116

18]

(9]
110]
[

Taano Metsiinkyli

icm

A. A. Kiselev, dn cxpression for the number of classes of ideals of veal quadratic
Fields by means of Bernoull numbem (Russian), Dokl, Akad., Nauk B3S8R 61
{1948), pp. TIT-T79.

T, Metsinlyli, 4 congruence for the cluss number of a eyclio field, Ann. Acad,
Sei. Tlenn., Ser. A I 472 (1870), pp. 1-1L

I. 8h. Slavutslky, The simplest proof of Vandiver’s theovem, Aeta Arith. 15
(1969), pp. 117-118.

H. 8 Vandiver, On the first factor of the cluss number of & (-yc[ntomm Jteld,
Bull. Amer. Math. Soc. 25 (1819), pp. 458-461,

UNIVERSITY OF TURKU
eSF-ZOSDO Turkn $0, Einload

Reoeived on 10, 2. 1973 (256)

ACTA ARITEMETICA
XXIIT (1973)

On pairings of the first 2n natural numbers
‘ by
G. B. Hurr (Athens, Ga.)

 Introduction. In proposing a research problem [2], Mok-Kong Shen
and Tsen-Pao Shen noted that the first 2n positive integers may be group-
ed in » pairs, (&, b)), {@s, Bs), ...y {0, B,), With @; < b; and conjectured
that for » > 2, there exists a pairing sach that the 2x numbers &+ a;
and b, — a,; are all different. We say that a pairing of any 2n distinet posi-
tive integers i3 accepiable if these conditions are satistied.

A program devised by Mr. James €. Fortson for an IBM 360, Model 65,
has produced all acceptable pairings of {1, 2,...,2n} for n < 9. The
printout shows that if A (n) designates the number gf acceptable pairings
of {1,2,...,2n}, then A(1) =1, A(2) =0, A(3) =1, A(4) =8, A(5)
=22, A(8) =51, A(T) = 342, and A (8) = 2669. This suggests that the
difficulty in an existence proof stems from the fact that too many accept-
able pairings exist for large values of » and that the problem may he
simplified by pufiing on additional conditions.

M. Slater [4] has suggested that the Shen problem be attacked by
requiring that 1 s a; < » and conjectured that acceptable pairings satis-
fying this condition exist except for » = 2,3, or 6. D. A. Klarner [1]
noted that the Slater conjecture is related to the “problem of the reflecting
queens” and used. results of M. Kraitchik to construct all favorable exam-
ples forn = 4, 5, 7, and 8, J. . Sebastian [3] used a computer to construct
a favorable example in each of the cases » =9,10,11,..., 27,

If K., is a set of 2n distinct integers, a pairing of Km is 8 collection
of pairs {(a;, b;)] ie [1, n]} such that a; < b; for all ¢, {a;; b;} = K., and
each element of K,, occurs in some pair. A pairing such that each of the
sets {b;+ a,} and {b,— a;} iz a complete residue system, modulo n, is a good
candidate to be acceptable. In this paper the Shen question is given an
affirmative answer by studying pairings such that

(*) each of the sets {a;}, {b;}, {b;+ a3},  {bi—a;} s 2 complete residune

and system, modulo =,

(#) b; = 2a,, modulo #.
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For any » which is relatively prime to 6, there is a unique acceptable

pairing of [1, 2n] satisfying (%) and (4). For » sufficiently large, this

pairing €, can be modified slightly to construct acceptable pairings of
[1,2n] for n of the form 6%k-+2, 6%k+3, 6k, and 6k+44. Descriptions of

acceptable pairings for the early cases are provided.

In the first seetion, two sequences a, f of zeroes and ones are defined
and studied. Specific properties of pairings satisfying (*) and (#) are
exhibited in the second section to simplify the proof of the main theorem,
and ity consequences. '

In addition to the uswal notation: for two positive integers s and ¢,

[#,%] = {g] 4 is an integer, & 4 <5 i};
{e,f> = {¢| i is an integer, e << i < f},

where ¢ and f are non-integral rational numbers. The symbols e, 1] and
[s,f> have the obvions meanings.

