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A method in diophantine approximation V
by

Crarues I, Osgoon (Washington, D.C.)*

In this paper we shall prove several theorems which allow us fo
make statements concerning the arvithmetical properties of the Taylor
series coefficients of the functions in any fundamental system of solutions
of a linear homeogeneous differential equation of the type treated in
part IT of this series of papers (see [2]), at m =1 distinet Ganssian ra~
tional points. As wag seen in [2] and [3] these solutions need not be entire.

: d
Let z denote a complex variable; let D denote 7 let T denote a fixed

integer larger than or equal to one; and let each g;(#), for 1< i < 1, denote

" g polynomial of degree exactly j— 1 with coefficients which are parameters

B = y1i+E00, s Brpgny =Yg H) -Mdm“, that talkes values in Q)

2
{the Gaussian field), Suppose thad,. Yy -+, 3y denote any I linearly inde-
pendent solutions of

{1 - y = Zmz ) Diy.

=1
Suppose further that 2, ..., 2, ..., 2, denote any m > 1 distinet point
in @(i). Set each @, = @y, Where #, and w;, each denote real numbers

Taeonsm L There cwisis on effacmely computable polynomial in
Lyyeoey Wapy Uy onvy Wy Vi - ym“), 81,y .e 5:(1+1) with cogfficients in

@, which docs wot vanish @dmm,('ml? i Yy, 77’1{1-1-1) y Bay ey Oaguyy for

2 2
any choice of dislingt gy, ..., %, i Q(0), such lhat cwcept for thosa (8, --.
cr By By s I{I 1)) where this polynomial vanishes the 2,,...,#, aré

distinet poinits of am.a? atioity of the Yay -y Yy and The field B gonerated over
Q(4) by the numbers Dy, (ay), for 1< '\;l 1 k< m and O < g < 00,

has dimension over @ (i) ab least m.

* Wathematics Researel . Conter, Noval Resesxch Laboratory, Waghington
D, C. 20390,
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In Theorem II below we obtain more inzight into the exceptional
case, i.e., when the polynomial in Theorem I vanishes. (Theorem L is
actually a corollary of Theorem IL.)

DEFINITIONS. Lot 16, = wy{#)y ..y Wy = Wy(2)y o0y Wy = Wi (2) denote
the m distinet branches of the algebraic function defined by [] (w—#)
k=1

— 2 Tet A(z) = A(2 2y oory &y f1y ooos frgey ) denote the ml by mi
matrix such that z

(D0y;(watz)) = A () {whix)yf? (wi(2))),

where 00 mi—1, 1<l 1<k<<m 0 dsm—1,0< i1,
and on each side of the equation immediately above the columns are
indexed by the ordered pairs (f, &). Each entry of A(z) is of the form

m
(Hg;(fwk(z)))“N times an element of Q[ 2 24y - vy @ms B1y v s Brgany I
Fe=a1, . —
for some positive integer N. For fixed 2, ..., &y, a0d fixed By, ..., Sy

such that g;(2)= 0 let ml—r, for 0 <r < mi, denote the rank of Afz).
TrmoREM II. The mairiz Az, 21y -5 #ms f1s "'?ﬁiﬁ;\ri)) is effectively
z

computable and its determinant does not vanish identically in Biyeees Brasn
2

for any choice of complew nuwmbers 2y, ...y &y.- If 21,0, 8y are distinc
elements of Qi) and the B, ..., Byu.y ave clements of Q () such that no

2

glzy) =0, then: (i) the imteger mi—v ds effectively computable; (i) the
dimension of the vector space over C (the complew mumbers) spanned by the
yi{wy(2)), for 1<j <1 and L< k< m, is evactly ml—r; and (i) the di-
mension of the field F, from Theorem X, generated over Q (i) by the D%y, (2y)
is af least m—ol™", '

One easily sees that the polynomial in Theorem I may be taken
to be the sum of the squares of the absolute values of the coefficients
of the powers of z in the mumerator of the determinant of A4 (¢) times

ki)
|TT uza)- [T lep— 25,1
k=1 k<ky

If this polynomial does not vanish we may apply part (iii) of Theorem
1II with v = 0 to prove Theorem 1. _

There are results which sound analogous to Theorems L and I1 except
that they involve the condition that the funetion or functions under
discusgion Dbe eéntive (see [5], [61, [7], and [8]). Here, if (1) has even one
non-entire solution, then it is possible to choose a fundamental system
of solutions, by a simple vector gpace argument, which contains ne entire
golutions, nor does the vector space over the algebraic numbers spanned

_ by these solutions contain any entire solutions except zero. We shall

icm
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gtate two more theorems which shed further light on the behavior of the
functions #,, ..., %, and then give (in Theorem V) the key algebraic result
which allows s to obtain these generalizations of the results of [2]. A rough
version of Theorem V is that if the y;(2) each satisfy (1) then the y{w(2))
each satisfy a new linear differential equation which is also of type (1).
Since [2] is used very extensively here, at the end of this paper are a list
of corrections for [2].

