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Of course, for & < 4, acceptable pairings have appeared in tho articles
of Klarner and Sebastian.

The construction of acceptable pairings of [1, 2n] when and 6 are
not relatively prime is not really so unnatural as it might appear. For
example, in the case when # is of the form 6k+-3, it is natural to ask:
Is it possible to delete a pair of the form (m, 2m +n) from the acceptable
pairing €, of Theorem 2 and form an acceptable pairing of [1, 2(n +-2)]
by pairing m with 2n-+3 and 2m-+# with 2% -+47% Examination of this
question does lead to the conditions of Theorem 3.

Of course, it would be mice to have a simpler solution for this simple
problem of the Shens.

It has recently come to our attention that J. L. Selfridge [5]
announced a different solution in 1963.
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Some estimates in the theory of Dedekind Zeta-functions
by
W. 8rad and K. WIERTELAK (Poznamn)

1. Denote by K an algebraic number field, by » and 4 the degree
and the discriminant of the field K respeetn‘rely and by {x(s), &8 = o+t
the Dedekind Zeta-function (see [27).

The function {x(s) is defined for o > 1 by the absclute convergent

geries o
2 Fn)n*

where F(n) denotes the number of ideals of the field K, having the norm
equal fo n.

The funetion {x(s) can be continumed over the whole complex plane
a$ a regular function, except s = 1, where there it a simple pole.

In the region o> 1

{x N
(1.1) ——(8) = ) G(n)n"?
AAPR
where
G(n) = 2 log Np
(Np)=n :
and the series in (1.1) is absolutely comrergent in this region (see [2],
p. 39).
A. Sokolovski [7] proved that {x(s)} £ 0 in the region
¢
1.2 1— 2
(1.2) . a > 10g m [t} > ¢, ?’>

where ¢, ¢, are constants depending on the field K. Theorem (1. 2) is a deep
improvement of B. Landau’s classic result, ¥ = 1 (see [2], p. 1056).

The subject of thiz note iz an investigation of the equivalence he-
tween the domain (1.2), in which Zz(s) 5= 0, and the estimate of the dif-
ference :

(L.3) D G~ = Az, K),
[

which i3 the remainder in the Prime-ideal Theorem (see [4]).
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In the cage of the Riemann Zeta-function such equivalence wag
diseovered by P. Turén (see [6], p. 150) and was also investigated by the
first of the present authors (see [5]).

2. We will prove the following theorems:

THROREM 1. Suppose that {x(s) has no zeros in the domain

(2.1) ' o> 1—cn(ltl), ¢=<1,

where ¢y 15 @ constant depending on the field K, and 5() is for t = 0 a decreds-
ing funetion, having o continuous derivative n' (1) and satisfyying the following
conditions:

(a) 0<In(t) < 4,

) 7 {t) >0 a3 - oo,

(e) 2 = O{logt) a8 §— co,
n(t)

Let a be a fized number satisfying 0 < o < 1. Then

0

{(2.2) 4w, K) <ca{ik)§i%——wﬂ)— mexp(—- c;a m(w))}, T — oo,

where w(w) is the minimum of n(t)logw+logt for t=1, and o, depends
only on o and on the function 5(1).

TamorEmM 2. Let %, (1) be a funclion satisfying besides (a), (b), () also
the additional  econdition
(d) _ m <o, for 1>

where ¢, is a sufficiently small positive number and let ar (2) be the minimum
of i (t)loga +-logt for ¢ = 1. Suppose further the estimate (2.2). Then £ (s)
% 0 in the domain :
. logt

4001og wy (log =) ’ ‘

o> 1
(2.3)

: 10 .
t > max{of,, (T:;—log([d|+1)) r |4l--1, n“l(e“’z) ,

where w7 () denotes the Sunetion inverse to w, ().

Theorer. 2 easily implies
_ TEEOREM 3. Under the conditions of Theorem 2, we have g (s) 5 0
in the region '

& > 1 . aco
(40)*

7a (£47%0),
(2.4)

10
k >mX{Gu (ﬁ’;leg(idi»ﬂ)) , 14141, n*l(e“ﬂ)}.
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_Ohoosilig M () = n(t) = 1/log"t, 0 < v << 1, we obtain from Theorems 1
and 2 the following _ : :
THEOREM 4. If v, is the supremum of the numbers v for which

2.5) Az, E) = O(zexp (- c,log’z)}

and v, is the infimum of the numbers y' for which {x(s) # 0 n the region

; - %
{2.6) 1“W: 2] = ¢,
then
1
Y1 = 147,

and the constants depend on y and the field K.
3. The proofs of Theorems 1 and 2 will rest on the following lemmias
LEMDIA 1. Let 2y, 25y ..., 2, De complex numbers such that
[zl 2. .2, |[alzl

and let by, by, ..., by be any complex numbers.
Then, if m is positive and N = h, there ewisls an integer » such that
m< r m+N, '

(3.1) 1by#h +bay+ .. D2l

Z2|l————| min {&+b,+ ... +58;].
| (4-8e2(2N+m)) s, Bt b ]

This lerma is Turdn’s second main theorem (see [6], p. 32).
The next lemmas concern the properties of tlie funetion {z(s).

