

ACTA ARITHMETICA XXIII (1973)

Three diagonal quadratic forms

by

F. ELLISON (Talence)

1. Introduction. A well known conjecture attributed to E. Artin is as follows:

Let K denote a p-adic number field. If $f_1(X), \ldots, f_r(X)$ are r homogeneous forms of degrees d_1, \ldots, d_r in $n > \sum d_i^2$ variables X_1, \ldots, X_n with coefficients in K, then the system of equations:

$$(1.1) f_1(X) = \dots = f_r(X) = 0$$

has a non-trivial solution with X_1, \ldots, X_n all in K.

In 1943 R. Brauer [5], showed the existence of a function $\lambda(d_1, \ldots, d_r)$ such that if $n > \lambda$, then the system (1.1) has a non-trivial solution in K. The most general result on Artin's conjecture is due to Ax and Kochen [1], who used techniques from model theory to prove the following result.

THEOREM. If d_1, \ldots, d_r are given positive integers then there exists an integer $A(d_1, \ldots, d_r)$ such that every system of equations (1.1) with integral coefficients has a non-trivial solution in each Q_p for all $p > A(d_1, \ldots, d_r)$ provided that $n > \sum d_i^2$.

Unfortunately a major defect in their proof is that the function $A(d_1, \ldots, d_r)$ is non-constructive. This blemish was removed, in principle at any rate, by P. J. Cohen [7], who gave a "constructive" proof of the above theorem. However it does not seem to be possible to actually compute, say A(4) by Cohen's method in a reasonably short period of time.

Interest in the Ax-Kochen theorem was increased when counter-examples to Artin's conjecture were found by Terjanian [16] and later by Browkin [6], which imply that A(d) is greater than any given integer for a suitable value of d. Hence it is of some interest to know when the Artin conjecture is true. Prior to the Ax-Kochen theorem there were several special cases known.

There was the old result of Meyer [15], which asserts that a single quadratic form in n > 4 variables with integral coefficients has a non-trivial zero in each Q_p . Later, Demyanov [12] proved that a pair of quadratic forms in n > 8 variables with coefficients in Q_p has a non-

trivial zero in Q_p . Demyanov's proof was later simplified by Birch, Lewis and Murphy [2].

For a system of three quadratic forms in n > 12 variables Birch and Lewis [3] essentially showed that if the residue class field of K_p has odd characteristic and is of order greater than 49, then the system of equations has a non-trivial zero in K_p . Their proof was ammended by Schur and the "49" was reduced to "17" in an unpublished University of Michigan Ph. D. dissertation.

For a single cubic form, Demyanov [11] and Lewis [14] independently verified Artin's conjecture. For single forms of degree 5, 7 and 11, Birch and Lewis [4] and Laxton and Lewis [13] verified Artin's conjecture, provided that the residue class field of $K_{\rm p}$ was sufficiently large.

In recent years much effort has been expended by Davenport and Lewis in studying "additive" or "diagonal" equations of the form $\sum a_i X_i^k = 0$. Their first main result [8] is that Artin's conjecture is true for a single diagonal form of degree k with integral coefficients.

Later Davenport and Lewis [9] proved that Artin's conjecture is true for a pair of diagonal forms of odd degree k and with integral coefficients.

For a pair of diagonal forms of even degree only a weak form of Artin's conjecture could be proved, namely:

If $n \geqslant 7d^3$ then the system has a non-trivial zero in each Q_p .

On extending their work to systems of r diagonal forms each of degree k in n variables with integral coefficients Davenport and Lewis [10] prove that if n is greater than $9r^2k \cdot \log(3rk)$, if k is odd or if n is even, greater than $48r^2k^3 \cdot \log(3rk^2)$, then the system has a non-trivial solution in each Q_n . This is, of course, weaker than Artin's conjecture.

In this, paper we study a system of three diagonal quadratic forms in 13 variables with integral coefficients and verify Artin's conjecture for the case p odd.

The author has verified Artin's conjecture for the case p=2 as well, but the proof is prohibitively long for inclusion here.