TuroreM YIL. If in Theorem 11 the functions vy, ...,y for some
t <1, are each the difference of two branches of a solution of (1) then the
dimension of F over Q(3) is at least m -+ (mt—r)(I—1)""

Note that if ¢ =1—1 and » = 0 the dimension iz at least mi.

Dmrmwirtons. Let Wy o (f1y .-, f) () denote |([D%Fx(2))| where
1<i<ml and L< b ml Let Z denote the infegers.

TaeorEM IV. Under the conditions of Theovem TII if § =11 and
y == 0 then there exists a sequence of non-negative infegers 0 < 0, < 0, < ...
< O,y such that for every e > O there exisis a ¢(&) > 0 so thai for all funciions
fle) with (f9(0), ..., 0 (0)} a noneero element of (Z[i1)™,

IWOI,..,.GM(?JI (w.l)S coes Y5 (0g)y - v Y2 (00)5

$1(002) = $2(02)s -5 Y100m) = Hr(02), ) (O)
> o(s){ max {|fOP(0)[3)~ .
1<t : .

Jom

1
One would conjecture that if ¢,(2) = fgey [[(#—X;) where the
g

fe==1
X, denote parameters taking on distinct valnes in ¢ (¢) then for fglmost
all” B4, ...y frgerys X1y -y X; we do have ¢ =1—1.

Ll : .

Our final theorem, Theorem V, will be followed by proofs of Theorems
1 —1V which are based on Theorem V. The remainder of the paper will
be devoted to the proof of Theorem V.

Let | denote a positive integer and let each. g;(#), for 1 < § < I, denote
an element of @ [4,2] of degree less than j with g,(2) s 0. Consider the
egquation

T
2) | y = Y g,z D'y.

Fuml
Lot the w,(2) = wy(2, 81y vey 8p)y 1< k< m, denote the m different
branches of the algebraic function w = w(z) defined by

#

pw) [T w2y =2

k

]
-

for m complex valued parameters 2y, ..., %y.
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TamorEM V. For every & > 0 there exist ¢ pomﬁt%e integer n and % elements
By =ty (e 21, o) O @G220 -0 2] With h,(2) equal to a power of

m ki)

H?I (wk(z: Bryavey zm)) times Hgl(wh(z} Bryrens zm))

k=1 k=1

such that _
(@) dog by X deg, bz 21y - ) <J Jor each L<j<Y,

deg By il '
(ii) (max l—eg——"——}) — 0 (max {———eg—g{w}) —(m—1) < zand
j—degh; j—deg gy

(i) ¥ = 3 (e, 21, ...y 2) Dy ds sabisfied by every y (wy(e)) where
=1

.’,‘_
y denotes any solution of (2) and w,(2) denotes any branch of w(2}.

The possibility that # > ml above appears to be actual. We note
that ze® satisfies the linear differential equation

(#D—2z—1)y =0

of order one but not of form (1) and the linear differential equation
(D—1)%y = 0 which ig of form (1) but not of minimal order over ¢4, 2].
Other examples may be constructed. Below let o = exp (2rik™).

ExAMPLE OF THEOREM II. Around z = co each () = p"22~" plus
terms of lower order in 2, for any choice of complex numbers 2, ..., &y.
It is then easy to show using growth arguments that the functions
exp i, (2)), 1 < k< m, are linearly independent over the complex numbers.
Thus the Wronskian of the w,(2) does not vanish identically for any choice
of 2, ...y &y Lething 2y, ..., 2, be any distinet elements of §(d) we see
that the rank of A (z) is exactly m. Thus we see that the field F over ¢ (4)
generated by ¢, 6", ..., ™ (for any nonzere r in @(2)) has dimension
over {i) at least m, for each m > 1, hence, each ¢ is transcendental.
Also Theorem IV applies. The statement about diophantine approximation
obtained is, of eourse, well known.

Comments and Examples (Added February 1972). In the general
case in Theorem I we have that for any choice of linearly independent
solutions, ¥,(2), ..., ¥(?), of (1) either the dimension of F over (i) is

~at least m or the y; (wk(z)) are linearly dependent over . In a future
paper we shall be able to show, using & method which considers the agym-
- ptotic expansions of the y;(2) about 2 = oo into series involving exponentials,
that even in the event that the y;(w, ()} are dependent the dimension of
F.o_ver Q(7) is still at least m. One iz led to consider such expansions
9T1€111&11Y- because they offer a different way of testing for the linear
independence of the y,(wy,(2)), L.e. by unsing arguments of the type applied
above to show that the functions ¢“#*) are independent. (Similarly we

icm
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ghall show in this future paper that Theorem III holds with » =0 even
if the w;(wy(#)) are linearly dependent.)

