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1. Introduction and summary. Throughout this paper % will denote
an integer z= 2 and p will be a prime sueh that (%, p —1) = v, (p) > 1.
Weo denote the nth prime kth power non-residue by g,(p, k), n =1, 2,.
We attack the problem of finding an upper bound for g.(p, %) from
several vantage points and we congider, in addition, the case n > 2.
A large number of authors have given upper bounds for g,(p, %)
under varying hypotheses.
~ Burgess [6] has shown that for each é> 0,

i g1(p,2) = 04 (p11(4a1f2)+a).

In order to avoid any misunderstanding regarding the nature of our
O-estimates, we will always use the notation 0, to indicate an implied con-
stant depending at most on 4, while O will indicate an absolute constant.

Wang Yuan [18] gencralized the method of Burgess. Namely, for
each 4 > 0, he has shown that

(12 - aalp, By = 0s(ptOSTII)
for every » = v, (p) = 2

(1.3} - g1{p, %) < pH*

if v,(p) = 21, and _

(1.4) gulp, k) < p(los‘logv-l-ﬂ)fdlagv

if v = (p)> .
Wang’s results (1.2), (1.3), and (1.4), essentially halve the exponent

* in the upper bounds for g, (p, k) given by Buchstab [6] and independently

by Davenport and Erdos [8].

K. K. Norton [15] has recently genemhzccl the above regults by
omitting the restriction that p be prime.

Employing analytic methods, Hna [10] and Erdés and Ko [9], have
given upper bounds for g,(p, 2). In particular, Hua has shown that for
each p = 6, _

(1.5) ga(p, 2) < (BT600 p).
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A. Brauer [2], [4], and C. T. Whyburn [17]} have given upper
bounds for g.(p,2) using purely elementary methods. The important
advantage in the use of elementary methods, is that the results of Brauer
and Whyburn hold for ymall primes as well ag for Jarge primes, an advantage
. which may well be crucial for a given application. Indeed, this was preci-
gely the cage in the application of Brauer’s results [2] for ¥s(p, 2) and
gs(2,2) to the problem of determining which quadratic number fields
are EBuclidean.

Brauer [2] hag shown that the following results hold for all p.

(1.6) It p =3 (mod 8), gu(p, 2) < 2p* - (49 /2)p L7
(1'7) I P = b (]IlO(l 8), 9s(p, 2) << 25/5 2/5+27615(25)p1/5+3

C. Whybwrn [17 1 has extended Bra,uer ] results for g.(p, 2) m the
following cases.

(18) Tt p =7 (mod 24, ga(p, 2) < (6p)*-+(86/3) (6)° + 50,
(1.9)  If p =17 (mod 24}, g2(p, 2) < (3p) -+ (91/6)(3p)s - 29,
(1.10)  Tf p = 23 (mod 24), g,(p, 2) < (10p)*° + (27 /2)(10p)5 —1

Unfortunately, neither Brauer nor Whyburn was able to give a non-
trivial upper bound for g.(p,2) if p =1 (mod 4} and ¢,(p, 2) > 3, i.c.,
if p =1 (mod 24). Farthermore, to the best of our knowledge, no author
has given an upper bound sharper than O(p'?) for g.(p, &), v,(p) > 2,
although it is obvious that g.(p, k) < go(p, 2) if u,(p) is even.

Let O(p) denote the multiplicative group consisting of the residune
clagses mod p which are relatively prime to p. C(p) has a proper mul-
tiplicative subgroup, Cp(p), consisting of the kth power residues. The
remaining v, (p) —1 cosets formed with respect to Oy(p) are called classes
of kth power non-residues. Let S, denote the maximum number of con-
secutive integers in any of the v,(p)—1 claszes of non-regidues and let §
denote the maximum. number of consecutive integers in any of the v,(p)
clagses of residues or non-regidues, _

It follows from & paper of A, Bramer [3], that

(1.11) _ 8 < (2p)h 2
for all p. o

The author {11] has given a ﬁmsull improvement of (1.11), namely,
(1.12) . ) Sn < P1,’z+22/a 3 o} 21/3 P 1/6 41, '

The best upper bound for § has been given by Burgess [7]. Employing
non-elementary methods, he has shown that

(1.13) _ . | 8 = 0(p"*logp)
where the implied constant is- absolute,

iom
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Unfortunately, an admissible value for the implied constant in (1.13)
is not known, a fact which lends significance to specific estimates for §.
In § 2 some useful lemmas will be established Whmh give an upper

=1
bound. for g,(p, %) in terms of 8, and H g,.(p, k) if n 9-(P, k) is & kth
power non-regidue, and in termsg of 8 and H g:(p, ) othelmse

In §3 wo show, by purely elementa,ry methods, thm, under very
gencral conditions; in fact, whenever g,(p, k)< 2p*°+3, that

(1.14) g2(p, k) < 12p™° 4 42p*° - 43,
More generally, we show that for all p,
{1.13) go(p, k) < Ap"® (4. Tlogp)** - 37. 6 pY*log p 1.