2. Congruences and p-adic solubility. In this section we collect together several results which will be needed in later sections. We will be concerned with finding non-trivial solutions to the following system of congruences

$$a_1 X_1^2 + a_2 X_2^2 + \dots + a_{18} X_{13}^2 \equiv 0 \pmod{p^{\nu}},$$

$$b_1 X_1^2 + b_2 X_2^2 + \dots + b_{18} X_{13}^2 \equiv 0 \pmod{p^{\nu}},$$

$$c_1 X_1^2 + c_2 X_2^2 + \dots + c_{18} X_{13}^2 \equiv 0 \pmod{p^{\nu}},$$

where $v \in Z^+$ and a_i , b_i , $c_i \in Z$ for $1 \le i \le 13$.

Definition. A solution $X=\xi$ of the congruences (2.1) is of p-rank S if the matrix

$$\begin{pmatrix} a_1 \, \xi_1 & a_2 \, \xi_2 & \dots & a_{13} \, \xi_{13} \\ b_1 \, \xi_1 & b_2 \, \xi_2 & \dots & b_{13} \, \xi_{13} \\ c_1 \, \xi_1 & c_2 \, \xi_2 & \dots & c_{13} \, \xi_{13} \end{pmatrix}$$

looked at modulo p, has rank S.

If we let M be the matrix consisting of those column vectors (a_j, b_j, c_j) from the coefficient matrix

$$\begin{pmatrix} a_1 & a_2 & \dots & a_{13} \\ b_1 & b_2 & \dots & b_{13} \\ c_1 & c_2 & \dots & c_{13} \end{pmatrix}$$

for which $\xi_j \not\equiv 0 \pmod{p}$, then ξ is of p-rank S exactly when rank (M) = S.

LEMMA 2.1. In (2.1) set v = 1 if $p \neq 2$ and v = 3 if p = 2. If the congruences have a solution of p-rank 3 then there is a non-trivial p-adic integer solution to the equations (1.1).

Proof. Let $X = \xi$ be a p-rank 3 solution to the congruences (2.1). We may take the ξ_i to be integers in the range $0 \leqslant \xi_i \leqslant p^r - 1$ and write the congruences as

$$a_1 \xi_1^2 + a_2 \xi_2^2 + \dots + a_{13} \xi_{13}^2 = p^r A,$$

 $b_1 \xi_1^2 + b_2 \xi_2^2 + \dots + b_{13} \xi_{13}^2 = p^r B,$
 $c_1 \xi_1^2 + c_2 \xi_2^2 + \dots + c_{13} \xi_{13}^2 = p^r C,$

where A, B, C are integers.

Since the solution has p-rank 3 there is a (3×3) submatrix of the coefficient matrix, consisting of say the first three columns, whose determinant and ξ_1 , ξ_2 , ξ_3 are p-adic units. We now solve the equations

$$a_1Y_1 + a_2Y_2 + a_3Y_3 = -A,$$

 $b_1Y_1 + b_2Y_2 + b_3Y_3 = -B,$
 $c_1Y_1 + c_2Y_2 + c_3Y_3 = -C,$

in the ring of p-adic integers.

Setting $\eta = (Y_1, Y_2, Y_3, 0, 0, ..., 0)$ we obtain the following equations

$$egin{aligned} &\sum a_i(\xi_i^2 + \eta_i p^*) = 0\,, \ &\sum b_i(\xi_i^2 + \eta_i p^*) = 0\,, \ &\sum c_i(\xi_i^2 + \eta_i p^*) = 0\,, \end{aligned}$$

where the summations are over those i in the interval $1 \le i \le 13$.

140

Three diagonal quadratic forms

The following observation gives a non-trivial p-adic solution to the system of equations (1.1).

LEMMA. If $r, s \in \mathbb{Z}_p$ and r is a p-adic unit, then $(r^2 + sp^*)$ is a square in Z_p provided that $v \geqslant 1$ if $p \neq 2$ and $v \geqslant 3$ if p = 2.

Proof. The *i*th term in the formal binomial expansion of $(1+p^rs/r^2)^{1/2}$ is

$$\frac{1(1-2)\dots(1-2(i-1))s^ip^{ni}}{r^{2i}2^ii!}.$$

We see that if p is odd and $v \ge 1$, or if p = 2 and $v \ge 3$, the ith term tends to zero p-adically as $i \to \infty$ and hence $(r^2 + sp^r)$ is a square in Z_n .

3. A normalization. In this chapter we describe a normalization on the system (1.1) which is used by Davenport and Lewis [8]. For the sake of completeness and convenience for the reader, we include the details of this Davenport and Lewis normalization as applied to our situation.