LEaraa 2. For ¢ = 2,

- (3.2) Lx(s)| > K,

6 o
where K =(——) .

th
LuMmA 3. In the region —1 < o<, =00 < t< oo,

(3.3) (s =1} (s)] < Ko(lt] +1)%2
where K, = 61, | A, Ky = 3v-1-2, and ¢,y i¢ a numerical constant.
Lmwva 4. For the cosfficients G(n) of (1.1) we have the following esii-
mate: -
(3.4) G(n) < K,log?n,
where K, = »log2. o
As regards the proofs of Lemmas 2-4 see [4]. From Lemma 2 and 3
it follows that K, > K.
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Lemma 5. If 8 ——1—}-,u+1,t’ 0 < p<1/40, t' =10 and N, stands
for the number of roots of Ex(s) in the circle |s— 8| < 8u, then

oy rlog (|4 +1)¢
log (8~

(3.5) Ny <

This lemmma follows from (3.3) by the use of the Jengen inequality
(compare [6], p. 187).

Luvuma 6. Denote by V(T) the number of zeros of {x(s) in the rectangle
V<o, T<t<T+1 where 0 < 6 (&), Then for —oo < T < +o0
we have

K
(3.6) V(T) < 30~ log== (17| +4)%5.
1

Ly 7. There exists a broken line L in the vertical strip ;V?L< o

l/é 0<d< (16)2 consisting of horizontal and vertical segments alier-
nately and having the following property: if we denote by T, the ordinates
- of the horizontal segments, then for each integer m there exists only one such
T, that m << T, < m—]—l and

K
oo ’ =) <2 ologs = (|t] +5)%
1
holds for se I
If%ﬁé o< 3 t = Tm: || = 2 then
X,
(5-8) £ (5) < 2507 S00g? T (Tl 457,
K

For the proofs of Lemmas 6 and 7 see [4].

CLEmwma 8. If 0 < 6 < (5 ) l<o< 2, E>1 and 12
integer, then

2 is o posilive

)
3oy |-y P EW L

()]

grs ges
=y 2 (o—s8)**
. ¢ ¢

C . -
£-ologt T (7] +6)
< 1718716 Ky

min (1, (o — ag)"*?)

where o, = —1/6 and the sum is taken over all zaros of Epls) Tying to the
right of the lme zIn

This lemma can be proved by following mutetis mautandis Appendix V
- of [6]. _

icm
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4. We pass over to the proof of Theorem 1. Asin [1], pp. 60-62, we:
can prove that
CK

{4.1) -

LR 0(—10g2Kz(Iti+2)

in the region
1—aeyn(th) < o <1+an(fth,
1—atyn{Ty) < o< L +an(l]),

[t =Ty,
(4.2)
2] < Lo,
where the constant in (4.1) depends only on #(f) and a; T, depends on
7 (t).
From Lemma 4 and (4.1)-(4.2) follows the estimate
_@ o vtlegh(id]+1)
43) 3 (@—n&m —gfo_(m2+§—

NLT

exp{—acom (w))) .

0

The eonstant in (4.3) depends on « and n{t) only. Using the relation be-

tween Y (z—n G(fn and ' @(n)—w, we get, as in [1], p. 64, the estimate
n<n n<z
(2.2). :

3. Proof of Theorem 2 (compare [6], pp. 151-152). Put ¢
we have for n > 1

Gn) =dn, By~An—1, K)+1.

> 2. By (1.8)

Henee
(5.1) l 2 @{n) exp(——iﬂogfn,)]
’ NysnsZNy i .
<| E exp(—zﬂogn)l +[ (A(n, K} — A(n—1, K))exp(—itlogn)
Nysn<Ny ngnsNz .
. = Il‘[_Ig.
‘We choose N, N, so large that
(5.2) ol ) K N2 < N, < N, < V.
Then by '
(5.3) w1 (L4 < log (1 +#28) < log 4%
we get '

2log2(|d 1.
(B.4) 12<Glz_"’__9_g(lui)_.£

. G 1
(compare [5]).