‘We also show that the sharper result (1.14) holds whenever v,(p) = 13
and p is larger than a constant which can be made specific. The coeffi-
clents in (1.14) and (1.15} can be approximately euf in half 11’ —~11is & kth
power residue.

The results in Section 3 are more general and the proofs are Slmpler
than the nmmerous special results of Brauer and Whyburn, for not only
do they extend to all values of %, but they also encorhpass the diffieult
case, p =1 (mod 24).

In §4 we tarn away from element&ry methods and gpecific esti-
mates and use the O-estimates, (1.2), (1.3), (1.4), and (1.13). Combined
with the lemmas established in Section 2 we are able to obtain. upper
bounds for g,(p, &) superior to {1.14).

In fact we are able to show that for each é> 0 and p “sufjfmlently
1amge” :

(1.16) g2(p, B) = 06(19“””)

where, for example, a, = .378354 ..., ay =13, a.nd @, = 1/4 for “large”s.

In addition, we show that if » is a “sufficiently large” prime for
which ¢,(p, %), ..., ¢u1(P, k) are “small” (in a sense to be made precise
later),

(1.7 gD, k) = O(p™*logp).
For example, if #,(p) =2 and p # 41 (mod 24), or if v,(p) =3 and

P = 22+ 27y so that gy(p, ¥) I8 the smallest odd cubic non-regidue, then
(1.18) e, B = 0(p"logp).
Similar results are discussed when n > 2.

Finally, we note that if any one of several (30]1](30131]1‘65 iz true, then

(1.18) can be improved. For example, if the extended Riemann hypo-
thesis iz true, then for all % and “sufficiently large™ p,

(119) -  palps ) = 0(plog'p).
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2. Preliminaries. We often will abbreviate g,(», k), by ¢, and v,(p)
by 4. [#] will denote the greatest integer < ». (v, ..., %,) will denote an
integer interval which does not include ¥, o 4,3 %1, ...y ¥,] Will include y,
and ¥, if and only if they are integers, We asgume the fact, Whmh is
trivial to verify, then ¢,(p, %) <p if p >

Levma 1. Let p = 5 be a prime for whwh G1(p, &) = 2 so that gy{p, k)
ig the smallest odd k-th power non-residue, and Tet 8, dencte the maximum
number of eonsecutive mtegmﬂs o any of the v, (p)— —~1 non-residue dasses.
Then

(2.1) Gups 1) < 28,41
if —1 48 a k-th power non-residue, and
(2.2) 9u(p, §) < 81

if —1 is a k-th power residue.

Proof. The odd integers less than g, are kth power residues and,
consequently,

(2.3) (+1)/2, (P+8)/2, ..., (p+(g2—2))/2

are (g,—1)/2 conseeutive integers belonging to precisely one of the »—1
clagses of kth power non-residues, call it C. :
IT —1 is a kth power residue, then

(2.4)  (p—(g—2)/2, ..., (p—1)/2, (P +1)[2, ..., (P + (92— 2]}/2

are g,—1 congecutive integers belonging to 0.
It follows that if —I1 i3 a &th power non-residue,

(2.5) Iy < 28,1,
gince (g,~—1)/2

(2.6) g < 8+l
ginee g,—1 << 8, _

Combining (1.11) or (1.12) with (2.5) and (2.6) onc cbtaing imme-
diately an elomentary upper bound for g,(p, &) which may be of some
interest for small p, but which will be substantislly improved in thoe
next section.

There is clearly nothing magical aboul the choice g4 =2 in the
above proof and, in fact, Lemma 1 generalizes in the following fashion.

< §,,. Similarly, if -1 i3 a kth power residue,

Tovma 2. Let p = 5. Then
(2.7) _ 520, %) = r 8n 1
if —1 is a k-th power non-residue, and
(2.8) 7:(p, k) < (91/2) 8, +1

if =148 a k-th power residue.

icm
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Proof. Let #; be the largest positive ihteger such. that 4,4, -+1 < g,.
Then the integers

(2.9) 1, ¢+,

are kth power residues. Let  be the unique integer solution to the con-
gruence g, =1 (mod p) such that 1 < 2 < p. Then

(2.10) @y w41, 21,

are t;--1 eonsecutive integers belonging to exactly one of the ¢ —1 classes
of kth power non-residues, call it .

Let ¢, be the largest positive integer such that 1 —t,g9, >
is a kth power residue,

(2.11) 2—1y, ey BT,

are f,-1,+1 consecubive integers belonging to ¢
Tt follows that if —1 is a kth power non-residue,

(2.12) ‘ < (B +1) g +1 < g, (8,+1),

ginee t, is the Iargest integer such that g, +1< g, and; obviously,
b1 < 8,
Similarly, if —1 is a kth power residue,

(2.13) 92 < (91/2) (8 +1)

gince

y B¢+,

—g. T —1

eeey w—1, @, x4+1,

— (1)1 < — G2 = 2 (taF1)gy—1 = 20, < (b + 1+ 2)

< (8 +1)(g0) = 92 < (92/2) (8, +1).

