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4. Properties of the fixed points. In conclugion we mention without

proof some properties of the fixed points of =2

Ifr = o(p®) > 1, where pis a prime and p°{=(p®), then p|D, n(r) == r,
and 7 is join irreducible in E. Furthermore if p iz an odd prime, then
{o(®°): e> 0, p°l=(p°)}; 18 ‘either the empty set, the singleton {p(p)},
or the infinite set {¢(p)p°™": e > 0}. Also, the set {p(2%):e > 0, 2%= (2%}
is either empty, {2}, {4}, {2, 4}, or {2% e 0}

Each of the integers ¢(2), 0(3), o(4), and ¢(8) divide 24. Rinally,
if there is a join irreducible fixed point of =* that is not a fixed point
of z, then there is precisely one pair of such elements. In this case, this
pair is either {2, 3}, {4, 3}, {8, 3}, or {8, 6.
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On orthogonal systems and permutation polynomials
in several variables

by

k. Lipc (Wien) and H. NIEDERREITER (Cafbondale, 1)

L. Introduction. A polynomial f(z) with coefficients in the Galoig
field K = GF(g) with g elements, ¢ = p%, p prime, e 1, determines
a mapping f: @ — f(2) of K into K. This mapping is a bijection if and
only if the equation f(z) = & has a solution in K for every ae K. In this
cage, the polynomial f(z) is called a permutation polynomial over K. Such
polynomials have been studied extensively ([3), [4], [11]). Various papers
have also been devoted to extending the notion of a permutation poly-
nomial to polynomials in several wvariables ([17, [2], (61, [7], [9], [10]).
The present paper is meant as a further contribution to this subject
matter. :

For o> 1, let K" denote the cartesian product of » copies of K, and
let K [#,, ..., »,] be the ring of polynomials in # variables over K.

Dermvition 1 (Nobauer [107). A polynomial flzgy oo 2) e K[my, ...
.oy @] 18 called a permutation polynomial (in # variables over K) if the
equation f(my, ..., x,) == « hag ¢! solutions in K" for cach ae K.

DEFmerrioNn 2 (Niederreiter [8]). A system of polynomials fileg, ...
ey By)s ooy Ful@yy ooy @) dfrom Kay, ..., ®,] is said to be orthogonal
(in K} if the system of equations fy(@, ..., m,) = k;, L <i < n, has exactly
one solution in K™ for each (&,,...,%,)e K™

Simple criteria for orthogonality in terms of character sums can be
given ([8], Theorem 2). Let £ denote a fixed primitive pth root of unity
over the rationals, and let tr(-) be the trace function relative to the
extension J/GE(p). Then the system fy, ..., f, is orthogonal if and only
if, for all (by, ..., b,)e K" with (by,...,5,) #(0,...,0), we have

S“I é‘“’[hlfl(aln-“:"-;1]+--'+"rsza(“1a---ra-n,)J =0.
(M0 eyt JeRH '

We shall now prove another eriterion for orthogonality by elementary
methods. The following lemma will be useful. -
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LEsMA 1. LéE Gy, @1y -v.y B,y be g elements of K. Then the following

fwo conditions are equivalent: _
(1) @gy Bygorey Oy GTE distinot;
Lt 0 for 0i<<q—2,
i1 G =
(t) -52;0 ! —1 for t = g—1.
Proof. For fixed i with 0 << ¢—1, congider the polynomial

g-1
filw) =1~ D) af ™.
.

We have f;(a;) = 1 and f;(¢) = 0 for all ¢ = 4,. Therefore the polynomial

a1 g=1 g=1 _
fta) = 3 filw) = —2( a7l

maps each clement of K into 1 if and only if {an, (yy ey Gy} = K. Since
the degree of f is less than g, the polynomial f(#) maps each element of
X into 1 if and only if f(z) = 1. The proof is complete.