1. Two sequences of zeroes and ones. The construction of acceptable
pairings of [1, 2n] for » and 6 relatively prime depends on the properties

. of two sequences of zeroes and ones, o and f.

Llor n and. 6 relatively prime, the sequences o amd f§ are defined om
= [1, n/3) by the gquations A; and By, where for each ie D, A; and B,
are given by:

i | 4 ds odd t 48 even
4, a(i) =0 [ a(l) = 1—§(i/2)
i te{nf6, i3> | iel{n/9, n/6)
B BE@) =1 | B{i) = a(i)
i e [1,m/9)
B; B(2) = L4{a(i)—1)(8(3i) — a(3i))

Launma 0. For every ie D, the equmﬁwns Ay, By define a(i) and (i)
as integers such that 0.< a(l)< pi) < 1. Furthermore for 'te (1, n/95,

()4 a(d) 5= B(34) — a(87).

The proof is based on a decompomlon of D into disjoint \4ubse1;ﬁs
D=D,uD,uD,U..., where = {4 teD and ¢ == 24, iy odd}.
(S.,,)_l_’ f for every te Dy, a(4) is defined by Ay and a(i)e {0, 1}, then for every

ie Dy (n 3™, n (3%, B(4) s defined by By as an nteger and a(i)

<A <L

The proof is by induction on ».

(8,) Consider ie Dy {n/9, n/3>. If te{nf6, n/3>, then B, defines
Bli) =1 and «(i) < f(3) = 1 since a(i)«{0, 1} If de {n/9, nj0>, then By
gives f(i) = afd), ﬁ(fa) 18 an integer a.nd aldy = (i) g 1.
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(S1) = (Sp.41) Suppose now that for i« D, N (n (3%, n[8%), B(i) is defined
by B, as an integer and a(i) < A(i) < 1, and consider je D, N {n /3’“rz n 3541,
Tt follows that je [1, n/9), 335D1n<ﬂ/3’”+1, #/3% and by the induction
apsumption, #(3j) is defined by By; as an integer such that a(3j) < 8(3j) < 1.
Then §(37)~a(3§) e {0, 1} and from B; for je[1, n/9>, (j) is defined and -
BUY =1 or B{j) == a(j). In either case, f{j) is an integer and a(j) << #(j)
=1,

Since for each ie D, there is a v such that {e {n /3", n/3%, this may
be restated:

{0.1) If for every ic Dy, a(i) is defined by A; end a(i)e {0, 1}, then B(1)
is defined by B, for every i e Dy, B(i) 48 an integer vmd 0 a(a ,8(7,) =1,

{0.2) For any t, the equation A, defines a(i) for every ie D, and a(i)e {0, 1}

The proof is by induction on i

For t = 0, the equation A; for ¢ odd defines a(i) = 0.

Assume now that for every i e Dy, a(i) is defined by 4; and a(¢)e {0, 1}.
Then by (0.1}, for every ie Dy, f{¢) iz defined by B; and g(i)e {0,1}.
Consider je Dy, ,. Then j is even, j/2 ¢ Dy and by the induetion hypothesis,
B(ij2) is defined by B;, and £(j/2)e {0, 1}. It follows that a(j) is defined
by 4;: a(j) =1—F(j/2) and that a(f)e {0, 1}.

Singe D = D, uD, UD, U ..., the first agsertion in Lemma 0 follows
from (0.2) and (0.1). Since for i« [1 /9%, A(3¢)— a(3i)e {0, 1}, the second
asgertion. follows from B; by considering these two cases.

As with sine and cosine, a host of identities may be worked out for
a and f. Usually, only the defining properties are needed in this article.
However, more specific information is required in the proof of Theorem 5.
These properties are listed below.