With some minoy additional comphcatmns, Lemmas 1 &nd 2 gen-
eralize atill further. .

TavMA 3. Let n be any mteger =2 and let p be any prime. If —1
i3 a k-th power non-residue, then : :
n—1

(2:14) gn< (8+1) (] 2) +1,

re=1

and if —1 is a k-th power residue,

(2.18) RS (I—[gr)

r=1
n—1 . .
 Proof. Let Z =[] g, and let ¢, be the largest non-negative integer
) rel

such that #,Z -1 < g,. Then the integers
(2.16) _ 1, Z+1, 2241, ..., LE+1,
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are kth power residues (since their prime factorizations clearly contain
only kth power residues) provided that they are not multiples of p. Of
course, thiz additional complication arises only if ¢, > p.

As before, let » be the wnique integer solution lo the congruence
Zp =1 (mod p) such that 1 < z < p. Thig exists gince it is clear that
(%, p) = 1.

Let p be a prime for which —1 is a kth power non-residue. Then

(2.17) @, 4L, e, Bk,

with the possible exception of »+-13,, are 3, 4-1 consecutive integers belong-
ing to the same coset. For if » < p, then 241, < » since otherwise the
interval [, ..., 2+ ] must contain p--1 and p —1 which are in different
cosets. It follows that t < 8, and smce 1y 15 the largest integer such. that
ha 41 < Ins :

(2.18) 9o < (L +DZ+1L < (S41)Z 1.

Let p be a prime for which —1 is a kth power residue and let #, be
the Jargest non-negative mteger such that 1 —4,2Z > —g,. Congider the
integers,

(2.19) T—Tg, ... coy 1y,

If %1, < 0, then clearly #4-#; << p since all the integers between 1
and p cannot belong o the same cosel. It follows that », 2 +1,...,2+1
ara I, +1 congecutive integers belonging to the same cozet so thait §, +1 < 8.

¥ 2—t, =1, then 2, 2—1,..., 2—1, are $,+1 consecutive elements
Dbelonging to the pame coset so that #,41< 8.

Since ¢, < (+1}1Z2+1 and < ({,+1)Z~—1, we obfain

(2.20) L g, < BZ+1.

, #—1, &, &-+1, |

It it is known that g, < p, the above proof simplifies. In fact, the
proof is then identical with the proof of Lemma 2 with g, replaced by
Ony 01 Yeplaced by Z, and 8, replaced by 8. Consequently, one iz able
to oblain

(2'21) . g'"r (n g?‘) "S'_l-

if —1 is & kth power non-residue, and

@22) | (ﬁ g:) (S +1)/2
if —1 i8 a kth power residue.

' w1
. Also, it.is obvious that 8 may be replaced by §, in Lemma 3 if [T g,
ig a kth power non-residue. _ . rel

icm

(3.3) B~ (5:—2)/2,

(3.4) [(»+1)/2,
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Remark 1. Some curious regults, not of great interest, may be read
off from the above lemmas if §, 8,, or g, are specifically Imown, or if
» = p% a = 3/4. For example, if & =2 and p = 13 (mod 24), it follows
from (2.2) that ;S‘n> 4, since g, = 5. p = 13 is the only known example
of a prime for which §,> 1/13

If » = p% a > 3/4, and p is “sufficiently large”, then by (1.4), g, < p°
(for each &> 0), and it follows trivially from Lemma 2 that g, = O (p")
gince the maxirnum number of integers in any coset (consecutive, or other-
wise) i8 (p—1)/v = O(p"*). Indeed, if v = p% a > 8/9, it follows from
Lemmas 2 and 3 that g, = O(p"*), g = O(p™), and g, = O(p")!

3. Specific estimates for g,(p, k). By a specific sstimate for g,(p, k)
we will mean an upper bound for ¢,(p, %)} which is valid for all p and k,
or at least for all p > p, Whele Po 18 explicitly stated.

TEEOREM 1. If g(p, k) =2 s0 that gz(p, k) 4s the swmallest odd k-th
power non-residue, then for all p > 2%,

(3.1) Fa(®, ) << 295 4-((3125 [2048) p)5 -1
if—1 is a k-th power residue; {
(3-2) g2, ) < 2% -+ (9/8) p° -1

if—1 i a k-th power non-residue.

Proof. Let p > 32768. Assume that the theorem is false and lot r
be an odd integer such that 1 <<r < g,. Let J dencte the interval
,13+(92-2)/2]
if —1 i a kth power residue, and
o PA(9:—2)/2]

it —1 is a kth power non-residue. It follows that J containg only kth
power non-regidues (in fact, only integers from one of the v—1 clagses
of non-regidues). Let

(3.5) @, (A1), (@-+F~1)r
be the integral multiples of » contained in J. Then the integers
(3.6) d, G441, vy G4F-1

are all kth power non-regidues.