TurorEM 1. The system f1(2y, .-y Bp)y ooy fa {0y, ooy @) from K[z, pee
vovy 3,1 18 orthogonal if and only if the following two conditions are satisfied:

(0 D [flery ey @) [falay, oy a) T =0

G
Jor 0 < t, < g—1 and not all 3; = g—1;
(@) N [l ey 8 [ty e @) = (=)
(85 ernytryg e K™ _

Prooi I fi,...,f, i an orthogonal system, then
D [t s a1 (8, oy @) T

g, ortB )R
-3 et (T S

(b5 s by )eR® byl Y
and the necessity of (1) and (2) follows from Lemma 1. )
For (kyy ...y ky)e K let N (k,, ..., k,) denote the number of solutions
in K* of the system of equations -

Filliyy ceoy@y) =T for  1<igm.

It suffices t0 show that N(ky,..., k,) 0 for all (ky, ..., k)e K" Weo
shall show that N (ky, ..., k,), regarded as an integer mod p, is nonzero.
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By ‘(1) and (2), we have

N(kly L) ]""n) = 2 Hll"‘ (fi(a'l: raey an)_k{)qq]
(15 veatly Je BT =]
=(=1" 3 []ilfe, ..., a) =~ 1]

CTRa TS ol
. a1

=(=1" X (Tt 3 e fh ) =1
SR noélé.'fl"zi.":—:z“_l

2. Generators for orthogonal systems. A correspondence between
orthogonal systems of polynomials in » variables over GF(g) and permu-
tation polynomials in one variable over GF(g") has been established by
several authors in different ways ([1], [37, [8]). We ‘want to use this
correspondence to determine a generating system for all orthogonal
systems in » variables over K = GF(g). Since we are now only interested
in polynomial mappings, and since a* = a for every a« K, we may confine
our attention to polynomials f(#,,...,#,)¢ K[#,...,,] with degree

‘in each variable being less than g.

DppiNreroN 3. The polynomial f(ay, ..., ®,)e K@, ..., #,] 'is called
reduced if the degree of f in each variable is less than g. The polynomial
vechor (fl(wl, ceey @dy ees Ful®ys iy mﬂ)) is called reduced if each of its com-
ponents is reduced.

We put L = GF(¢"). We agree to denote elements of L by Greek
letters £, #, ..., and variables ranging over I by capital letters X, Y,
The set of reduced permutation pelynomials ¥(X) over .I forms a group
with operation being composition computed mod (X?— X). The set of
reduced polynomial vectors (fy(wy, ..., @), ...y ful®y, .-y mn)} over K, for
which fi, ..., f, are orthogonal, forms a group with operation being com-
position. and subsequent reduction of each component mod (¥ —ay, ...
.oy Bp—&,), Where (@ — @y, .., 08 — z,) is the ideal in K[®,, ..., s,] generated
by @§—;, 1 <4 < n. By an abuse of language, we shall call this group the
group of reduced orthogenal systems over K. There is a natural isomor-
phism from the former group onto the latter which we are going to describe
now. Let £, ..., & bea base of L over K. If 7 (X) ig a reduced permutation
polynomial over .L, we may write

F(&) :F(%El"{; v Ty dy) = filay, @) SR F (e, ceey O} &y

with uniquely determined reduced polynomials fi(my, ..., x,), 1< < n,
over K. The mapping ¥ F(X) > (fi(@1, o0y @)y ey fol@ay ooy @) 38
compatible with the above mentioned group operations. The following
theorem is an immediate consequence of [8], corollary of Theorem 7.
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TaporEM 2. The mapping ¥: F(X)— (fule, ..o, D)y oy Sul@ss oo
ooy B,)) 18 A isomorphism of the group of reduced permutation polynomiols
over T onto the group of reduced orthogonal systems over K.

CoROLLARY., The reduced polynomial fi(@y, ..., @)e K[y, .ooyity] ts
a permutation polynomial if and only if there ewists a reduced permulation
polynomial B (X)e LIX] such that PF(X)) = (fuy Jas coa Sl

Proof. This follows from Theorem 2 and [8], Theorem 1.

Theorem 2 enables us to find a generating system for the group of
reduced orthogonal systems in K. By virtue of the above corollary, wo
have then simultaneously found a system which generates all permutation
polynomials in » variables over K. The following result for permutation,
polynomials in one variable is mainly due to Oarlitz [4]. For the remainder
of this seetion, we suppose n 2= 2.

TrrorEM 3. The permutation polynomials X2 gt X, and X+a
(ae L, o # 0) form a generating system for the group of reduced permutation
polynomials in one variable over L = GF(q“). .