CorOLLARY 0. For the sequences a and fi,

(0.3) ie 1, [0, ali) = a(3) = 0 — B(5) = 1— B(30),
{0.4) be Dy ald) =0,

0.5)  ieDyn[1,n/9) > B(i) =1—p(3i),
{0.8) i€ Dy M1, 09 —» a(i) =1—a(B4),
{0.7) te Dy s NEnf9, 0l3> - alt) =1,

{0.8) te {n[2T, n[9) - a(i) = 0.

The non-trivial proofs are indicated below.

The statement (0.4) is proved by induction on s. For s == 0, this is
simply 4, for i odd.

Suppose then that «(i) = 0 for all ie Dm and consider je Dypq).
‘Then j == 4m, where {m, 3m} < Dy, and a{m)= a(3m) = 0 by the induc-
tion hypothesm
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T¢ Sme(nf6,nj3), then by By,, #(3m) =1, and from w(3m) = 0,
p8(3m)—a(d3m) =1 and by B, f(m) = a(m). Bince a{m) = 0, f{m) = 0.

Then A,y gives a(2m) = 1 and a{2m) < f{2m) gives #(2m) = 1. Finally,

B(@m) = 1 and 4, gives a{f) = a(dm) = 0.

Indeed, even if me [1, #/6), f(m) = 0 -+ a{dm) = 0, as above,

There remajns the ease in which 3me [1, n/6> and f(m) = 1. In this
case, Bme D. By a(m) = a(3m) =0 and (0.3), #(3m) = 0 and by Agms
a{6m) = 1. Bince a(bm) < f(6m) <1, f(6m) == 1 and g{6m) ~ u(6m) = 0.
By Byuy f(2m) =1 and from -A-xlm: Gﬂ(j) = 1—[3(21‘”) = {,

The statement (0.7) follows from. two obsoervations:

(2) e Doy N20JI, )35 — ali} = 1,

Proof. deDy_,n2n/9,0(3) = i/2¢ Dy o 0 {M[9, n[6>, a(if2) =0
by (0.4) and hence f(i/2) = 0 by By,. Then «(i) = 1 by A,.

(b) te Doy N<0[9, 20[9) — ald) =

Proof. ie Dy yn{n/9,2n/9) implies that 3if2e Dy, N {n B, 03D,
that a(3i/2) = 0 by (0.4) and §(3i/2) = L by By,. Thus B(34/2) —a(34/2)
=1, and §(¢/2) = a(i/2) by B,,. But i/2¢ Dy, and «(i/2) = 0 by (0.4).
Hence 3(¢/2) =0 and a{i) =1 by A,.

2. Special pairings of [1,2n].

Lavma 1. If nods odd and Q, = {(a;, b,)| ie[1,n]} 48 a collection of
pairs such that {a;, b} < [1,2n] and a; =4, b; = 2, modulo n, then @,
8 & pairing of [1, 2n] if and only if

(11) ie (2, n] = (a, b) = (5, 24),
(1.2) _ 348 odd — a; = 1,
(1.3 ie [1,n/2 —a;<b; and bybay = di-+n.

If @, is a pairing of [1, 2n], then a; < b; for all 4 and no'a; is equal
to-a b;. :

For ie (nj2,n], a; = ¢ and b; == 2, modulo # and {a;, b;} < [1, 2n]
imply that a;e {i,i+n} and bye {2i—n, 24} For i<n, 2—n=i and
t+n 24 Hence a; < by implies that (a;, b,) = (1, 24).

‘Thus for any pairing of [1,2n] satisfying the property e, =4 and
by= 24, modulo , it follows that (a;, by)e {(4, 24), (i, 26+ n), (i-4-n, 2i--n)},

that by—aye {3, i-+n} and that b+ aye {31, 3¢ --n, 34420}

It 4 ds odd, then (i+n)/2¢{n/2,n] and by (L1) bypp = -7
Since age {i,i-+n} and ¢, is a paiving of [1, 2n], dy =t -1 and a; = i

For any pairing, a, < b, and this holds in particular for je [1, nf25.
Algo for de[1,n/2), aye{2i,2-+n} and bye {2d, 2{+n} and a, = b,
gives ay b, = 4i--n. - o