Let e =1if -1 i3 o kth power residue and let ¢ = 2 if —1 is a Kth
power non-residue. Then f>= [(g,—1)/er] since the interval J containg
{g.—1)/e congecutive integers. Let

(3.7) O =[]
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where 6 = 275 if —1 is a kth power residuc and § = 1/8 if —1 is a kth
power non-residue. Note that ¢ = 1 sinee p > 8% Finally, let v = ¢ if ¢
is odd and let »r = C—1 if ¢ iz even.

Now by (1.11), (2.1), and {2.2), g3<l:21/§13~+ 5, and it follows that
(3.8) At f—1 < {p-tga—2)/2r < (p+2V2p +1)[26p"5
< (1/20)p"F + (2 p018) 1 < (g, — 22,
Consequently, there exists a positive integer a such that

(3.9) g d<d-f—1 < (a-+1)%

For if J iy not square free so that there exists an integer o such that aeJ '
then « is an even integer since a < g,~2, by (3.8), and the agquare of
an odd integer less than g, is clearly a %th power residue. But then, a+1
and a—1 are odd integers less than g, and so a®—1 ig a %th power regidue.
Since J contains only kth power non-residues, we are forced to the con-
clusion that if a%eJ, then a? = d.

‘ Now let ¢ be the largest positive integer such that (a+1)2—i2
>at. Then 2a-+1—12>0 so that < (2¢a+12<t+1 and, hence
= [(2a+1)"]. ' ’

The integers

(3.10) (@12 =22 (v =0,1,2,...,9),

divide the inferval [a?, ..., (¢+1)?] into subintervals. Furthermore, o +1 -+
+1 < g,. For :

(8-11) o< @ < ((p+29) /20" < (p20) P 41,
since there must be a multiple of 2 between p and p 4 2», but then
(312) etlit<atl4(2e+1) <ol (26)P1

< PTROE+ (2P +2 < g,

Hence, every odd integer of the form (3.9) is a kth power residuc.
The number of integers lying between two conscentive odd integers of
the form. (3.10) is given by
{3.18) ((a—i—l)a—-fu“)—-((a—|~1)2w(@:+2)2) 41 = dv -3,

It follows that f< dt--3 < 4(2a-F1)"* -8 < 4{20—2)*% -4 wince it
is obvioug that &> 19 if p > 2%, :

Now, by (3.9), (a—1)"" < (p/2r}** and so

4(20—2) + 4 << 2% (p[2p) 44,
Thus,

(3.14) gD e =1 < < 2% (p 2yl 4,
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If —1 is g &th power residue we obtain from (3.14),
(3]5) gﬂ< 29/4T3/4P1/4__I_5T+1 < 29/4(2-—~11/5P1/5)3/4‘p1/4+5(2—11}‘5)2’1/5,"&1
= 2%/ pE - (3125 /2048) p) " 1.
If —1 is a kth power non-residue we obtain,
(316) gy < 2SN L gp 1 < 2P B) V1 (0/8)p 1 41
— 2292"54”(9/8)}9”5"‘1- .

The contradiction establishes the theorem.

Remark 2. We have not attempted to check (3.15) and (3.16)
for p < 32768, although tables exist for checking such things; see, for
example, Lehmer, Lehmer, and Shanks [12]. We note that (3.15) and
(3.16) are, in fact, slightly sharper than (1.6) and (1.7). More significantly,
we note that in the proof of Theorem 1 we only need to use the fact that J
does mot contain any kth power residues, rather than the stronger fact

that J contains integers from only one of the » —1 claszes of non-residues,
Implieations of the stronger statement will be considered in forthcoming

papers.
THEOREM 2. If 2 < g.(p, k) < 2p'° + 3, then

(3.17) gaolp, k) < 69 +21p™ 4-37/2  if  ~1 is a k-th power residue;
(3.18) ga(p, k) < 12p*° -+ 42p*F +43  if  —1 is a k-th power non-residue.

Proof. Let p be > 1024. Agsume that the theorem iy false and let J
denote the interval

(3.19) [p—~g2+1,...,‘p-—l,p-l—l,...,p—i-gz——-l]

if —1 is a kth power regidue, and lot J denote the interval
(3.20) p+1, .. p+ga~1]

it —1 is & kth power non-residue. _
I g, < p"® there oxists a kth power non-residue, which we will
denote by n, such that p* < n < 2p'*4-3 since 2 iy a kth power residue.
¥ g, > p" we let n = gy.
Liet
(3.21) dn, (@+L)n, ..., ({d4+F-1)n,
be the integral multiples of # contained in J.
We claim that the integers N o
(3.22) d, d-+1,...,d+f~1,
form a sequence of f conseeutive kth power non-residues. For # is obviously
a multiple of gy, say m = ag,. Furthermore, the only integers in the

T— Acta Arithmetica XXTIL1
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interval J which can fail to be kth power residues are integers of the
form p--bg,. But integers of the form p+ by, cannot be multiples of n
for p 4:bg, == en = acg, = p = (acF b)g,, contradicting the fact that »
is prime. Consequently, integers of the form (3.21) are all Jth power
residues which, of course, implies that integers of the form (3.22) are
all kth -power non-residues.