Proof The symmetric group S, is generated by all transpositions
(0a), ae L, @ # 0. It is easy to show that the transposition (O«) is repre-
sented by the transposition polynomial ‘

N 1 ﬂ-n_z Q‘n_.z
G(zo=(—a2)(((X—-a)¢-ﬂ+-(;) ma) .

Thus @ (X} is a finite composition of the polynomials listed in Theorem 3.

By Theorern 2 and Theorem 3, the orthogonal systems ¥(X¥'~%),
Y(—dX), and P(X+a) generate the group of reduced orthogonal
systems over K. To determine the image of X2 under ¥, we computbe
(#,&+ ... +8,8)7 % by the binomial theorem, espress the power
products of the & by linear combinations of the &;, reduce the coefficients
of the £ mod (#}—=y, ..., 2% -5,), and thus gob

PXTH = (py (g ooy By oony P (Bys o0 ),

where the p;, L <@ <5, form an orthogenal systemn in K. The image
of —&X is an orthogonal system 7»,,...,7, in K consisting of linear
polynomials, which can be effectively determined from the identity

._'(0’1§I+ .- 'Fa‘u‘su)z(migl'l_ . +mﬂ$ﬂ) :
°3 5695)‘51'*' et +’l”.,,,((ﬁ1, i mii-) Eu'

- Combining the above results, we geb the following set of generators for thoe
group of reduced orthogonal systems over K: (pl(ml, ey T ey Py, oo
vees @y)); a0 the systems (v, (@, ..., @), i0y Py, oy 2,)) and (@, +a,, ...
vy 8y, for all (ay, ..., ,)e B with (a;, ..., @,) # (0, ..., 0). Let us
now look at a special case, namely n = 2 and ¢ odd.

=1 (%, ..
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THROREM 4. The following orthogonal systems of polynomials in two
variables over K = GT(q), ¢ odd, form a generating system for all orthogonal
systems of polynomials in two variables over K (and thus for oll permutation
polynomials in two variables over K). The element d is a fiwed nonsquare
in K. C

(i) The reduced form of

e g2 —3--21

Y qamz PR I T T A
pim ) = 3 () a e,

PETi]

a?-3

p) 29 [T ,

v g2\ e g
mim ) = X (§)a T ot

‘ im0

(i) 7 (m, 9} = ( —atd—B)w—2aby, 7,(v,y) = —2abda+ (—a*d—HYy
with o, be K ond (a4, b) = (0, 0). :
(iii) (z-+a, y+d) with a,be H and (&, b) 5= (0, 0).
Proof. The polynomial @(z) =a*—d iy irreducible over K. Let
@{£) == 0; then 1 and ¢ form a base of L = GF(g’") over K. We have

g2

2 _ 23 e
S () e 4t

(& 4+ y)i 2 ;
F=0

and ‘
—(aE+bP (wE+y) = —(a®d+2abE+B) (wE+y) = (@ 9} é+n(0, Y),
and the result follows from the general discussion preceding Theorem 4.
Remark. 1f ¢ =3 (mod 4), then we may take d'= —1. If g is
even, an explicit result similar to Theorem 4 can be given. Instead of
working with z* —d, we have to use an irreducible polynomial over K of .

the form #* -+ 2 4 ¢ with ¢« K. Since each of thoge polynomials is separable
over K, there exist irreducible polynomials of this type.

3. Sums of polynomials as permutation polynomials. We shall first
consider polynomials of the form h(2,, ..., %,) = f(@, -, &) + 8 {Fppas -
ey ), LS m < m, over K = GF(q). It is easy to see that if one of f or
¢ is a permutation polynomial over K, then % is one ([7], Lemma 1, [1on.
We ask now for conditions under which the converse of this statement
Tolds true. Tn o gense to be specified below, it will turn out that the converse
holds if and only if 4 is prime.

THROREM 5. The polynomial ki, ..., @p) = (@1, s Zp) T 9{Bmpay -
oy @), L < m, 15 @ permutation polynomial over K = GF{q), ¢ prime,
iff at least one of f and g is a permutation polynomial.