One may construct many additional examples: For any equation
of type (1) it we define I solutions by y{(z,) = &+, for 0<k<I—1,
then the field 7 determined by the gy, ..., ¥ ab 2, ..., %, has dimension
over Qi) of at least m. Also consider the equation y = D{gD —a)y for
any « in §(4) which is not a rational integer. A fundamental system of
solutions of the above equation is y, = 217, (26V2) and y, = #°J _(2iV2),
where o, denotes the Bessel function of order #. Since ¥, i3 not an K-
function (in the sense of Siegel) if # is not in § we can say nothing about
the transcendentality of its values at algebraic # Further, the methods
of [5]~—[8] would apply to determining the dimension over Q1) of the
tield F, generated by the power series coefficients of y; at & =2y, ..., %}
however, if a is not an integer, we would know nothing about the field #,
generated by the power series coefficients of y, =y, and 4, + =?Yy,, since
neither one of these functions is entire nor iz any nonzero linear combi-
nation of them with algebraic coefficients.

Section I

Proof of Theorem II. We shall agsume Theorem V in this section
and prove it later in Section IL. :

Tn a moment we shall carefully evaluate the Wronskian of y, (wl(z)),
coes Yi{w (8)). Tirst wish to show that this quantity is not identically
zero as o function of 2, fy, ..., Byz.q for any choice 0f%ys.ery 8. The Hxam-

2

ple of- Theorem II gives us a clue as to why thig ig frue. Consider
) :
[T (D—r)y = 0 where each 7;¢ @(i), no #; is zero, and no two |r;l’s are
j=1 :
equal. Our functions #;(w,(2)) may be taken to be the ¢ which near
2 = oo look very much like ¢!, By growth arguments, them, the
¢195® gre linearly independent over C, and we are through.
Since

( ,U ' w3 (2) (9 (s, (@)

equals a symmetric polynomial in the wy(e), ¥ # &y, with coefficients
in the field @ (4) it may be written effectively over Q (1) a8 a polynomial
in the coefficients of (p(iw)—2) (w —wy, (2)) 7" hence, D(wy, (2)) may be
written effectively as a linear combination of 1, wy, (2), ..., w;"l“l(z) with
coefficients each of the form an element of

Qi 2, %y, -y ¥y BiES (ﬁp’(wk(z)))*l.
=1
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Using this result and equation (1) repeatedly one may effectively
write the Wronskian of ¥,(w,(2), --.; %1{w,.(2)) as the determinant of
an ml by ml matrix 4 (2), with entries each of the form an element of

Q iy 2 &1y o1 %y Prs - :ﬁt(l+1]} times negative powers of (UP (wk(ﬁ)) and

(k]'[ il (2) )) timel the determlna.nt of a matrix which 'whon written

in matrix block notation looks like (£2;,), where d<{t<{m—1 and
1<k<m are the “row” and “column” parameters lespectwely, and
each £, H('wk( )D”fyj(wk(ﬂ))) where 0 6<1—1 and 1=5j=<{! are
the row and column parameters, respectively.

Using elementary “row” operations one may obtain a matux 1o
replace the second matrix above by one in which no block appear helow
the “main diagonal” of blocks. Thus the second matrix, 4, has deber-
minant equal to a rational function of w,(#), ..., w,{(2) times

ki)
T[T, ..,

Re==1

) [ {2))),

where W denotes the ordinary Wronskian., For any Zus ¢ 1 we substitute
for 4y, -
- identity matrlx {here 0 < 0 <{T—1 and L < j < 1) for every 1< k < m, then
A(z,) looks like (wk (zu)) tensor product the ! identity matrix where 1<k
< mand 0 < &< m—1. Thos here

det(4(z,)) = (d_et (w,fﬂ(zn)))t.
Tt follows that genmerally o
dot {4(2)) = (aet(wh @) [ [ (W@ s 9 e (e)])-
k=1

We may obtain two important facts from the above formula: If
Zyyeeey @y Pry ooes fygpy) @re such that no two #,’s are equal and no
2

7:(#,) vanishes then the rank of 4 (2) is the dimension of the vector space
over O spanned by the y; (w,(2)) and, under these same conditions, 4 (0) = 0.

