i='(m) for some 4,
then #* 1 {m)|a"*(m) for all k= 0. Hence, a'™"‘(m) = a*"*(m) for
some k, which means that atE(m) = @ (m) for all k3> k. In particulfmr,
nt{-h—!—i(m) - ﬂ:z+h(m).

_ Let s be a positive integer. By Lemmas 2.1 and 2.2, cither thero
exists an i such that 5 (m) = 270+% 3y for all k1 or thore existy
an i such that a'(m) = 2%y and A (m) =2%-3-9. In the first caso,
#ince :iz‘“(m)]:'z’“(m), the conclusion of the theorem follows by the
preceding observation. In the second case, a***(m) = 24"-3"" .y, where
cither b =1 or b” = 0. ’

Suppose b’ = 1. If o’ < &, then 2*** (m)|="** (m), and the conclusion
follows. If 4" > &, then 2% |x(3) and =*°(m) = 2*"-3-y is & fixed point
of =, which again gives the desived conclusion.

Suppose b’ = 0. I a”’ < o', then #*** (m}|x* (m), and the conclusion

follows. Assume o’ > o' Then n'(m) = 3%y, n**l(m) = 2¢-3.y, & (m)
s u". % " . N j ,

=2%-y, and =(y) =27y, «(3}) =27, with ¢"< o' < a” <3. Again
by Lemma 2.3, the conclusion follows, and the proof is complate, ’

COROLLARY 2. For each positive integer m there is a least non-negotive

integer 4 such that = (m) = 2% (m).

3. Fixed Point Theorem. B ’ ) i
- By Corollaxry 2, let i(m
smallest ¢ such that 200 (m) = a(m). v ) he e e

; Levma 8.1 If o(m) = 2™ (m), then
(1) o(m) = 2%(m) for all i3 i (m).
(2) elm)) = o(m).
{3) e(lm,n]) = [e(m), o(n)].
Proof. Parts (1) and (2) are obvious from the definition of g(m).

Part (8) is a consequence of the fact th. '
| 2 4 at by I A(2), o
=y i y Lemma 1.1(2), a*([m, n])
_th'l‘he integer g(m) = n*‘f"”’)(m)'is called the fiwed point of 72 associated
gl_ " Clearly a ﬁxed. point of #® may also be a fixed point of 7 But
a,bg {m}is not a fixed point of «, then by the proof of the iteration theorem
08, 7(2) = 3; w(3) == 2%, and either e(m) =2y or g(m) = 2%.3.
with 0o <o/ <8, ¢ - !
~ Next, let R be the collection of fized poi
‘ | omts of =2 ' i
R, let #|¢ mean ag usual that r divides s. ! ™ el fory wnd ¢ in

icm
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LEMMA 3.2. (R,|) is a distributive lattice.

Proof. We first note that r is an element of B if and only if ¢(r) = .
Let r,8e¢R. By Lemma 3.1(3), ¢ ([r,s]) = [a(r), o(s)] = [r, 8], and
Ty, s]e R. Thus, [7, ¢]is the join» v s of 7 and s in B.

“%We now show that the meet o ¢ of # and ¢ in R is the fixed point
of =2 associated with the greatest common divisor (7, s) of r and s. Indeed,
since (r, 8)jr, by repeated use of Lemma 1.1{1), e(r,s)ie(r) =7 Like-
wise, o(7, §)|5, and o(r, $)¢ R is a common divisor of » and 8. Also, if i« R
is such that t|r and ¢s, then ¢|(r,s). Hence, t = g(f)lg{r, 8). That
is, r A 8§ = o(7, 8). Consequently, (B, 1) is a lattice.

Finally, let 7, 8, te R. Then v (s v 1) = g{(r, [, t])) = o{[(r, 8), (r, %)
=[o(r,8), e(mt)] =(rans)v (rat), and the lattice is distributive,

As an illustration of this lemma we refer again to the example of the
Fibonacei sequence. In this case, the lattice congists simply of the chain
1, 24, 24-5, 24-57% ... _ :

Rach element of R is the join of a finite number of join irreducible
elements of R. In the nest lamma we identify these elements. ‘

TmmMa 3.3, Let » > 1 be a join irreducible element of E. Then either

(i) » = o(p°) where p is a prime, & is a positive integer, and p°la(p®)
or

(i) 7 =0 (2), e(3); e (4), or ¢ (8)