We begin by defining a_i to be the column vector (a_i, b_i, c_i) where a_i, b_i, c_i are the coefficients in (1.1) and j = 1, 2, ..., 13. We then define

$$heta(f_1, f_2, f_3) = \left| \prod \det(a_{j_1}, a_{j_2}, a_{j_3}) \right|$$

where the product is extended over all subsets of 3 distinct suffixes j_1, j_2, j_3 from 1, 2, ..., 13, two subsets being considered the same only if they are identical. The number of these subsets is $13 \times 12 \times 11 = N$.

LEMMA 3.1. (i) If

$$f_i(X_1, X_2, ..., X_{13}) = f_i(p^{v_1}X_1, p^{v_2}X_2, ..., p^{v_{13}}X_{13})$$

for i = 1, 2, 3, then

$$\theta(f_1', f_2', f_3') = p^{6Nr/13} \theta(f_1, f_2, f_3)$$

where $v = v_1 + v_2 + \ldots + v_{13}$.

(ii) If

$$f''(X_1, X_2, ..., X_{13}) = d_{i1}f_1 + d_{i2}f_2 + d_{i3}f_3$$

where i = 1, 2, 3 and $det(d_{ii}) = D \neq 0$, then

$$\theta(f_1'', f_2'', f_3'') = D^N \theta(f_1, f_2, f_3).$$

Proof. (i) We have $a_i' = p^{2r_j}a_i$ and so

$$\det(\alpha'_{j_1}, \, \alpha'_{j_2}, \, \alpha'_{j_3}) \, = \, p^{2\mu} \det(\alpha_{j_1}, \, \alpha_{j_2}, \, \alpha_{j_3})$$

where $\mu = \nu_{j_1} + \nu_{j_2} + \nu_{j_3}$.

When we sum μ over all N subsets of 3 distinct suffixes j_1, j_2, j_3 we get $3N\nu/13$, whence the result.

(ii) We have $a_i^{\prime\prime} = (d_{ii}) a_i$ and so

$$\det(a_{j_1}^{\prime\prime},\,a_{j_2}^{\prime\prime},\,a_{j_3}^{\prime\prime}) = D\det(a_{j_1},\,a_{j_2},\,a_{j_3}),$$

whence the result.

We define two sets of forms f_1, f_2, f_3 , with rational integral coefficients to be p-equivalent if one set can be obtained from the other by a combination of the operations (i) and (ii) of Lemma 3.1. Here ν_1, ν_2, ν_3 are integers (positive, negative, or zero) and the d_{ij} are rational numbers with $D \neq 0$. The operations (i) and (ii) are commutative. If the equations

$$f_1 = 0, \quad f_2 = 0, \quad f_3 = 0$$

have a simultaneous non-trivial solution in the p-adic field, then so do the equations of any p-equivalent system.

We shall suppose initially that

$$\theta(f_1,f_2,f_3)=0.$$

It is obvious that for any μ there exist forms $f_i^{(\mu)}$ with rational integral coefficients such that $a_j^{(\mu)} - a_j$, $b_j^{(\mu)} - b_j$, $c_j^{(\mu)} - c_j$ are divisible by p^{μ} and such that $\theta(f_1^{(\mu)}, f_2^{(\mu)}, f_3^{(\mu)}) \neq 0$, for i = 1, 2, 3 and j = 1, ..., 13. Suppose that the equations

$$f_i^{(\mu)} = 0 \qquad (i = 1, 2, 3)$$

have a non-trivial p-adic integral solution $X = X^{(\mu)}$. Since the equations are homogeneous, we can suppose that one coordinate at least of $X^{(\mu)}$ is not divisible by p. Thus the point $X^{(\mu)}$ lies on the surface of the cube $|X_i|_p \leqslant 1$ in the space of points with p-adic coordinates. Here $|\cdot|_p$ denotes the p-adic valuation. If μ goes to infinity through a suitable sequence, then

$$\lim_{u\to\infty} \boldsymbol{X}^{(u)} = \boldsymbol{X}$$

exists in the p-adic sense and is not the origin. We have

$$\lim_{n\to\infty} f_i(\boldsymbol{X}^{(n)}) = f_i(\boldsymbol{X})$$

and

$$|f_i(X^{(\mu)})|_p = |f_i(X^{(\mu)}) - f_i^{(\mu)}(X^{(\mu)})|_p \leqslant p^{-\mu}.$$

Thus

$$f_i(X)=0.$$

It follows that we may, without loss of generality, assume that θ is not zero.