Now if —1 is a kth power residue, J contains 2¢,—1 consecutwe.
integers and, thus, f> [{2¢g,—1)/n] sinee any @ congecutive integers
must contain at least [ /n] multiples of #. If —1 is a %th power non- ~residue,
J contains g,—1 consecutive integers so that f= [(g, —1)/n].

By (1.11), (2.7), and (2.8), g, < g11/2p—|—2g1+1 It follows that

(8.23) d+F-1<(p+g—1)n < (p+ 0.V 2p +201) /0" < (gy—2)?

that
(3.24) 'L d<d4F—1< (a+1)2

For if e*e[d, ..., d4f~1], then a must be a multiple of g, since, by
(3.24), a < g, —2, and the square of an integer less than g, which is not
a multiple of g, is clearly a kth power residue, whereas d, ..., d+f—1,
are all th power non-residues. But, then, #+1 and a—1 are integers
less than ¢, which are not multiples of g, and so a?-1 is a kth power
residue. As in the proof of Theorem 1, we are forced to the conclugion
that if a?e[d,...,d+f—1], then o® = d.

Now subdivide the interval 4 = [a? ..., (a+1)*] into the overlap-
ping subintervals

(3.25) Ay = [ ..., a{a+1)],
(3.26) Ay = {(a-+-2)(a—1), ..., (a+1)3].

Note that if either gila or g,|a—+1, then ¢ 1 a-+-2 and g,fa—1
sinee g, > 2. Conversely, if either gyla4-2 or gle—1, then g,1e and
g1t 8+1. Consequently, at least one of the integers (a--2) (@—1) = a?-
+a—2 or a(a-+l) = a¢*+a i3 & kth power residue, since a2 < g, by
(3.23) and (3.24).

Let ¢, be the largest positive integer such that

(@12 =8 > (a-2)(a~1),
Then a--3—#> 0 80 #, < (a--3)* < #,--1 and, henee, #, = [(a-+2)"*).

The integers _ ‘ '

(327) . (ad1pP—0* (0 =0,1,2,...,4),

divide the interval 4, into subintervals.

pince gy < 29" -+ 3, Congequently, there exists a posmwe mteger a such )

icm
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Forthermore, a¢-41+1%, << g,. For
(3.28) a <X A< ((p A m) ) < (pjnp 41
since there must be o multiple of » betwéen p and p-2n. But then
(3.29)  a4+14+t <o-+1-(a-+2)" < p* 424 (pPF 430 < g,.

Now, if {a-F1)*—2* (v = 0,1,2,..., 1), is a kth power non-residue,
then at least one of it factors @ +-1--v or a+1—v must be a kth power
non-residue and, henee, a multiple of g, beeause of (3.29). It follows that
cither (o414 (v+4-1)}{a+1—(v+1)) is & kth power residue or (a+1+
4 (0 4-2)} {a +1 — (v +2)} is a kth power residue. For, if ¢ +1+v» ig a mul-
tiple of g,, then @ -1+ (v--1) and {a--1 4 (v --J—2)) clearly are not, since
gy > 2. By (3.29), then, a-+1+(w-+1) and a+1+4(v-+2) are kth power
vesidues. But at loast one of the integers a+1—(v-+1) or a+1—(v-+2)
must be a kth power residue sinee both cannot -be multiples of g,. Simi-
larly, if ¢+1--v is & multiple of g;, then a+1—(2-1), a-+1—(v+2),
and at least one of a+1-4-(v+1) and a+1 + (v + 2) are kth power residues.

Congsequently, at least one of the integers

(a+1)2—o% (a+1)2—(v-+1)% or {a+1}*—(v-+2)2

is & kth power residue for each » =0,1,2,...,t,—2. It follows that
the maxgimum number of integers lying between kth power residues of
the form (3.27) cannot exceed

(3.30) {(@+1) =0y —{(a+1)—(v-+3)) +1 = 6v+8.
Thus, in the interval 4,, '
(3.81) ¢ f<64,+8<6(a+2) 48 < 6(a?)+10

for (a-+1)°> pin > (1024/11) > 93 since p> 1024 and n < 2pf43

=az=% but 6(a+2)"*<6(a")+2if a9

Let #, be the largest positive integer such that a(e--1)-~1, (1)
> a? Then %1, < a %0 that #, < [¢'*]. The integers
(3.32)  alet+l)—o(v41) = {a-+1+o)(a—2) (0=0,1,2,...,8),

divide the interval A, into subintervals and by the same argument as
before, at least one of the integers