Conversely, for any collection @, with o; =14 and b, = 24, moedulo- v,
and {a;, b;} < [1,2n] which satisties (1.1) and (1.3), a; < by Ifmell,2n]
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and m =4, modulo », where 4 is odd, then me {4, i+n}. If m = 4, then
mo= a; by (L.2) and if m = 49, m = by g, by (1.1). If m = 4, modulo =,
where ¢ is even, then by (1.3) a;+b, = 2640 and m = a; or by,. Since
each me [1, 2n] oceurs in a pair of ¢, @, is a pairing of {1, 2a]. For any
such pairing, '

1.4) CIE de{nfd,n/2> —~ b, = 2¢-}n.

If ie{(n/d,n[2), then 2ie{n/2,n> and, @y =2¢ and b, = 2i+n
from (1.3).

For these pairings, b;—&; =i and b;4a; = 3{, modulo #. If # and
three are relatively prime, then no two sums or differences are congruent,
modulo %, and the swms are distinet and the differences are distinet.
We might well ask what additional conditions are imposed by reguiring
that €, be acceptable. Instead, it turns out that an apparently milder
condition yields enough information.

Luvua 2. For n and 6 relatively prime and P, = {(a;, b))} a pairing
of [1,2n] such thai a, ==1i and b; = 24, modulo n, and b,+a; # by;~— ay;
for 4e[1, n]3>, then

@1) (b @y —30) (by— ay—4) = (b; 26 —m) (byy— gy — 3 — 1),
(2.2) te{nf6,nf3> = b, = 2i+n,

(2.3) O Gen/3,mf25 > a =i,

(2.4) - ie (9, niBd by = a;+i.

Suppose that b;+a; £ by;—ay; for all de[1,n/3). H by—ay = 31,
then b; 4 a;e {374 n, 37-+2n}, In either case, b; = 2¢-+n and (2.1) is true.
I by;—ay = 3i+mn, then b4 a,¢ {34, 3i+2n}, in either ecase b, = a;+1,
and (2.1) is true. : _ _ :

For (2.2), note that 3ie (#/2, n) and apply (1.1) and {2.1). For (2.3)
and ¢ even, note that ¢/2¢ {n/6, n/4)> and apply (2.2) and (1.3). For (2.4),
note that 3ie<{n/3, »/2> and apply (1.4), (2.3), and {2.1). _

The essential usefulness of Lemmag 1 and 2 in the sequel is that
statements that integers are not equal are replaced by equations. These
equations simplify the arguments to be made below.

3. The construction of acceptable pairings of [1, 2n] for n > 2.

TomoreM 1. If n ond 6 are relatively prime and P, = {(a;, b))} is
o pairing of [1,2n] such that a; =i, by =24, modulo =, and. b;4a;
# by — @y, then P, 18 the union of

{(e‘,2a;+ﬁ)| iedni3, nf2d} U{(s, 20)| ic{nf2,n]}

. and

{{i+nal), 2+ np())] i (L, n/3)},
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where a and § are the sequences defined above. Moreover, the above pairing
18 an accepiable pairing of [1, 2n).

From (1.1), it follows that for ie {n/2,nl, (a; b;) = (¢, 2¢) and from
{1.4), (2.2), and (2.3} that (a;, b;) = (¢, 2¢4-n) for iec (n/3, n/2).

or ie [1, n/3), (a, b) = (i+nA(i), 2+ nu (i), where A(3) and u(i)
are integers and 0 < A{d) < p(d) < 1. Noie the following implications of
Temmas 1 and 2

{1.2) — TIf ¢ ig odd, then A{i) =
(1.3) = If ¢ is even, then w(i/2)4A() = 1.
(2.2) = If 4e (n /6, n/3D, then p(d) = L.
(2.4) = If e (nf9, n[6), then u(d) = A{i) ‘
(2.1) - If i< [1, n/9, then u(d) = L4-(A(4) =1} (u(3i) — A(31)).
Thus A and g sabisfy the definitions of ¢ and 8. For ie [1, n /8%,

(@, b;) = (i +na(i), 2 -FnBli ).