From the estimate of I; (see [6], p. 153) and (5.3) we get

| N
(5.5) I, < o
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Hence by (5.1) it follows that

wilog?{|d|+1) N

{5.6) | Z G(n)exp(—z‘ﬂog%)ig 3 p ;

Ny<n<Ny

Suppose that
(6.7) 1< o< 3/2.

By partial summation and (5.6) we have

tlog?(|4]4+1) Nl-@
{5.8) l 3 @< o v2log (L |H1) _
Ny <na Ny % ’
We choose
(5.9) 1 = o7 (logi'e)

and apply the inequality (5.8) for

Ni=p2, Ni=got (=0,1,2..

THence

Plog*(ld|+1)  #°
{5.10 G =3 ‘ s ‘ .
(5.10) ',é (m)a < oy ; T
We chooge further
{5.11) _ £ > o7 (logihaco),

Denoting by 1 a positive integer and following [6], p. 154, we get by (5.10)
the estimate

Gm) v2log?(|d|+1) (I+1)1&~"
g pr log T < Oy a t(o‘—l)1+2 .

(8.12)

Hence by Lemma 8 with § = (&) and by (5.8) we get

{8.13)
\ Z I (EH wlog*(|4] 1)t »2logt(|4|1) & ) \
)H—"’ 13 _ (0,__%’)”-2 0(2, ’6(0’-—1)“-2
vilogh(|d|+1)¢  £°
18 & tlo1) 2"

Let us suppose now that our theorem is not true. Hence there exist

such zeros

¢ =" Hil", 1" oo,
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that
logt*

5.14 > 1
(5:14) s 4001og oy (log t**/*¢) ?

10

515) max{(allog(ldl-{—l)) , €1 It (') = 67}, ]A{—}-l}.
. 0

Pubting in the estimate (5.13)

log?" Lo -
(8.16) 8§ = 1—|— 10 Tog o (log ) +it" =gyt
{5.17) & = exp((142)3),
Where 7 :
{5.18) logt* < 142 < §logt*,

-1 Hd [y
(5.19) 1o log wr ' (logt )’

logt*

we can verify without difficulty that {5.7) a,nd.(S.ll) are satisfied. Multi- -
plying both sides of (5.13) by

1531—9*(81.... 9*}”23 == 5“1—"'(0—1_ U*)l+27

* I+2
2 (=)<
In virtue of (5.14), (5.16) and (5.18) it follows that

_ Fl4a — ¥ 142
o, —¢ — (1+ l—v¢ ) gt:k][ag.
o,—1 o —1

we have

18

»2log?(|d|+1)# sl-ﬂ*(ai—a*)m

6 & \oy—1

If the conditions (5.15) and ¢* > ¢y,(e;) are satisfied, we get by the estimate
{5.20) the following inequality:

(5.21) \ 5’ -e‘( )I+2

By virtue of Lemma 6 we get, similarly to [6], p. 156, the estimates

< t*-z,’s 51—5" .

oot ( 8— 0" )Hﬁ2 < G_iti§1—a"
£y T blag—o*) Si—¢ ¢
y gt (‘31 —¢' )l+2 G 22 g
t0>t*-_s(c'r'1_a*) f1—e :
‘ll D e (;81 =< )lﬂ g,
$—0

1Eg—t*i<6 (o —o*)
g bp<l-8(omy—at)
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Trom the above estimates and (5.21) it follows, for #* > e5(ey), that

Wi Toweg
(61(0-0'} Si—e ) 3

(5.22) V = 5— o PRV

Ifg—1*|~<.6(01—°*)
0'931-*3(61 —o*)

We estimate the sum ¥ from below by the use of Lemma 1. We
choose
8., — *
8 —¢

By =

exp(A{e—¢"),

and

(5.23) m = logt*.
The region
1-3(o,—0") < o<1, [—1"<6(o;—0c"

is contained in the circle $ 8| < 8(oy,—1). Hence denoting by N, the
number of roots of {z(¢) in this circle, and using Lemma 5 and the defi-
nition of n,(#) with ¢, == exp(—B6c;), we have, for s, = 8, = o, 44t%
_ logt*

~ 10log w7 (log t*4)

and under (5.18) and * > ¢, the estimate.

H

logt*
14

.

N, <

In virtue of Lemma 1 there exists an exponent I+2 such that

( 1 logt* )1"5‘*“"\ 1

5.24 _L1 | log¥ 1
(6.24) 486 28logf = e

From (5.22) and (5.24) it follows that

l—o* > 1 logt"
400 log w; (log™/ec)

and this contradicts (5.14). This completes the proof of Theorem 2.
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