m m
Let us join the zeros of g;(2), [T g(wy(2)), and [T 2'(w,(2)) to 2 = o
k=1 Jeeml

by a simple curve ¢ = y{!) compoged of line gegments and such {thatb
for sufficiently large |y (¢)} the imaginary part of »(#) equals some fixed
negative real number. Let X denote the extended plane minus the “cut” y.
Mince v is simple the region X ig simply connected and we may define
wy(2), ..., Wy(2) a8 analytic functions on X (here each wy{2) iy agymptotic
to ¢*'|z™ " on the positive real axig), If y(#) iz any function analytic on
X then each of y{w,(2)), ..., y(w,(2)) is defined in an open disk about
sore sufficiently large positive integer. If ¥(z) i8 a solution of (1) then

.y ¥; any 1 polynomials such that each ( Y (w;b(zﬂ )) equals the

icm
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it is analytic on X and we may continue each y(wy(z)} to be an analytic
function on all of X, Notiee that analytically continuing y(wk(z)), 0k
< m -1 times in the positive direction around the cireumference of & large
circle with center at zero, we obtain y(wy,,(2)). Thus the y(we(2)), 1<k
< m, are analytic continuations of each other along paths which avoid

the zeros of
(] loos @) ([ ] ' feos@))}-
Fe=l k=1

Suppose that y,(2) and y.(2) are two solations of (1) such that con-
tinuing ¥, () along a path y, = p,(t) which avoids the zeros of g;(z) we
obtain y,{z)}. Without loss of generality we may assume that (i) p(yl((}))
and p{y,(1)) ave in X and (ii) »,(t) also avoids the points in {w; (the Zeros

of ﬁ p’(w,c(z))) for 1<j<'fm,}. Set yu(f) = p(p:(0) Near zp = p(».(0))

71 (t) = a0y, (5 (1)) for some 1< %y < m. It follows that for all 0 <t <1,
v (&) = 'wkl(yz(t)) where here we mean by wy, (¢) the analytic continuation
of wy (2) along y,. Thus our analybic continuation of y,(w, (<)) along
¥ (1) 18 ¥ (wk {z) for some 1<k, <. By what we have already seen
then it follows that each ¥, (wk (z)) may be analytically continued into
each y(wy, (#)), for all 1 < &y, ky < m, along a path which avoids the zeros of

(H ey ) (Q P {103, (3)))-

k=1
We wish now to apply the Proposition from [2] and Theorem V of
the present paper in order to obtain a statement of diophantine approxi-
mation involving the y,{w;(2)) —y;{w, (2)) for all 1< j<land 2<<h<m
(for use in the proof of Theorem II). Setting X = ¢ and a(z) == 0 in the
Proposition we could obtain such a result immediately except that there
is no one curve ¥ along which we can eontinue each ¥, (wk(z)) to obtain

%y (wl(z)). Thus a stronger version of the Proposition is needed. Such

a stronger version would follow immediately from a version of Theorem
TIT of [2] in which instead of one linear operator ¢ (corresponding to
analytic contivuation about one curve €) we allow operators oyy ..., g, ..

.y 0, Which each satisfy the hypotheses of o for some subspace V of U,.
I‘or pach 1 < j < n we may define Tj, T, and each UY), for every 1<{j
< m, in the same manner that T, U, and each U, were defined using o.

Then we set
T=09p...0 7 = Z 6] (@)
. =

k1]
= M ud(z)),
=1

(with every u(»)

each

U, =00 @.. 00" (with cvery u,;(z)
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and .
(T, ..., TO)) = (T (@), ..., T, @),
The proof in the present case goes through because the “old” proof holds
in each component.

Thus by our strengthened version of the Proposition of [2] and by
Theorem V of the present paper we see that there exists # = m(s) such
that

I m .
(8) max {”2 ;:Z A 1D [3{o01(0)) —yf-(wl(O))]H} = o(e) (IT}?;X{!Aj'k|})‘(md'l-3)
=1 k=1 Ik .

i —1

for all nonzero (m—1)i-tuples of Gaussian integers 4,,, where d =

dez g,
max {TP%} and |l¢|| denotes the distance from zto the nearest Gaussian
- F
integer.
If the 2,,...,%, are each regular points of the y;(z)’s then overy
1 m
3 455.0° [ (00)) — s (2 ()]
F=1 k=2

in (3) may be expressed as a linear combination over ¢(4) of the '

m

4) 34 [ (0)y S (o0 (0)) — w0 (0) " o (0)]]

J=1 k=2

for 0<6<tl—1 and 0 <t m—1. Thus we need only congider in (3)
a maximum over the ml numbers above (for any choice of the A4, such
that ' '

i 13

23T Ay iyl (2) — 95w (2))) # 0)
F=1 k=2

if we are willing to, possibly, change the ¢(s) > 0.

