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1. Introduction. In [1, Th. 6, p. 233 ], we established the (4, ) -normality
{1, Def., p. 2227 of a bload class of rational fractions Z/m < 1 in lowest
terme of type A [1, Th. 4, p. 227, and Def., Type A, p. 2291 when repre-
gsented in bases ¢ such that (g, m) = 1.

We shall now present results based on a relaxatwn of the requirement
{g,#) =1 and consider the conscquences for the (4, e)}-normal properties

~of the representations of Z/m in bases g such that (g, m) > 1 where q
containg some but not all prime factors of .

Hgsentially, the above implies that we ghall now permit the represen-
txtions to have non-periodic parts for such ¢ and, of course, the definition
of (j, e)-normality [1, Lemma, and Def., p. 222) does not preclude this
OCLUTTENee.

. .
Lot m = H ‘and assume in contrast to the basic regnivement

for Type A, ie. b > #;+8; for at least one odd prime p, that one or
movre of the p; are such that b, > z,+s;, hence, Z/m is surely of Type
A and (j, ¢)-normal on all g such that 2 < g < m{D where (g, m) = 1.
Sinee we obtain non-periodic parts for those ¢ which contain some bub
net all prime factors of ww, we may write

(1.0) Zlm =ZI(w)jg" M = Q/g”+R/q”M

where ZI{w)[M = Q-+ R/M with I(u) some positive integer, and Q =
is the set of » digits in the non-periodic part. We shall call R/M < 1 in
lowest ternis the “asscciated” fraction when Z/m is represented in a hase
sueh that (g, M) = 1 since M contains all the residnal prime factors of
s not contained in g.

Now if the associated fraction R/JI is still of Type A, then Z/m is
{4, ¢)-normal in all such additional bases g, i.e. those that confain some
but not all prime factors of m. The essential point is to select those prime
factors in the choice of ¢ which leaves behind in the associated fraction
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R/M prime factors such that b; > 2;--s, for at least one of the remain-
ing factors. Thig can, of course, always be done if the structure of m i
such that more than one of the p,; is guch that b, > ¢, 4 s,. If only one
of the p; out of the » distinet odd primes is such that b, > z;-1-s;, then
we can have [j, e)-normality in all other g which are maultiples of every
prime which is not the particular prime such that b, > #+4s;, ie.
the associated fraction RB/M ocan always be made Type A; hence,
(4, e)-normal. '

Tt ig in the above sense that we may extend the set of bases ¢ contained
in 2<¢g<m/D when we permit non-periodic parts in the expansions
such that the associated fraections are of Type A. We have now proved
the following theorem:

.
TusoreM 1. If the rational fraction Zjm = Z[2°[] p¥% has one or

1]
more of the odd primes p; such that b; > g+ 3;, then Z/m 4s (j, &)-normal
when represented in all additional bases gy contained in 2 < g < m /D which
are multiples of those prime factors that are selected in swch a wa y as to leave
. the remaining associnted fraction B|M of Type A.

i we now assume that b; > z,-s; for every p, in m, then every
possible associated fraction B/M is of Type A. We shall call such: a fraction.
Zm a “complete” rational fraction of Type A. The associated fraction
BE/M which here is necessarily complete and of Type A generates the
~ periodic portion alone in the representation of Z/m and consists of w (M)
= ord,rg digits. A useful bound on the number of digits » in the non-
periodic part is- given by

(L.1) 0 < %< Max (b, by, by, ..., b,) = B.

I we allow expansions under these conditions in bages ¢ such that
(g, m) = 1, we find an interesting property for complete rational fractions
of Type A that we shall call “abgolute” (j, &)-normality, ie. we find
that we have (j, ¢)-normality for each expansion of Z/m in every consecu-
tive positive mteger base of a bounded set of g > 2. This, apparently,
_1is the analog in the rationals for the notion of an absolutely normal number
introduced by E. Borel [3] in 1909, ie. an irrational which is normal
when represented in every positive integer base g > 2.

In [1, Th. 6, p. 233], we proved (j, s)-normality for Type A when
represented in any base g such that (g, m) = 1 where 2 < g < m/D. There
Is no change in the upper bound m /D but if we assume that Z fm s complete,
then we bave absolute (j j, g)-normality on all consecutive positive integers

contained in 2 < g<2hnp1 Where h=0ib=0and h=1i b> 0.