From all systems of forms that are p-equivalent to the given system, subject to the limitation of having integral coefficients, we select one for which the power of p dividing θ is least. This is possible since we are assuming that θ is non-zero. Such a system of forms will be said to be p-normalized. The following lemma gives some properties of a system which is p-normalized.

LEMMA 3.2. Let f_1 , f_2 , f_3 , be a p-normalized system of additive quadratic forms in thirteen variables. Then

(i) They can be written (after renumbering the variables) as

(3.1)
$$f_i = F_i(X_1, ..., X_t) + pG_i(X_{t+1}, ..., X_{13})$$

for i = 1, 2, 3, where $t \ge 7$. Each of $X_1, ..., X_t$ occurs in one at least of F_1, F_2, F_3 with a coefficient not divisible by p.

- (ii) Each of X_{i+1}, \ldots, X_{13} occurs in at least one of G_1, G_2, G_3 with a coefficient not divisible by p.
- (iii) For $S \leq 3$, if we form S linear combinations of f_1, f_2, f_3 (these combinations being linearly independent modulo p) and denote by t_S the number of variables that occur in one at least of these combinations with a coefficient not divisible by p, then

$$(3.2) t_S > 2S (S = 1, 2, 3).$$

If q_S is the number of variables that occur in one at least of these combinations with a coefficient not divisible by p^2 , then

$$(3.3) q_S > 4S (S = 1, 2, 3).$$

(iv) If G is the $3 \times (13-t)$ matrix whose i-th row consists of the coefficients of G_i (i=1,2,3), then the largest $3 \times j$ submatrix of G whose rank is r, has at most j=2r columns, where r=1,2,3.

Proof. Although, for the sake of clarity, we have stated (i) first, it is readily seen to be a special case of (iii).

We obtain (3.1) simply by including in the forms F_i all those variables that occur in one at least of the f_i with a coefficient not divisible by p, and then renumbering these variables as X_1, \ldots, X_t .

Consider the forms

$$p^{-1}f_i(pX_1,\ldots,pX_t,X_{t+1},\ldots,X_{13}) = pF_i(X_1,\ldots,X_t) + G_i(X_{t+1},\ldots,X_{13}),$$

for i=1,2,3. These are derived from the forms $f_i(X_1,\ldots,X_{13})$ by a combination of the two operations of Lemma 3.1. The first operation is used with v=t and the second with $D=p^{-3}$. Hence the value of θ for the new forms is obtained from that for the old forms by multiplying by $p^{6Nl/13-3N}$. Since the new forms have integral coefficients, it follows from the minimal choice made in the definition of a p-normalized system that we have $6Nt/13-3N \ge 0$, whence $t \ge 7$. This proves (i).

We observe that (ii) is in fact a special case of (iv) with r=0. We include the proof of (ii) in the proof of (iv).

We next consider (iii). Let f'_1, \ldots, f'_S be any S linear combinations of f_1, f_2, f_3 . This set can be completed to give a set of 3 linear combinations

which are independent modulo p. Then f'_1, f'_2, f'_3 are derived using the second operation of Lemma 3.1 with D not divisible by p. As above, we have F'_i associated with f'_i and F'_i is in fact derived from F_i . Let t_S be the number of variables occurring in one at least of F'_1, \ldots, F'_S with a coefficient not divisible by p, and take these variables to be X_1, \ldots, X_{t_S} . The forms

$$p^{-1}f'_i(pX_1, ..., pX_{t_S}, X_{t_{S+1}}, ..., X_{13}) (i = 1, ..., S),$$

$$f'_i(pX_1, ..., pX_{t_S}, X_{t_{S+1}}, ..., X_{13}) (i = S+1, 3)$$

have integral coefficients and are derived from f_1, f_2, f_3 by the operations of Lemma 3.1 with $v = t_S$ and $D = p^{-S}D_0$ where p does not divide D_0 . We now easily see $t_S > 2S$.