Proof. Let r> 1 be join irreducible in R. First, assume there is

a prime p > 3 such that p|r. Let p be the largest such prime and let
7 = zp® where p . Since r = g(r) = [o(@), o(p®)] is join irreducible
and p 4 o(w), then » — p(p®). Since it is also clear that p°lz(p®), 7 is of

type (i)
Next, let # = 2237 be join irreducible. Since 7 = ¢(r} = [2(2), o(3")],
either r = ¢(2%) or r = ¢(3%).
_Suppose » = g(3%). Since r > 1, it follows that bz 1. If 3% 4 = (3%,
then 3% x (29))2%-3 and b = 1. That is, either » is of type (i) or = ¢(3).
Suppose r = ¢(2%). Since » > 1, a> 1. If 2°4 =(2%), then 29| 7(3%)]
|8-3% and 1< & < 3. That is, cither 7 is of type (i) or 7 = 0(2), ¢ (4), or
g (8).
As a corollary of the preceding results we have the following
Frxep Pomr THEOREM. Let m be & positive integer. Then a?(m) = m
if and only if m is the least common multiple of elements drawn from the

wnion of the following sets:
() {e(p*): p = prime, >0, p\m(p°)},
(ii) {0(2), e(3), e(4), 2(8)}
(iif) {1}.
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4. Properties of the fixed points. In conclugion we mention without

proof some properties of the fixed points of =2

Ifr = o(p®) > 1, where pis a prime and p°{=(p®), then p|D, n(r) == r,
and 7 is join irreducible in E. Furthermore if p iz an odd prime, then
{o(®°): e> 0, p°l=(p°)}; 18 ‘either the empty set, the singleton {p(p)},
or the infinite set {¢(p)p°™": e > 0}. Also, the set {p(2%):e > 0, 2%= (2%}
is either empty, {2}, {4}, {2, 4}, or {2% e 0}

Each of the integers ¢(2), 0(3), o(4), and ¢(8) divide 24. Rinally,
if there is a join irreducible fixed point of =* that is not a fixed point
of z, then there is precisely one pair of such elements. In this case, this
pair is either {2, 3}, {4, 3}, {8, 3}, or {8, 6.
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On orthogonal systems and permutation polynomials
in several variables

by

k. Lipc (Wien) and H. NIEDERREITER (Cafbondale, 1)

L. Introduction. A polynomial f(z) with coefficients in the Galoig
field K = GF(g) with g elements, ¢ = p%, p prime, e 1, determines
a mapping f: @ — f(2) of K into K. This mapping is a bijection if and
only if the equation f(z) = & has a solution in K for every ae K. In this
cage, the polynomial f(z) is called a permutation polynomial over K. Such
polynomials have been studied extensively ([3), [4], [11]). Various papers
have also been devoted to extending the notion of a permutation poly-
nomial to polynomials in several wvariables ([17, [2], (61, [7], [9], [10]).
The present paper is meant as a further contribution to this subject
matter. :

For o> 1, let K" denote the cartesian product of » copies of K, and
let K [#,, ..., »,] be the ring of polynomials in # variables over K.

Dermvition 1 (Nobauer [107). A polynomial flzgy oo 2) e K[my, ...
.oy @] 18 called a permutation polynomial (in # variables over K) if the
equation f(my, ..., x,) == « hag ¢! solutions in K" for cach ae K.

DEFmerrioNn 2 (Niederreiter [8]). A system of polynomials fileg, ...
ey By)s ooy Ful@yy ooy @) dfrom Kay, ..., ®,] is said to be orthogonal
(in K} if the system of equations fy(@, ..., m,) = k;, L <i < n, has exactly
one solution in K™ for each (&,,...,%,)e K™

Simple criteria for orthogonality in terms of character sums can be
given ([8], Theorem 2). Let £ denote a fixed primitive pth root of unity
over the rationals, and let tr(-) be the trace function relative to the
extension J/GE(p). Then the system fy, ..., f, is orthogonal if and only
if, for all (by, ..., b,)e K" with (by,...,5,) #(0,...,0), we have

S“I é‘“’[hlfl(aln-“:"-;1]+--'+"rsza(“1a---ra-n,)J =0.
(M0 eyt JeRH '

We shall now prove another eriterion for orthogonality by elementary
methods. The following lemma will be useful. -