=

For those g>2* H Py W necessanly delete those g as aceeptable bases
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which contain all prime factors of m since these lead to terminating
expansions. Thus, we have absolute (j, s)-normality for those g in 2 g

-
< 2"[[p, and what we sha.]l call “almost” absolute (j; &)-normality on
i==1

the rest of the range 2" H p; < § < mjD where the exceptional set of
=1
hases contain all the pnme factors of m. The following theorem is easily

demongtrated based on [1, Th. 6, p. 233].
THEOREM 2. A complete rational fraction Zlm <1 in lowest terms of

Type A is absolutely (4, &)-normal in all § such that 2 < g < 2% f [p; <m/D.
where h =04ifb =0, and h = Lif b> 0 in m = anpi On thosa g such
that 2% H ;< g < m/D, we have almost absolule (j, g)-normality where

the ea"captzonal g are those g which contain all prime factors of m.

Proof. We have {j, ¢)-normality on all g which confain some but
not all prime factors of m since the associated fraction E/M < 1 in loweat
terms is necessarily complete, and therefore of Type A. Using the basic
definition of (4, e}normality in [1,p. 222] and the (j, ¢)-normality of

Type A in [1, Th. 6, p. 233], the conclusion follows.

Hvery g contained in 2<{g < 2" [ ] p, will either have some but

not all prime factors of m or none. Hence, Zm will be {4, £)-normal when
represented in every congecutive positive integer in this range. For those

.
g such that 2" []p, < ¢ < m/D, wo may have some g that contain all

prime factors of . These will constitute an exceptional set since represen-
tation in these ¢ will produce terminating forms. On the other hand,
Zjm is (j, e)-normal in every other g in this range, i.e. there are g that
will contain some but not all prime factors of m and others none at all.

Therefore, we have almost absolute (j, &)-normality on the rest of the
r
range 2" [ p, < g < m/D. QE.D.
i=1

In Section 2, we will prove that we may extend the set of bases to
which the normal number construction in [2] is valid. We show that for
any choice of m in the sequence of fractions Z, /m™ for » =1, 2, ... used in
the construction that we obtain normality of m(g, m} for all congecutive g

contained in 2< g < 2" ]_[ p; and all g> 2° n p; which contain some

d=1

but not all prime fa,ctors of 'm The exceptional set in which x(g, m) is

non-normal are those g = 2* H p; that contain all prime factors of m.
t==1

In bases ¢ sach that (g, m) > 1 that contain some but not all prime factors
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of i, we show that the presence of non-periodic parts in the limit does
not affeet the normality or transeendence of the eonstruction.

To conclude this section, we emphagize an important point. These
normal numbers are, in a sense, “base dependent”, i.e. each constructed
normnal number for given fixed choices of the basic parameters Z;, wn,
and the repetition sequence a; as represented in a given acceptable base
is o distinet ireational on the real line. Their position varies with the choice
of g tor fixed Z,, m, and «,. This is due o the fact that we use in the con-
struction only finite portions of the infinite periodie expansions of tloe
Z i

- Finally, there may be a temptation here to view these results as
a kind of “absolute normality” in the sense of Borel [31 who defined nornal
numbers and gave an existential proof in 1909 that “almost all real num-
bers are absolutely normal” with the non-normal irrationals of measure
zero, However, the differences here are distinct. Borel showed, essentially,
that there erists o fixed irrational on the real line which is novmal ‘when
represented in every positive integer base g 2. We have irrationaly
here which are normal when represented in every positive integer of
a bounded set and, even though, we can fix the echoice of the parametiors
Z;, m, and a;; we obfain a sequence of distinet normal nu.mbe]rs g, m)

for each acceptable gy, ga, ... above and below the bound 2* ” Dy Appar-

cutly, to date, no simple arithmetic construction of an mbsolutelv nornal
nomber has been given, nor does the existential result of Borel help in
any way to prove the difficult proposition that a given irrational like
“g” or m iy normal to any base.

2. Normal number construction. Bagically, we shall follow the proots
in {2] and attend to those aspects affeeted by the presence of the non-
periodie parts in the argwments.

Consider the rational fractions %;/m’ = ()l/ g™+ B jg™ M where we
shall denote by T.F (e )E; the non-periodic part T, consisting of ui
digits and a, repetitions of complete pericds F, of the associated fractious

R,jI" as represented in bases g such that (4, M) = 1 wlich contain some
but not all prime factors of m. Weuses construetion similar to 2, p. 242,
(2.1)]

2.0) =(g,myn) =T 8 (a)B,...T, 1B, ((a, B, T, 0,8, B
where B, is the first r digits into the (k-4 1)st repetition of the B th
period.