Now recall that 4(0) # 0. Subtracting the columns of 4(0) involving
y; and w;(0) from the colnmns involving y; and w,(0), for & =2,...,m
and for each 1 < j < I, we see that the (m — 1)1 by ml matrix of coefficients
of the A, ; in (4) has rank (m —1)1. Thug, extracting an (m — 1)1 by (m—1)¢
* . mongingular submatrix from this latter matrix by deleting I rows, corre-
sponding to T ordered pairs (i, ), and calling the new row parameter v
one may construct (m-—1)1 functions

. of i n
ys (ﬁ) q_— ]Z Bj,k,s(y_f (w]n (z)))
pai}

i=1

guch that except for the I deleted ordered pairs (4, 8)

icm
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i m
(a) each 21 ng By 1,0 [0, 098" (201, (0)) — 0k (0) 1" (10,,(0)}] Delongs to € (3),

(b) each B, belongs to the field £, and

(¢) |B',k,s| # 0. '

Applying the argument leading to (3) to the Y. (2} and rewriting
the different

(m—1)i

>4, 70(0),

§=1
with each A,¢Z[], as linear combinations over (i) of the mi different

{m—1}

8=1 =1 k=2

we see that we need only consider the above forms for those I ordered
pairs (f, ) such that the rows indexed by them were deleted from the
matrix of coetficients of the .4;;'s above.

Thus, we have ! linear forms in (m 1)1 variables over A which cannot
(m—1)1 :

all agsume values in Z[4] unless ) 4,Y.(2) = 0. We have already seen
8=1

that the y;(w,(#)] span & vector space of dimension exaetly ml—r over C.
Therefore the y;{wy(2)) —; (w1 (2)), 1 <j <1 and 2 < k< m, span a vector
space over ¢ of dimension at least (m—1)1 —r. It follows gince | B,y |l # 0

that the Y,(2) span a vector space over ¢ (and hence over 0 (#)) of dimension
(m—14 )

ab least (m—1)1—#. Thus 3 A,¥,(2) =0 has at most an 7 dimensional
a=1

golution space over ().

 In each of the I forms above choose a hasis, beginning with 1, for
the vector space over (i) spanned by 1 and the coefficients of the form.
Tf none of these bases cver has at least ((m-—1)1—)l7 41 = m—sl™"

elements in it we can ehoose the 4,'s in Z[4] such that every form equals
(m—1}i ’ ’

an element of Z[i] and Y A, Y {2) =0, since at most (m—1)}l—(r+1)
3=1 .
equations in (m — 1)1 nnknowns have an (r--1)-dimensional solution space.
This contradiction proves that some basls has at least ((fm,——l)lwr)l‘l -1
olements in it and we are through. Thiz proves Theorem IL
Proof of Theorem LIL. Except that we must work with (m—1)1+%
fanctions, not (m—1}! functions, the same argument may be used as

in the proof of Theorem II. ‘We then obtain I—? forms in (m—1)1-+%
variables with the coefficients in ¥. Theorem III follows immediately.

Proof of Theorem IV. If r =0 and { =1—1 we may first follow
the previous argument as far as inequality (3). If the g (wk(z)) and the



®
Fmig1s -+-2 J are a fundamental system of solutions of the equation obtained Im“

from Theorem V then, since 2z = 0 iz a regular point of the equation,
it follows that there exist nonnegative integers 6, < 8, < ... < f,,; such
that the sub-determinant of the Wronskian of the y, (w,(2)} and the f,(z)
at z = 0 formed by removing the last » —ml columns and all rows except
the 6, 8t, ..., 0,,;th, i3 nonzero. If

i

i
y(z) == 2 _Ecj,k'yj(wk(z)):

“iel Rl

where the ¢;; denote arbitrary eonstants, then each derivative of y at
#z = 0 may be written as a linear combination over @ (#) of the different

k!

2

b

1
Gk (’Wk (0))09?/}0) (wk (0))
=1 B

I

for 0p<m—1 and 0 OCI—1.

It follows by what was shown above that y®0(0), ..., 5% (0) are
linearly independent over @{¢). Thus each D°y(0) (6 =0,1,...,n-1)
may be written as a linear combination over @ (¢) of the D%y (0) (1 < 4 < mi)
with coefficients in @ (i) (henee independent of the ¢ ;). So in (3) we need
only congider the cases where 6 = 6,,...,8 = 0,,.

+ Where 4,, ..., 4,;_, denote parameters which are to take on values
in Z[i], either one may find U,(z), a linear combination over ¢ [4,...
wivyApiq] of the elementy of

AR (#), .. oy Pg—1 ()} ‘
=l 1 <E<m 2 <G < O {1 6] —wafon ), 2 < b < m)

such that D% T,(0) = 4, for 1 <t < ml—1 or one may find U.(2), a non-
- zero linear combination of the #;{(z), such that D% U, (0) = O for sach
1<t ml—1. This last possibility leads to a violation of {3) gince cither
D, (0) == 0 or, without loss of generality, we may take D'mlU,(0)
to be one. Thus the first case holds.