This pairing will be designated by €,. A check show that €, satisfies
the condifions of Lemma 1, and is thus a pairing of [1, 2n].

For all je[1,n], it ig easy to sce that b;—a, < 3n/2 and that for
te (nf3, n], b;+a;,> 3n/2. Hence, if there is an ¢ and a j such that b,+a;
= bj— iy G € [1 n/3y. Also b;+a; = by—a; implies that 3¢ = j, modulo »
and since 34 < n, that 37 = j.

Now consider 1e {n/6,n/8> 8o that b, = 2i+n and b;-4-a; > 31 --n.
In this case, 3ie (n/2,n> and by-—ay = 34 Ience b+ a; = by— ay.
... Consider ¢e {n/%,n/6) so that b,-a;e{34,37+24}. In this case
Bie(nf3,n/2) and bg— ay = 30 +n. Hence, by a; 7 by — ;.

Finally, if i<[1,n/9), b;+ea; = by~—~ay, implies that f(3)-Fa(i)
= B(3i) — a(34) and this contradicts Lemma 0.

Thus no sum of a pair in 0, is equal to the difference of a pair in C,,.
Bince the set of suims [chﬂerences] is & complete remdue gystem, modulo
7, O’ iy acceptable.

This is an illustration of the familiar expenenee, that an oxistence
proof iz most easily constructed when there is a unique affirmative example.

It is possible to give explicit formulas for the sequoences « and g, butb
it is neither interesting or useful. For # less than a hundred, o and 8 arve
quickly computed from the defining equations and these latter are all
‘that is needed in the later arguments, (Dxeept in the proof of Theorem. G,
which does require Corollary 0.)

Aceeptable pairings of [1 2(6k-211 fom, k> 0.

THROREM 2. For n =1, modulo 6, and n> 7 and O,, the pairing of
~ Theorem 1, let

O = O N((n+1)/2, n+1))
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and let
Q@ = {((n+1)/2, n+1+na(2)), (m-+14+n8(1), 2n+2)}.

Then C,_; v Q is an acceptable pairing of [1, 2(n-+1)]

Since a(2)+p(1) =1, ¢, , U@ is a pairing of [1 2(n+1)]

As a subseb of the acceptable pairing C,, ¢, , is acceptable and it
may be checked that ¢ is acceptable for » > 7. It remains to show that
no sum or difference in @ is & sum or difference in C,_;. Since no two sums
[ditferences] in C,_, are congruent, modulo #, to show that an integer m
is not equal to a sum [difference] in C,_,, it is sufficient to exhibit a sum
[difference] in €,_, which is congruent, modulo #, to m and is not equal -
to m.

The sum 3n-+3+4-nf(1) is not equal to & sum or difference in C,_,.

Indeed, the greafest sum in (,_, is 3x.

The difference n+-1—nf(1) is not equal to a sum or difference in C,_

In Gy 1, 0;—a; = nf(1)+1 and this is not equal to n—l—l-—nﬂ(1)
Since » = 1 modulo 6, (21n+1)/3 is an integer and

blantyyst+ Cponinys = 20+1 > n+1—nf{1).

The difference (n--1)/2 +na(2) is not equal to @ sum or difference
in Oy ;.

Since C,_, is constructed by deleting ((ﬂ—\—l) 2, n+1) from C,, there
i8 no pair in €, _; for which the difference is congruent, modulo #, to
(n+1)/2+na(2). Since » =1, modulo 6, (Bn-+1)/6 iz an integer and

bisnine+ Caninys = (Br+1)/2 > (0+1)/2 +-na(2).
The sum (3n4-3) /2 +-na(2) is not equal to o sum or difference n d,_,.
Sinee » is odd,
(n+3)/2e<{nj2,%] and b(n+3)/2_“(n+3)/z = (n+3)/2,

which is less than and congruent to (8n43)/24na(2). Since O _1 was
constructed by deleting (( ( n+1)/2, n—]—l) from @,, there is no pair in C,_
whose sum- s congruent, modulo #, to (3n-1-3)/2 + na(2).