Let ¥(B;, £;} denote the number of oocurrences of B;in E; extend-

ing at most j—1 places into either & next E, or at the end oi a repeated
sequence F,(d;) B; T, ; into the juncture E JTiee. Also, lét, N(B,, )
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denote the number of occurrences of the block B; contained in the non-
periodic part and extending at most j —1 places into the first £;. There-
fore, we have [2, (2.5)]

(2.1) |N (t, Bj, W—Il<2n(j—1)){ =R

where
n n—1

(22) I={)N(B,T)+ > a,N(B;, B)+kN(B;, B,)+N (B, )/s
=1 i==]

and N (f, By, @) denotes the number of occurrences of B, in the first ?
digits given by

n n—1
(2.3) t= Yiut 3 ago (M) 4 ko (M) +r

i=1 i=1 .

where % = 0 and M = m it (g, m) = 1. Otherwise, for a fized choice of
¢ which containg some but not ‘all prime factors of m, » is fixed and M
contains the prime factors not in ¢.

In (2.1), the 2n(j—1)/¢ aceounts for anomalous blocks [2, p. 243]
across (n—1)H;T; ; junctures and possibly from B, to B,. Also, we may
have counts across each T, B, for ¢ =1, 2, ..., n. If now B, = 2n(j— 1)/t
it is clear that the argument in the proof of Lemma 1 [2, p. 243] which
shows that lim E, = 0 remains unaffected by a factor of 2 in 2a(j—1)/

N—o0
where now we use
n—1 n-—1
t = un{n-+1) /9+Z a0 { M)+ oo (M) 47> D a,
i==1
SBince t— oo a8 1> co, we must evaluate
(2.4) lim ¥ (¢, B,, &)/t = Ym I.
>0 M0

As before, we distinguish 2 cases for %, ie. 1<k < a, and & = a,.
Now we may wrife I in (2.2) for case 1 as

(2.5) . I = (Z N(Bj) T‘i)/Pn_{_
=1 ’ .
A1

H D) 6l (Byy B) 41N (By, 1)) [Py N (B, 7)) /T

=1

where now from (2.8)

(2.6) T =14/P, = L+un(n--1)/2P, +r/P,
and

-1
2.7) P, = D ;0 (MY + ko (M.

=l
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For case 2, we have

(28) I =Y N(B;, TP+, N 6, ¥ (B, 1) P+ 3 By, 7)/P )/
i=i zﬁl

where

(2.9) T =1+4wun{n+1)20,-r/P,

and

(2.10) 2 S (3.

By the same arguments in [,J (2.14), p. 245, ete.] for the periodic
parts, we still have LmN(B;,r) /P, =0 and 111117 [P, == 0, ‘innﬁa.rly,

n—mo

we have lim N (B;, 7)/P, = 0 and lim »/P, 0
00 =00
. Om the counts N (B, T,) in the non-periodic parts, we have in the
possible 4u digits of T; counts for single digits N (By, 1) < du, N (B, 1)
< i —1 for pairs, ete. In general, we have

N(Bj, T i —(j— 1)< du B

where j=1 and B = Max (b, b3, by, ..., b,). Therefore, we obtain for
the non-periodic parts in (2.5) and (2.8)

” b .
(2.11) ZN(B P < FN (B;, T,)/ EzB/Pn = Bu(n+1)/2P,
i=1 I:-l i=1
gince P?1 > P,. Now lim Ba fn+1 /2PR = 0 for a fixed B since

02

‘ . n( %—[—1)/.31”"1_”
(212) iﬁgn(n—i—l)/Pn< 1_7.05 /ju'n —1- G‘_I U =0

where we have uged

-1

P> Y agw (MY = O+ 0, MP1-°
i=1

based on the inequality in [2, (2.31), p. 247, s =n—1, k = ¢].

[Note: In [2, (2.31), p. 247], we should have used, say, ¢ instead. of
% 50 as to distinguish the & notaﬁmon for cases 1 and 2 above, with reference
to the non-related integer ¢ such that w(M) = (M) = ... = o (M?)
in the inequality (2.31).]