We may use Cramer’s rule to write

mi—1

Uile) = 3 4,(4) Zs(z)

=1

‘where the ¥;(2) are linear combinations of the hy(z) and 4 is the Wronsgkian
of y(2)y vy By (2) am #z = (. Thus on the left hand side of (3) we have

” 2 A:i'(A)—l Yjﬂml)(o)H K

- . s

This latter quantity may be replaced in (3) by

mi—1

|3 4,y 30 (0) + 4,

=1

for any 4,; in Z[i]. In fact for some o(s) > 0 the inequality in (3} holds
with '
wl—1
P (0)-|—Amzd’

j=1

on the left hand side, for any nonzero {4,, ..., 4,,) in (Z[i])™. We may
write each ¥jm! (0) as a linear combination, of the A’ (0) for 1 < j < m—L.
: mi—1

Set each 4, = f%(0) for 1 < ¢ <, ml. One may write |3 A7 (0)+ A,
=1

- then, a8 a linear form in the APD(0), 1 < J<ml—1, and fC=1{0).

Expanding the determinant in Theorem V along the bottom row we
obtain up to a--sign the linear form in the Af?(0) and f%)(0) just
gobtained above. This proves Theorem IV.

Section IT

In this section. we shall prove Theorem V. We begin with a ring-
theoretic lemma. Lot § & 8 (7, 8}, for any pair of positive integers » and
s, denote the subring of the noncommutative ring @ [4, ¥, 2, ..., 2,,,D, 2D]
generated by all monomialy in which the degree in 2D divided by the
degree in D i3 lesy than or equal to »s~%. (Here N, %, ..., 2,, denote m+1
complex valued parameters, # denotes a complex variable, and D denotes

it
)

dz

Luvma I The ring 8 satisfics the ascending chain condition own left
ideals.

Proof. We wish to see fivst that S is generated over @ (2) by N, 2y, ...
vy B and (eD)O.D%, (2D)D, ..., (2DY D% where 6, =1, 8, =s, and—~
genevally --each 0; is chosen to be the unigue integer such that j(0,)~"
g™t < J(0 1) wl - oo (here J{0) = 4- co). Note that 1 = 0y < 6,
Koo b, = o o

All that we need to do to show the above set of clements generate
8 18 to see that we may write each (2D)? D" where ab™ < rs™, as a poly-
nomial in the (D) D%, since any element of § may be written as a linear
combination over ¢ [4, N, 2, ..., #,] of such terms (2D)*DP. (Use (2D)D
= D(Dz—1) and D(zD) = (sD+1)D, repeatedly.) We proceed by



induction on 4. If & <r then we may write (2D)*D® = ((=D)® Do) D~ Im“

where b— 6, > 0 by the definition of §,. If & > v then since ab™' <y~
we must have b > 5. Note that

(@ —7)(b—8)"t < v/s.

Thus we may write («D)*D® as (2D)" D*((2D)* " D*~*) plug other monomials.
in § of the form an element of Q4 N, 2., ..., 2,] times (2D)*D? where
ef'<rs7! and o < @ By induction on o it follows that N,z ..., z,,
(2DYD%, ..., (D) D% generate 8.

Let 8, 0<j<r, denote the ring generated over @(4) by N,z ...
vivy By, (2DY D%, ., (2DY D% Then §, = 8{r, 8). Also, choosing 0 <k < §
50 that k(0" =max {67, §; = S(k, 6,) since, for every 0 <tk

ot
we have 10" < ko' <rs7t < {6 —1)7 < + oo, while for k-1t
each 10, < k67 . -

We shall next show by induction. on § that S; has a. e. e. (the ascending

chain condition on left ideals). If j = 0 the ring is Noetherian and we

are through. Suppose that 0 << j<r—1 and that §; has a. c. ¢. . Every
element of §;,, may be written as a linear combination over @ [7, N, 2, ..
vovy 2] of products of the different (zDY¥D%, for 0<t<j+1, in some
order. Where 0 <1< 7,

(5) (2D)+ D2 (2DY D% = (2D + ;) D% (6D — 87> Dl
Since f;,, = 0; we see that
(41 =1} {0557 = F(B542) T <F(O) T < K( ;)7

Therefore in (5) we have (2D - 6,,,)'D%{(zD)"+ D%+1) plus an element
of 8. Since we have 16;'< ké;', (2D +0,,,)' D% belongs to & also.
By induction on the maximal number of factors of (2D)+*D%+1 which
appear in any monomial it follows that every element of 8,41 may be
written as a polynomial in (2D}t D%+ with coefficients on the left from
“8;, in at least one way. .