Acceptable pairings of [1,2(66+3)].

TomoreM 3. For n =1, modulo 6, let O, and C, +1 be the acceptable

- pairings of Theorems 1 and 2. For n =13, theae exists an integer m such

that
(3.0) m = 0, modulo 3;
(3.1) &y = MWy Fmrsys = (m+3)(3 in Oy

{3.2) me {(n-+8)/4, (5n-+24)/12).

2 — Acta Artthmetica XXTII.2
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For any such m,

H,yo = (O N(my 2m+0)}) U{(m,204-3), (2m+n, 20 +4)}

i8 an acceptable paiving of [1, 2{n-2)]

TFor n = 13, 19, 28, 31, 37, and 43; m = 6, 9,9, 12,12, and 18, respec-
tively satisfy (3.0), (3.1), and (3.2). Tor n = 49, (bn+24}/12—nf3 > 6,
and there is an m such that m =0, modulo 6 and me {n/3,n/2> N
N{(n-+8) /4, (Br+24)/12>. Such an m satisfies (3.0), (3.1), and (8.2).

It may be checked as in the proof of Theorem 2 that H, ., is a pairing
of [1,2(n+2)] and is acceptable. Theorem 3 furnithes an acceptable
pairing of [1, 2(6k--3)7 for k= 2.

Finally, for [1,2-3] and [1, 2-9], acceptable paivings are given by

{(2,3), (1,8), (4,6)}
and .
{(1,12), (2,18), (8,15), (4,11), (5,14), (6,16), (7,10), (8,13), (9,16)}.

Acceptable pairings of [1, 2(6%k)] for all %. The pairing
{(1,10), (2,8), (3,4), (5,7), (6,11), (9,12)}

ia acceptable for [1,2-6].
For ke [2, 8], there iz a unigue acceptable pairing of [1, 2(6k)] of
the form

{(a, by}l de[1, 6k, a; =4, b; = 2¢—1, modulo (6%--1)}.

This may be verified in each of the seven cases by nsing the ideas of the
proofs of Lemmas 1 and 2.
Tor I == 9, acceptable pairings of [1, 2(6%)] are given by the following:
THEOREM 4. Let n = 5, module 6. If n > 53, there is an m such {hat
m = 2, modulo 3, and e {(bn+12)/6, (Bn-18)/9>. For such an n and m
and O, the pairing of Theorem 1,

Hyoy = (CN{(my 2m)}3) O {(m, 2n+2), (2m, 20 +1)}

i an acceplable pairing of T1, 2 (n+1)].

For » = 33, m = 47 gatisfies the conditions of the theorem. For

= 39, (8n-+18)/9—(5n--12)/6 > 3 and there existy an wm which Is con-

gruent to 2, module 3 and satisfies the required inequality.

Using the methods of Theorem 2, it may be checked that H,., is
a pairing of [1, 2(n-+1)] and ig acceptable.

Acceptable pairings of [1,2(6k44)] for all k. Ror &z 74,
acceptable pairings of [1, 2(6k+4)] are given by the following:
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THEOREM 5. If n =5, modulo 6, and n > 449, there i j
: ; = 449, 18 an odd § such
that 6je {(11n-+9)/36, (4n—3)/12>. For every such j and O, the pairing of

Theorem 1, the pairing H,_,,
(O8] + 7, 12 +m), (n—1[2, 20 1), (n, 20)}) U{(m, 6 +-n),
| | | (n~1/2, 12j +-n)}
is an acceptable pairing of {1, 2(n—1)].
For m = 449, 6:23 ¢ ((11-449-10)/36, (4-449—3)/12)}. For n > 455,

{4n —3)/12 ~ (111 +9)/36 > 12 and there is & g such that ge {(11n4+9)/36,

(4n—3)/12> and g = 6(2s4-1).
As in Theorem 2, it may be checked that #. i iri
n-1 18 a pa
[1, 2(n—1)] and is acceptable. ' pairing of