(a-+1-Fo)(a—v), @41+ (@+1)){a— (2 1)}, or (a-+14(n+2)} o — (v +2))

s a kth power residue for each v =0,1,2,...,t,--2. It follows that
the maximum number of integers Iymg bbtWOQl‘l kth power mmdueﬂ of
the form (3.32) cannot exceced

(3.38) ([a*+a— (v2+0)) — (0% + a— (524 0 +12)))+1 = 6v+1L.
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Thus in the interval 4,,
{3.34) F e 6ty -11 << 6 (o

and 50 < 6(a')--11 in the entire interval A,
Now, if —1 iz a kth power residue,

—1 > {(2g,—1)/(2p"* -+ 3)) ~1

sinee n > pY® so that a'* < p's,

ESED

(3.35) [ [(2ga—1)/n] > {(2g,—1)/n)
since n << 2p'° -1 3. Clearly a* < p fn < p*®
It follows that
(3.36) (2g,—1)/(2p"% -+ 3) < 6(a'?) 412 < 6p*5 412
= 2, —1 < 8(2p"° 4+ 8)p¥¥ 4-12(2p'F 4 3) =
> gy < 6™ 4 21p'5 4 37 /2.

The contradiction establishes (3.17) for p> 1024 I p <, 1024, gl
‘gince g, < 2pY°+3 < 11 50 by {L.11) and (2.8), -~ - ol

12p*° - 429" 4 36

< (T/2V%p +8 < 6p* 4 21p"5 1372,
If —1 ig a kth power non-residue,
fz Ug-1)/nl> (g > ((g2~1) /(297 4-3)) 1.

Clearly (@—1)% < p/n << p** so that (a—1)"* << p'®. Furthermore,

(3.37) o ~1)/m}—

6(a 411 < 6(a—1)" 113 < Gp5-113  sinee o> 9.

It follows fhat
(3.38)  (ga—1)/(2p""+3)

The contradiction establishes (3.18) for p > 1024, If p < 1024, g, =2 7,
po by (1.11) and (2.7),

o < TVEP 415 =

Theorem 2 generalizes Whyburn's resalts (1.8}, (1.0}, and (1.10),
even when o == 2, For if g,(p, 2) > 3, Whyburn was only able to obtain
"a non-trivial upper bound for gy(p, 2) it —~1 is a guadratic non-residue,
Consequently, Theorem. 2 is more general than (1.8), (1.9, and (1.10),
even when # =2, Theorem 3, combined with a remarkable specific esti-

"~ mate given recently by E.K. Norton [15] for ¢.(p, &), namely,

(3.39) AVIRORS

will yield a non-trivial upper bound for g,(p, k) for all p and & We omit
. details in the proof of Theoren 3 which are identical with argumenw
~already established in the proof of Theorem 2.

< 6p"P H 14 e gy < 127 - 42975 - 43,

12935 - 42pHF - 43,

4.7p " logp,

iom
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TEEOREM 3. If g,(p; k) > 2p*°+38, then
(3.40)  palp, k) < 2g¥ 9+ 3g, +1/2
if —1 48 o k-th power residue: |
(3.41) 92(p s To) < dgi*p -8y, -1

if —1 is a k-th power non-residue.

Prootf. Let p be > 257. Assume that the theorem is false and let J
be defined as in Theorem 2. Let
(3.42) dgyy (@+1)gyy ooy (d4+f—

be the integral multiples of ¢, contained in .
By the same reasoning that was used in the proof of Theorem 2 the

integers

(3.43) d, d+1, ..., d+Ff—1

form a sequence of f consecutive kth power non-residues,
Also, of course, f= [(2g9,—1)/¢g,] it —1 is a kth power residue, and
F=2Tg.—1)g,] i —1 is a kth power non-residue.

As before, g, < gll/éj—o +2¢,+1 implies that *
(344) @4 f =1 < (p+g~1)fg: < (0 +9:V2p + 2,) [2p™° < (g, — 22

- singe it is well known that g, < p”", and so there exizts a positive integer a -
‘such that :

(3.45) < d< a+f— l<(a+1)

Define b1y 1o, the interval 4, and the subintervals 4, and 4, asg in
Theorem 2. Recall that #, = l"(a,—}-‘?)”z] and, that #, < [a"2] It iz easy
to verify that ¢+1-4-# < g, and so, of course, w41 -1, << ¢s.

However, a new and useful fact is available fo us if g, > 29" 43,
Namely, we elaim that

(3.46) 2[(a+2y"+1<yg and 2[@*]+2<g,.
For if p > 512,
(347) (=10 <Pl = a—1 < (p/20")" = a2 < (p¥ /2.4 3
= 2(a-+2)"" 42 < 2((p¥F2') £ 3] 42 < 2¥p L T2 < g,
since

((p2/5/21I2)+3)112 < (1_11/5/2”4) +3/4 if P 287

Clearly (3.46) follows from (8.47). ‘
Subdivide the interval 4, by the integars -

(3.48) (@+lfp—od (v =0,1,...,1).
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As before, (a+1)2—o? can only be a kth power non-residue if at
least one of its factors a-+-14% or e+1—wv is a multiple of ¢,. Unlike
before, if either a+1-+v or a--1—2 iy a multiple of g,, then, by using
(3.48), we can show that neither a+1+('u+1) nor a-+1-—{v4+1) can
be multiples of ¢,.