Let L denote an arbitrary left ideal of 8;,,. Let J,,, for # = 0,1, ...
denote the left ideal in §; consisting of the set of all coefficients of
(DY D+1j" in ol polynomials of degree at most o in (D) *1LD%+
with coefficients on the left from 8; which represent elements of L.

Define & mapping o; from 8; to 8; by D18 = o;(s,) D%+ for all

elements s; of 8;. Obviously o; is well defined since if & D%+t == §, D%+, .

where ¢, and t, belong to 8;, we would have (¢, —%,) D%+ =0, which
would say thatis, =1t,. I oy(s;) = 0 this implies D%+1s; = 0 which certainly
Tneans that ¢ = 0. Further o; is & homomorphism gince D% (84,185,2)
= 0;(8;,1) 07(8;,,) D41 for every pair of elements 81 and s;, belonging
to 8;. Therefore o; iy an isomorphism. The mapping o; is onto §; since
o;(D) =D and o;(2D—6,.;) = 2D. Thus o; 18 an automorphism of §;.

R e T 1 S R e UL e T ST <0

From (5), if 0 < ¢ <4, ((«DY**D+1)((2D)' D”) equals a;((2D)* D) times
{zD)** D°r+1 plus an. element of ;. Tt follows that then for m =0, 1, ...,
0;(Jn) S dyyr. Therefore, we have J, < o7'(J,) € o7*(J,) S ... Each
o ™(J,) 18 a left ideal in 8; since o' is an automorphism of §;. By
a.c. ¢ in 8 there must exist some positive integer N such that o7 N (T )
= o] ¥tV (I 1) = ... Then for each k3 0, Iy, = of (T ). Sinee each J,,,
0 < n< N, i finitely generated it is eagy to see that I is finitely generated.
Thiz proves Lemma, L.

Congider the functions

wy(e) i
. z—
Fn = [ EZ20IE

73

where y denotes any solution of (1), ¢ denotes any point where g,(z) is
nonzero, h denotes an integer between ¢ and m —1, and M denotes & non-
negative integer.

Lanma I1. There exists a sequence of functions Puaryn = Praren(® 2y .-
s By), Which 0 2 are each polynomials of degree ol most M, such that the
Jumetions Toprn— Pungans for M = 0,1,..., generate a finitely generated
left module over Q [4, 2,5 ..., 2,] :

Proof. Recall that we may rewrite (1) as

(6) y = D E,D) D'y

1kl
where the I,.(2D) belong to Q[4, D). Define the p,(2, 21, ..., ) to Dbe
identically zero if 0 < ¢ < Im. Given any Iy, for M =1 and any 0 <<k
< m—1 integrate (6) by parts integrating v {u) into

D) Ey(uD—1) Dy (u)

1<kl
and differentiating the remaining factor. Thig gives a polynomial of degree
at most M in 2 (with coefficients depending on 2, ..., ;) plus, since
M =1, a linear combination over @ [i, 2, ...,#2,] of terms of the form

w].z(fv’)

fo— M .
(7 f %{H}?‘L u’”} w (D7 (w)) .

Integrate by parts repeatedly, integrating the D'~y (u) until we have
only terms of the form -

wwile) .
))M 0

Q [l

Gr—gy Yy
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where 0 8<<j<? and each O0<<h <mb+h-+i—4 Wo may write

ut ag
b7 .
Qi'c,ﬁ(z) Frgeeny zm) (5—}9(%)) i
ml+d=0
with 0 < 8 < m where each g 5(2, 2, ..., #,) belongs to @ [4, 2, 2y, ..., 2,.]

and hag degree in # less than or equal to (hlm(mk -+ 6))m‘1 which is less
than (mf-+h—(mk-+8))m™", since hy <mf+h (recall that in (7) we
always have § > 1).
Therefore we see that I, minus a function which in 2 is & poly-
nomial of degree at most M equals a linear combination over ¢ [4, 2, &, ..
s 2] OF the Tpppin . (forv =1, 2, ..., mM +h) with coefficient functions
7y = Ty(%, 81, .-+, %) 0ach having degree in z less than vm™'. Note that,
. w4 h—wp T |
where Tx] is the greatest integer not exceeding ez, [m-——WT———-—] 4 [%—]
< M for v =1,2,...,mM+h, thug we may define p,gr.,. This proves
Lernma IT. A
_We wish to examine the proof of Lemma IT above more cgrefully.
Ii j and ¢ are as in (7) then, looking abt all #,(L,arin—»—Pmarin_.) Which
are obtained from the term of (7) involving % D' !y (u), we have

1 1

—deg,r,} = (j—1m~

min {vm™~
v
and

max {deg,ry} < {(m—1)j+t-+h)m ™
v

Thus for all v, and all j and # in (7),
1
< max {(m — 1)+ mi{§ — )" R (-0,
it
One may use, ingtead of (1} in (7),

(10) (1— Y KDy Dye) =0,
e
for 9 =1,2,... In (10) min {j—8} = . Thus we would. have that our

upper bound in (9) may be replaced by

(11) m—1+mmax{t(j—8 " e
it

+

for any & > 0, if ¢ is sufficiently large. (The maximum need only be taken
over the pairs §, ¢ occurring with ¢ = 1.)