Using a program devised by B. J. Williams, pairi :
of the form ) Prrings of L, 2(0k4)]

{(a:; )] @, =14, by = 2i—1, modulo (6%-+5), ie[1, 6% 47}
were checked for %« [4, 73] by the IBM 360, Model 65. The printout shows
that for each % there exists one and only one acceptable pairing of this
T'.ype, except for ke [9,13] U[B5, 61] and that in these latter cases there
iz none. ,
Theorem. 5 provides an acceptable pairing of [1, 2(6k4-4)] for

ke BT, 61] since 6-19¢ ((11n+-9)/36, (4n —3)/12> £
365, 371} s (4n—3)/12) for me {347, 353, 359,

Fa.vorable examples for ke [9, 13] U {55, 56} are listed below:

i, - {0s\{(87, 59), (28, 56)}) and
{(28, 111), (56, 115), (57, 113), (59, 116), (112, 114)}.
H,,: (Ca™\{(63, 65), (31, 62)}) and
{(31, 123), (62, 127), (63, 123), (65, 128), (124, 126)} .
', (Cor™{(69, T1), (34, 68)}) and
| {(34, 135), (68, 139), (69, 187), (71, 140), (136, 138)} .
a,: - (CN{(T5,77))) and
{(148, 150), (75, 149), (77, 152), (147, 151)}.
,,: _ (Cos™{(81, 83)}} and
{(160, 162), (31, 161), (83, 164), (159, 163)}.
Hy: (Coas \{(166, 332)}) .and '
{(166, 663), (332, 667), (864, 665), (666, 668)}.
T (Casr™{(169, 338)}) and

{(169, 675), (338, 679), (676, 677), (678, 680)}.
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Of course, for & < 4, acceptable pairings have appeared in tho articles
of Klarner and Sebastian.

The construction of acceptable pairings of [1, 2n] when and 6 are
not relatively prime is not really so unnatural as it might appear. For
example, in the case when # is of the form 6k+-3, it is natural to ask:
Is it possible to delete a pair of the form (m, 2m +n) from the acceptable
pairing €, of Theorem 2 and form an acceptable pairing of [1, 2(n +-2)]
by pairing m with 2n-+3 and 2m-+# with 2% -+47% Examination of this
question does lead to the conditions of Theorem 3.

Of course, it would be mice to have a simpler solution for this simple
problem of the Shens.

It has recently come to our attention that J. L. Selfridge [5]
announced a different solution in 1963.
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Some estimates in the theory of Dedekind Zeta-functions
by
W. 8rad and K. WIERTELAK (Poznamn)

1. Denote by K an algebraic number field, by » and 4 the degree
and the discriminant of the field K respeetn‘rely and by {x(s), &8 = o+t
the Dedekind Zeta-function (see [27).

The function {x(s) is defined for o > 1 by the absclute convergent

geries o
2 Fn)n*

where F(n) denotes the number of ideals of the field K, having the norm
equal fo n.

The funetion {x(s) can be continumed over the whole complex plane
a$ a regular function, except s = 1, where there it a simple pole.

In the region o> 1

{x N
(1.1) ——(8) = ) G(n)n"?
AAPR
where
G(n) = 2 log Np
(Np)=n :
and the series in (1.1) is absolutely comrergent in this region (see [2],
p. 39).
A. Sokolovski [7] proved that {x(s)} £ 0 in the region
¢
1.2 1— 2
(1.2) . a > 10g m [t} > ¢, ?’>

where ¢, ¢, are constants depending on the field K. Theorem (1. 2) is a deep
improvement of B. Landau’s classic result, ¥ = 1 (see [2], p. 1056).

The subject of thiz note iz an investigation of the equivalence he-
tween the domain (1.2), in which Zz(s) 5= 0, and the estimate of the dif-
ference :

(L.3) D G~ = Az, K),
[

which i3 the remainder in the Prime-ideal Theorem (see [4]).