For if a-+1+v is a multiple of ¢,, then ( -1 ~\-~'u)—(a, 41— {0 +1))
= 9041 2 +1 = [(a+2)*]+1 < g, by (3.46), and s0 a-+1— (p-+1)
cannot be a multiple of ¢,. Obviously a1+ (v--1) is not a multiple
of g, either. Similarly if'e¢ 41— i3 2 multiple of ¢,, then ¢-4+1 -4 {v-1)—
—{p-1—v) = 2v+1 < ¢, so that a-}1-(v--1) i3 not a multiple of g,
and, of course, a-+1— (v+1) cannot be cither. It follows that at least
every other (rather than every third) integer of the form (a41)2—o?
(w=190,1,2,...,%) is a kth power residue. Consequently, the maximum
number of mteger lying between kth power 1esn:1ues of the form (3.48)
cannot exceed :

%) — ((a+1)2— (v +2)2) 41 =403,

(3.49) ((a+1)—

Thus, in the interval 4,,

(3.50) Fdt +3 <4(a+2)"+3 < 4(a') +5,

for a1 > (Blg)? = a-+1 > p"* (ginee it is well known that g, < p'?)

= 4= 4 sinee p = 257.
Subdivide the interval A; by the integers

(3.51) ata+1)—o(v-+1) = {a+1+v){a—v) (v =0,1,2,..,18).

Analogous to the previous argument we can show, using (3.16),

that if either of the factors 4-+1 - v or o — v iy a multiple of ¢,, then neither

of the factors {a--1+4(v-+1)) nor {a—(2--1)) can be multiples of g,.
Tor if a-~L+2 is a multiple of gy, then (e--1-Fv)
=002 2+2 < 2[a”2] -2 < gy by (3.44). ‘%imil-m rly, it @ - is o mul-
tiple of gy, then (@-+1-4(-+1))~(6—0) =20+ 2 < g,.
It follows that the maximum number of u]tvgww lying between
kth power residues of the form (3.51) eannot execed

(3.52) (a2 @~ (0% 1)) —{a% - 6 — (V2 + By 4 6)) -+ 1w Lo 455,
Thus, in the interval A,
(3 83) - £ < Ay B < 4 (@) -5,

and so f < 4( 112) 4+ 3 in the cntire interval A.
' Now, it —1 ig a kth power residue,

(3.54) E o -f/ i 29’5“”_1-/9'1] > (20 —1) g} —1.

icm
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Also
a* < plygy > oM < (plo)"™

It follows that

(3.55) (29, ~1)/gr < 4(a"*) -6 = 29, 1 < 4g¥p" | 6g,

= gy < 2gMpYE 1 39, 11 /2.

The confradiction establishes (3.40) for p > 257. If p < 257, Theorem 3
is vacuounsly true since g, is never greater than 2p™*+3, For if p <31,
then g, <t p'* so that g, < 5, but 2p”5w+ 3 >5. If 37 < p < 257, 2p1’5+3
> 7, but it is easily checked that g, < 7 using, e.g., Nagell [14] and well
known bounds for g,(p, 2).

If —1 ¢ a kth power non-residue,
(3.66) Fz Ug—1)]g:] > (g2 —1) /) -
Turthermore, :

(6=1F < plgs = (a—1) < (pjg,)™.
Now :
4(a'®) 45 < 4(a—1)" 17  since a4,

It fouows that _ _ ‘
(8.57) (92 —1){n < 4(a=1)"48 > g, < dgitp" 48y, +1.
The contradiction establishes (3.41) for p > 257 and, as noted, the theorem
holds vaeuously if p < 257.

- COROLLARY 1. For every k> 2 and every p such that (%, p—l) 1,

(3 58)  galpy k) < 2p"R(3.900gp) +11.Tp  logp +if2
if --1 48 @ k-th power residue, and '
(3.59) 2(p, Fy < 4p™*(4.7log p)** - 37.6p " logp +1

if —1 48 & k-th power non-residue.
Proof Noting that Norton [15] has shown that the coefficient 4.7

“in (3.39) can be replaced by 3.9 if —1 is a kth power residue, the. proof

follows immediately from (3.39), (3.40), and (3.41), together with Theorems
1 and 2.

Remark 3. Norton [15] has aiso given the specific estimate
(3.60) ' (25 k) < (pFlogp)”
where - :
_ B =exp{—1+o~'+6/logp +20/log*p}.
(3.80} is sh@rper than (3.39) if v > 38 and p iz larger than a caleulable

constant ¢ (depending on »). Correspondingly, Corollary 1 can be improved
if » > 3. In fact, 1L follows from (8.60) that if v = v,(p) = 13 and p > “¥,
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then g4, (p, k) < p"* and, consequently, g.(p, %) is bounded by the quadratic
polynomials in "%, (3.17) and (3.18).