Similarly, it follows that Hm un(n-+1) (2P, or wun{n--1)/2P, =0

a0

n (2.6) and (2.9) for any fixed u, All remaining mtms in (2.5) and (2.8)

®
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approach zero by previous arguments since they involve only periodic
parts. Thus for cases 1 and 2 as in [2, (2.16)—(2.18), p. 245] '

(2.13) limT = lim N (By, B,)feo (")

=00

where M =m it (g, m) = 1. Therefore, we obtain

(2.14) lim N (, B;, ®)ft = lino. N (By, B,)jw (M™).
o0 =00

The rest of the proof follows precisely [2, p. 245-246, from (2.18) to (2.22)]
since all associated rational fractions represented in other bases such
that (g, m) > 1 where the g may contain some but not all prime factors
of m are of Type A for n sutficiently large. It is also clear that regardless
of the prime structure of m In Z,/m® there is some N such that for all
# > N, we have nb; > z;+s,; for any odd prime in m since for a given
Pi; 2; and s; are fixed. Therefore, all the fractions Z,/m™ for n > N are
complete, and consequently all the associated fractions R, /M™ are also
complete. _

Thus, we have normality as before such that (g, m) = 1 where T; = 0,
but now, in addition, we have shown normality in all ¢ which contain.
some but not all prime factors of m. Furthermore, by the same argument
a8 in the proot of Theor em , We have normality of & (g, m) in every positive

integer g in 2 = g < 2% H P, since these ¢ will not contain all prime factors
i=1

of m and every g > 27*[—] p; which contain some but not all prime factors
of . The exceptionzzrlset on which (g, m} is non-normal are those
g= 2" [1-] p;-that eontain all prime factors of m.

I:lfcl)rder to derive the form similar to [2, (2.0)], we must remove
a set of T, beyond the a,th F, in

T, B (e,)E, =.00.. 00T,B (e0)E,—.00...008,F,
This implies that we must difference the given fraction Z,/m"™ and its
associated fraction Z,I"(w)/M" in their appropriate. place positions. We
find _ ' .
(218) T, (a,) B, = Z,/m"g" V0 — 2, 1 () Mg
where for = =1, 2, .. we havé, uging the definition of §(n,m) in

2, (2.27)], the related quantity

(2.16) 8 (n, M) = n%—i—Zaicu(M") = nu+8(n, M).
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Diiferencing the telms which have the same power of g and using the
fact that 1jm = I(u)/g"M = §**/m" = I"(u}/M", we obtain

oo

2 741 mzﬂgnu)/mnwd gSl(ﬂ" M) .

(2.17) @(g, m)

In (2.17), depending on g and m, we define Z, = 0, ¢y == 0, S0, M) = 0;
and M = m, u =0 if {g, m) = 1. Clearly (2.17) reduces to [2, p. 242, (2.0)]
if (g, m) =1. Assuming the same definitions of the basie paramebers
Zyym, w(m), the a;, and S(n, m) that enter the construction of (g, m)
as stated in [2, Th. 1, p. 242], we now have proved the following gener-
alization of (g, m) to (g, m) > 1 where those g such that (g, m) > L contain
gome but mot all prime factors of m.

o

= 2 (Z':H-lu—

n={

Z,jm* = Q,lg"+ R, [d"M", u is the number of digils in the non-periodic

part of Zyjm, and 8§ (m,

TueoreM 3. Let (g, m) MZy g™ ™1 gS M) gphere

i3
My = nu+ 5“ aiw(M'i) when g containg - some

but not all prime factors of m. If (g, ) = 1, then u = 0, M =m, and

= Yot

dmsl

8 (n, My =

Furthermore, (g, m) 48 & normal wumber when aepresefnfed e every

pomwe integer base contained in 2 < g < 2" H Py and all g > 2" n p; that

coniain some but not all prime factors of m. fmally, z{g, m) is 'mm ~normol
r

in every positive inleger g = 2" [] p, that contain all prime factors of m.
i=1

‘3. The transcendence. As in the normality of x(g, m) subject to
(g, m) > 1 for suitable g, we attend to those aspects of the proof of trans-
cendence and non-Liouville character of #(g, m) which depend upon the
Dresence of the non-periodic parts. BEssentially, this amounts to the ova-
Iuation of certain limiting forms where NOW We use (2.16)

8 (n, M) == M4l + Z a0 (MY = nut S(n, M)
: i=1
with u > 0 some fixed pnsmve integer. [We find it nommonmlly consistent

here to use Sin, M) = \‘u ;0 (M%), even though, earlier we used P,

L—l

for the same quantity in (2.10).] We require that a,.,w(M™1)/8( n, M)

be hounded as n increases. If (gym) =1, then M =m, S(n, M) = S(n, ")
with % = 0 which yields the same quaJntlty as in [2, p. 246, (2.27)]

icm
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As before [2, p. 247], we let

8

Pelts = Z(Znﬂ—mzng 1) [y g (. 30)

n=>0
where g, = m®*' g5 (&M} ig still the L.C.D. for the same reasons, We ideutify
g, = m**and ¢, = ¢¥*™ where ¢ = g. First, we examine the conditions
lim log ¢;/log ¢, = 0 and lim sup log ¢,.,/log ¢, < oo. In several places,

8—00 G0

we require limits tike lim (s+¢)/8 (s, H) where ¢ >

S——;- oa

tity. Since 8(s, M) = Y a,0 (M%), we have based on [2, p. 247, (2.29) —
‘I.=1

{2.31)] replacing m by M that

(3.0) S(s, M)= O+ 0 M

where k is fixed and M eontains the residual prime factors after the choice
of g. Therefore, it follows for any fixed ¢ that

(3.1) im(s4¢)/S(s, M} = 0.