'~ Proof. Suppose h is a permutation polynomial and f ig not a permu-
tation polynomial over K. We want e show that necessarily g is.a permu-
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tation polynomial over K. For ac K, let N{a) be the number of rolutions
of fla,, ..ny &)= a in K™, and let M(a) be the number of solutions of
§{Bi1y - 8,) =0 in K" The number of solutions of ki, ..., x,)
= ¢ i K" is equal to.¢""" for each < K. On the other hand, the number
of solutions of the last equation can also be expressed as 3 N{a,) M(a,).
ity | it = (b
Thus we arrive at a system of linear equations for M (0), J]ir I( 12), ceny M{g—1),
the determinant of which is the cyclic determinant I} = det (ay) with
ay =N(@i+j—2),1<i<q1<j<g where 4472 is taken mod g.
If we can show D s 0, then the system has a unique solution, namely

M0) = M) = ... =M(g-—1) = ¢~

Agsume D = 0. We use the fact that D is also the regultant of the two
polynomials F(x) = 27—1, G{z) = N(0Oa? +N(1)a" 4+ ... + N(g—1)
over the rationals. Thus F(z) and &(x) have a common root in some
extension field of the rationals. But ¥(z) == (x—1)®d,(z), where D, (w)
is the irreducible gth cyclotomic polynomial, and & (1) = ¢™ = 0. Therefore

D (w) divides G(z), and so G(z) = N(0)D,(x). Bquating ecoefficients

vields N(a) = N(0) = ¢"* for all ae K, & contradiction to f not being
a permutation polynomial over K. : ,

THEOREM 6. In K = GF(q), ¢ not prime, there exist polynomials
Flays ooy @) and glw,, ., .o, ,) such that f--g, but neither f nor g, ave
permalation polynomials.

" Proof. We have ¢ — p® with p prime and ¢> 1. For a moment,
we consider GF{p) and GF(g) as additive abelian ‘groups. The quotient
group GF(g)/GF(p) has order # = p*~'. We construct a system a,, ..., a,
of elements in GF(g) by choosing a representative from each coset. Let
the counting functions M and ¥ have the same meaning ag in the proof
of Theorem 5. By the Lagrange interpolation formula for finite fields as
given in Dickson [5], there existy a polynomial g(m,.,,...,s,) over K

- 1
suel that M(ay) = —¢*"™for 1 < j < rand M (b) = 0 for all other elements

be K. By the same interpolation formula, there exists a polynomial
flay, oy @) OVer K guch that

1,
N(O):N(l)=.,.:N(p—1)=—ﬁ~gm and N{o) =0

for all VO‘IIEh(-I‘f]_.‘ eler.'nents. ¢e K. Neither f nor ¢ is a pérmuta,tion polynomial.
But f+g is a permutation polynomial over K., Since every ke K hag

a unique representation. of the form % = a+a; with ae GF(p) and 1 < 5

< 7, the total mumber of solutions of the equation

T 1 AN tg) =k = a-+q in K™

icm
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will be equal to

We used the fact that f only takes values in GF(p) and g only takes values
in the gystem @, ..., @. '
Let us now look at polynomials of the form

By, voer G) = D@15 oy @y oo B ) (1, o0 Gay)  WitR 2> 2.

All polynomials considered have coefficients in K = GF(g). We are
interested in conditions on p and f which guarantee that & is not a permut-
ation polynomial for any g. In a sense, the subsequent result is best possible
(see Theorem 8). o ,

THEOREM 7. Suppose (s, ..., %, ) has &k zeros in K™ with ¢ 1 k,

let g(@y, ..., %,_,) be arbitrary, and let p(my, ..., ,) be o polynomial such
that P (byy ..., by &) 18 & permutation polynomial in , for all by, ..., by K.
Then ' ‘

Ri{Byy ooy @) = D21y ..oy )@y, ey By ) TG @y ey @ -1

is not o permutation polynomial over K.
Proof. We consider systems of equations of the form
g(mlz “eey a”'-uwl) =be k.
Fly ooy ) = 0.