Remark 4. Although, in theory, elementary methods similar to
those used in Theorems 1, 2, and 3 are applicable to ¢,, » > 2, the addi-
tional complications, even for g,, are overwhelming.

We remark that it follows immediately from an elementary result
of Rédei ([16], p. 151) that for each integer » 2 1 there exists an integor m
such that for every “sufficiently large® prime p with g, (p, 2) > m, g,(p, 2)
< 9y 15/1/.73". In fact, g,(p,2) < 2Vp/V3 for evary “gufficiently Targoe”
prime p in the arithmetic progression ax+-b whers ¢ =4-2-3:5-7-11+m
and b= 1 since for every prime in this progression, ¢,(p, 2) > m. There
are, of course, infinitely many such primes sinec {a, ¥ = 1, Unfortuna-
tely, however, this still leaves us a long way from showing that g,(p, 2)
< 21/5 /1/3- for every “gufficiently large” prime. In the mnext seetion
we turn away from eclemenfary methods, and we see that g,(p,k) =
- O(plogp) for all “gufficiently large” p for which ¢, ..., g, , assume
preassigned values.

4. O-estimates. I follows from Wang's result (1.2), and Theorems 1
and 2, that for cach » 2= 2 and all “sufficiently large” p,

(4.1) ga(p, k) < 6p>° -+ 21p"° 437 /2
if —1 iy & Bth power residue;
{4.2) Galp, k) << 129" - d2p'° 4 43

it —1 iz a kth power non-residue.

Our purpose in this section is to improve (1.1}, (4.2}, for “large” p
throngh the nse of the lemmas in Seetion 2, Burgesy’s result (1.13), and
Weang’s results (1.2), (1.3), and (1.4).

- (3) galps k) = O;(p™¥) if w2y
©(4d) galp, &) == Op(p™™ ) f w21, »
(4.5) Go(p, B) = Qg (pMvilmsiome - 2filopn)dy iy gy o,

Proof. Tmmediate from (1.2), (1.3}, (L4}, (1.13), and Lm:nmu 23
logp in (113} is, of eourse, swallowed up by »" sinee logp = o(p).
Comapubing several valucs of a,, we obtain,

ay = 378354 ...,
362332 ...,
= 356093 ...,

......

=
et
[

F
i

icm

(£.7) go{py k) = Oa(PUHd)
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If v > ¢%, (loglogy+2)/4loge < 04164 so- that

(4.6) go(p1 k) = O0,(p"*)

where b, = 1/4 4 (loglogv-+2)/4logw < .29164.

In fact, veplacing 6 by 4/2 in (4.5), and noting that there exigts a-
7y > ¢ such that (logloge,+2)/4logn, < §/2, we immediately obtain the
following theorem for “large™ w.

THROREM b. Lel w, be any integer v, Then for all “sufficiently
large® p with (&, p—1) = vy, :

for each 6> 0.

The following theorem is very useful when g, ,(p, ¥), » = 2, is small
and an upper bound for g,(p, k) is sought.

TruworeM 6. Let b be a positive inleger = 2. Then there exvists Po such
that if p is any prime = p, for which g,_(p, k) = b,

(4.8) 9a(p, k) = O(p""logp).

Proof. Immediate from (1.13) and Lemma 3.
Some illustrative applications of Theorem 6 are given below.
I v, (p) = 2, then
(4.9)  go{p, k) = O(p"logp) if p = £1 (mod 24)
(£10)  go(p, k) = O(p"*logp) i p = 45 (mod24) since g, = 3;

ginee g, < 5,

if o,(p) = 3 and p = 2% 27y% then

(4.11) ga{p, k) = O{p"*logp),
sinee g, = 2, ete,

Remark 5. X. XK. Norton ([15], p. 26) suggested that the method
nsed in obtaining the specific estimate (3.39) may generalize to yield an
admissible value for the implied absolute constant in (1.13). Obviously,
this would give fresh signifieance to Theorem 6 since examples of the
type (4.9), (4£.10), and (4.11) would become specific estimates.

Finally, we note that a number of conditional results for g:(p, k)
sharper than (1.2), (1.3), and (1.4) have been given, and becanse of the
nature of Lemmsa 2, thege obviously lead to conditional improvements
of Theorem 4. For example, Linnik [13] has given a specific function
f(e) ruch that for each &> 0 and all sufficiently large ¥, there are atb
most f(e) primes p in the interval [N°, N] for which g.(p,2)> p°
Ankeny [1] has shown that, conditional on the truth of the extended
Riemann hypothesis, g,(p,2) = O(log?p).
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Lemma 2 combined with Ankeny’s result yields the following con-
‘ditional result.

THROREM 7. If the extended Riemann hypothesis is true, then for oll p

and T, ‘
(4.12) _ go(p, k) = O(p*"log?p).
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