§-»00

} iy some fixed quan-

Hence, we have satisfaction of the first condition
lim log g.flog g, = 0 .
=]

as in [2, p. 247, (2.33)]. For the second condition, we have
(3.2) 10g goi1flog g, = log m™+1y¥ e+ flog metiyS e a0,
[Note: Let (5.2) here stand as a corrigendum of [2, p. 248, (2.36)] wherein
the first exponent of g should read g5¢1m ]
In (3.2), we find that the lim sup log ¢,,,/log ¢, is bounded with

8&—00

the assumption that for some fixed quantity I

{3.3) as+1w(Ms+1)/S(s; M)<p
where we have used
(3.4) 8 (s+1, M) = (s+Du+S(s, M)+ a,,.,0( M+

when % > 0, lim (s-+6)/8(s, M) =0 for ¢ =1, 2; and also Lim /S (s, M)
S—00 S0 .

== {} for some fixed a4 > 0.

In the demonstration leading to [2, p. 249, (2.46)] that an o> 1
exists independent of s, the requirements are all satigfied here which
leads to the lower bound 6 < a,.,w (M) /8 (s, M). _

Again in the non-Licuville argument, all nequalities and finally
the boundedness of ¥/t in [2, p. 250, {2.56)] for ¢ sufficiently large are
satisfied by the limiting form in (3.1) and requiring again that

Fypy 0 (M) 8 (s, M) < B.
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We have obtained the following theorem:
TaEOREM 4. If there exists 2 positive constants d and f§ independent
of n such that

(3.5) 5 < gy (M) [8(n, M) < B

1
for m =1,2,... when {g;m)>1 and §{n, M =2 a0 (MY such that

ta=]

g contains some but not all prime factors of m, then (g, m) in Theovem 3

is a transcendewtal of the non-Liouville fype.

One can eagily see that the same boundedness condition as in [2, Th. 2,
. 247] obtains as a requirement for the franscendental non-Liouville
character of z(g, m) since (3.5) becomes [2, (2.46)] when (g, m) =1, i.e.
M =m.
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Non-divisibility of some multiplicative functions
by

E. J. ScourrrELd (London)

1. Introduction. Let f{n} be an integer-valued multiplicative function
with the property that there exists a polynomial W(z) with integral
coefficients such that f(p) = W (p) for all primes p. Further let ¥ (n < : P)
denote the number of positive integers n < # with the property P. Our
aim in this paper is to find an estimate for

Nin < 2 df f(n))

for any integer 4 > 1. An estimate has been obtained by Narkiewicz in
the case when d is squarefree, and we shall be able to derive an explicit
formmula for his constant A of Theorem IT of [B] (see Corollary 1 of Theorem
1in § 5 below). From Thecrem I of [5], it is also easy to deduce an estimate
for N{n < 2: p°t f(n)) for any prime p and any integer a 3> 1; for

a1

N{n<z: p* fin) = ZN(%Q z: pHlf(n))
A=0

(where the notation p*||f(n) means that p* f(n) but p**'1 f(n)), and
an estimate for each term on the right follows from [5]. Thus the result
of this paper will be new in the cases when o is neither squarefree nor
a prime power. '

”
Let d = J| p%, where the p; are distinet primes and each a,>1,
=1

and let S{p, 2) denote the set {n: p*!f(n)} of positive integers. Then
we can state the main result of this paper:
ag—1

TraworEM 1. Suppose that §; = C) S(p;, &) #= O (the empty set) for
A=0

i =1,2,...,7. Then there exist constants B, §, m (dependent on f and d)
with B>0, 0 A<, and m=0, where B, m are defined explicitly
by (31) and (32), such that as = -— co,

() 4f 0 < f < 1,

Nin< s dt f(n)) ~ Bo(log log o)f*{log #f'~;
i) o f =1,
Nin<a: dt f(n)) ~Bax, where B<1;