There exists be K such that the ahove system has at least [E] +1 simul-

(3)

taneous solutions in K" ', For otherwise, the number of zeros of f would
be at most g[———], or legs than %, a contradiction. For such a be K, we show
q o

that the equation
(4) h(ml? "':mﬂ,) = b

bag more than ¢~ solutions in K™ If (e, ..., ¢,_;)e K*7 i a solution
of (3), then h(ey, ..., ¢y_y1, #,) = b independent of #,, thus we get a con-
. 7 -
tribution of at least g([—;j] + 1) solutions of (4} from all those {¢;, ..., €,_1)
together, Furthermore, there exist ¢* '—k vectors (b, ..., b, e K"
for which f(by,..., b,.,) % 0. For such a vector, h(by, ..., by 1y T)
is & permutation polynomial in z,, thus there cxists exactly one solution
in x, of the equation h(dby,...,b,_,,#,) =b. We, thereby get -k
more solutions of (4). Hence, the total number of solutions of (4) is at

7 N
least ¢ ([EG]-!-l) +¢""'—k; which is greater than ¢"~'.-
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Remark. The simplest way to satisfy the condition om p(@y, ..., &,)
in Theorem 7 is to take & permutation polynomial in the single variable ,,.

THEOREM 8. Suppose f(@yy ..., Tpy) has b zeros in K" with gk,
and take p(oy, ..., x,) as in Theorem 7. Then there cxisis Gy evny Byy)
such that

R(@gy ey @} = D{Bry ooy @) f(@1y ooy Byt F G (D1 oony Byy)

is & permutation polynomial over K.

Proof. Let & = gm. We choose g in such a way that ¢, restricted to
the set of zeros of f, attains each element of K equally often, hence m times,
a8 5 value. This choice of ¢ is possible by virtue of the Lagrange inter-
polation formula for finite fields ([51). We shall show that the correspond-
ing % is a permutation polynomial. To this end, consider the equation

(3 : B(#yy«oymy) =D
for given be K. If (1, ..., 0,_,) e K" is a zero of f, then

B0y ony Cpny @) = G(C1y 000y Cra)

independent of »,. By the construction of g, we get in this way gm =k
solutions of (B). I f(&, ..., b,_;)} = 0, then we conelude as in the proof
of Theorem 7 that all those (By, ..., b,_,)e A" together yield ¢*~* — 5%
more solutions of {5). In toto, we have then exactly ¢" ! solutions of
(8), and the proof is complete.

References

[1] L. Carlitz, Invariantive theory of equations in o finite field, Trans. Amer. Math.
Soc. 75 (1953), pp. 405497,

2] — Inwariand theory of systems of eguations in a findle field, J. Analyse Malh.
3 (1963/54), pp. 382-413. : .

[3] — Permutations in finite fields, Avta Sci. Math. (Szeged) 24 (1963), pp. 1906—
203,

[4] — Permutations in e finile field, Proe. Amor. Math. Boe. 4 {1053), p. 538,

(6] L. E. Dickson, General theory of modular tnvarionts, Trans. Ainer. Math. Soc.
10 (1909), pp. 123-158. ) .

[6] V.A. Kurbatovand N. G. Starkov, The analytic representation of permulations
(Russian), Sverdlovsk. Gos. Ped. Inst, Uben. Zap. 31 (1965), pp. 151-158.

[71 H. Niederreiter, Permutation polynomials in several variables ower finite
Jields, Proc. Japan Acad. 46 (1970), pp. 1001-1005.

[8] - Orthogonal systems of polynomials in Findle fields, Proc, Amer. Math. Soc.
28(1971), pp. 415-422.
[9] — Permulation polynomiuls in several wvariables, Acta Sci. Math. (8zegad),

33(1872), pp. 53-58.

=18

On orthegonal systems and permulation polyncmials 26

(10] W. Ndbauer, Zur Theorie der Polynomtransformationen und Permulationspoly-
nome, Math. Ann, 157 (1964). pp. 332-3432.

[11] C. Wells, Generalors for groups of permutation polynemials over fimite fields,
Acta Bei. Math. (Bzeged), 29 (1968), pp. 167-176.

[12] R. Lidl, Tber Permutationspolynome in wmehreren Unbestimmien, Monatsh.
Math. 73 {1971), pp. 4£32-440.

TECHNISCHE TOCHSCHULE WIEN

Wien, Austria

SOUTHERN ILLINOIN UNIVERSITY
Carbondale, Ilineis

Received on 1. 9. 1971 ) (214)

2w Acta Arithmetica XXIL3