Given any & > 0 we may choose two positive mtegers r and ¢ sach
that :

(m~1)+omfmax {t(j — 1)) + &g > 157 > (m— 1) + m[max [t — 1)),

icm

P L e
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If @ is taken to be sufficiently large then we will have

757t > (m—1)+m(max {t{j — 1)} + e > max {(deg,r,) (sm ™" — deg,r,)~").

For a possibly even larger ¢

s~ > max {(deg,r,) (vm - deg,r, —1)"1}
L

since
min {em ™" —deg,r,} > min {(j —tim™} > gm "
which goes o - oo with ¢.
Notice from the definition of the I,,.,,, for every M > 1, DIyarin
= Inog_y4n- Thus if we have used (10) instead of (6) in the proof of
Lemma, II and now apply D¥*! to the resultant equations, where ¥ is
a nonzero integral valued parameter (and we assume that ¥ > M-+ 1= 1),

we may write for each 0 <h g m—1

m—1

(12) DY-MT, 2

=0

(Y 2, - szm:zDr—D)DN_MHIj

where the Uj iz == Upgr (N, 29, .00y 2, 2D, D) belong to @[, N, 2, ...
-+3 8y, 20, D] and each monomial of each U, ; has its degree in D less
than or equal to

max {(deg,r}(vm™" —deg,r, — 1)~} < #/s.
v
Thus the U 5, are in § = S, s). _
We may use (12) to write for M =1,2,..., DV"M] = g, DVN-M+1]-
where I is a column vector containing I,, ..., I,,_; and 8, i an m by m
matrix with elements in 8(r, ). In each case we have

L M-l

(13) pN-MT =(H 0M_,.)J)Nf if

i

NzM+1.

M-1
The eomponents of the eolumn vectors ( n GM_,)DN I tor M =1,2,...,

generate a finitely generated left module L over 3(r, ), since they are all
contained in a fmltely generated module over (7, s) and 8(r, $) hag a.c.c.
Similarly where p'(w) = ay+a20+ ... +a,_ 1fw’” !and P (an, + o)
the module generated by the

b2 ((ﬁl O} VI, for

=0

M=12,..



s

e -

@
is finitely gemerated and there exisfs a positive integer M, such that Im

Myl

P((J] 6a,-5) DY)

Fd

may be written as a linear combination over S(r, ¢) of the

M=tk

F((H BMJ__j_k)DNI-), for 1<k M, —1.

=0
Setting N = M,-+1 we obtain, using (13) an equation of type (1) in
PDI = y(wy(e)) in which
max {(deg,g;}(j — deg.g;) ™"} < s~

Sinee the {]jjl g (w,ﬁ(z)])”’ D?yl{w,(2)] generate a finitely generated
module over the Noetherian ring @ [4, 2] we see that there exists a linear
homogeneouns differential equation in y(w,c(z)) with coefficients in @[, 2]
which is satisfied by every ,(wy(2}) and which has a power of Iji grloy (2))
for the coefficient of the highest order derivative of y(wk(s)). If we add

& suitably high derivative of this second linear differential equation
to the equation must obtained above for y(w,(2)) we shall have satisfied

part; (iit) of Theorem V as well as parts (i) and (ii). This proves Theorem V.

The following corrections should be made in [2]. On page 885 in line 11 it ghould

~ be 4., instead of B; and, in line 13, DI—1y; (21} instead of y;(e ). On page 390, linc 14,

the statement of noiformify is not guite correct since in the proof referred to thero
was at one point a choice of a basis over @ from among the Ty (%)) and then cach

Tiy{z,) was expressed as a linear combination, over €, of these bagis clemonts. One
Tay repair this by choosing a basis over @ from among the different 7% Yesy; (%))

where the ¢; are arbitrary constants and proceeding as bofore, On page 390 in the
seventh line from the bottom instead of a Guussian integer 4, there should be an
Ituple of Gaussian integers Aj; and in the sixth line from the bottom we should

have 4y ; not 4,. Finally, on page 391, line 13, V ¢hould be a subspace of Uys U,
not U, : ‘
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