Similarly, if q_S is the number of variables which occur in f_1, \ldots, f_S' with a coefficient not divisible by p^2 , then take these variables to be X_1, \ldots, X_{q_S} . The forms

$$p^{-2}f'_i(pX_1, ..., pX_{q_S}, X_{q_{S+1}}, ..., X_{13})$$
 $(i = 1, ..., S),$
 $f'_i(pX_1, ..., pX_{q_S}, X_{q_{S+1}}, ..., X_{13})$ $(i = S+1, 3)$

have integral coefficients and are derived from f_1, f_2, f_3 by the operations of Lemma 3.1 with $\nu = q_S$ and $D = p^{-2S}D_1$ where p does not divide D_1 . It follows that $q_S > 4S$.

Finally we prove (iv). Setting S = 3 - r we see that from f_1, f_2, f_3 we derive a system f'_1, f'_2, f'_3 such that the forms

$$p^{-2}f'_{i}(pX_{1},...,pX_{q_{S}},X_{q_{S+1}},...,X_{13}) (i = 1,...,S),$$

$$p^{-1}f'(pX_{1},...,pX_{q_{S}},X_{q_{S+1}},...,X_{13}) (i = S+1,3)$$

are integral. Here $\nu = q_S = 13 - j$ and $D = p^{-2S - (3-S)} D_2$ where p does not divide D_2 . From this it follows that $q_S > 2(3+S)$ whence j < 2r + 1.

In part (iv) of the statement of Lemma 3.2, we defined a matrix G whose rows are made up of the coefficients of the G_i . Similarly, we define a matrix F whose rows are made up of the coefficients of the F_i . In subsequent sections we will frequently use this notation.

Furthermore we will often renumber variables in order to assume that the first three columns of F are independent. We then apply operations of the second type in Lemma 3.1 to achieve a p-equivalent system which has the property that the first three columns of the coefficient matrix are ε_1 , ε_2 , ε_3 . The d_{ij} in this case may certainly be assumed to have unit determinant modulo p, so that the p-normalization is not changed.

We shall often have occasion to refer to the number of columns in a given matrix. If M is a matrix, we shall denote the number of columns in M by J(M).

4. The case $p \neq 2$. Throughout this section we will be assuming that p is an odd prime. We will prove the following result.

THEOREM 4.1. Let p be an odd prime. Then a system of three diagonal quadratic forms with integer coefficients in $n \ge 13$ variables always has a non-trivial p-adic zero.

The following two general lemmas will often be used in proving this theorem.

LEMMA 4.2 (Chevalley's Theorem). Let $g_1(X_1, X_2, ..., X_n)$, $g_2(X_1, X_2, ..., X_n)$, ..., $g_r(X_1, X_2, ..., X_n)$ be homogeneous forms of degree k in $Z[X_1, X_2, ..., X_n]$. Then if n > kr the congruences

$$g_1(X_1, X_2, ..., X_n) \equiv 0 \pmod{p},$$

$$g_2(X_1, X_2, ..., X_n) \equiv 0 \pmod{p},$$

$$...$$

$$g_r(X_1, X_2, ..., X_n) \equiv \mathcal{G}(\text{mod } p)$$

always have a common non-trivial zero (mod p).

LEMMA 4.3. Let $g_1(X_1, X_2, ..., X_n)$, $g_2(X_1, X_2, ..., X_n)$, ..., $g_r(X_1, X_2, ..., X_n)$ be as in Lemma 4.2 with n = kr. If the congruences (4.1) have no common non-trivial solution, then the system

$$g_1(X_1, X_2, \dots, X_n) \equiv a_1(\operatorname{mod} p),$$

$$g_2(X_1, X_2, \dots, X_n) \equiv a_2(\operatorname{mod} p),$$

$$\dots \dots \dots \dots \dots$$

$$g_r(X_1, X_2, \dots, X_n) \equiv a_r(\operatorname{mod} p),$$

where the ai are any integers, always has a solution.

Proof. The system of congruences

(4.3)
$$g_1(X) - a_1 X_{n+1}^k \equiv 0 \pmod{p},$$

$$g_2(X) - a_2 X_{n+1}^k \equiv 0 \pmod{p},$$

$$\vdots \\ g_r(X) - a_r X_{n+1}^k \equiv 0 \pmod{p}$$

satisfies the conditions of Lemma 4.2 and so has a non-trivial zero, say $X = \xi$. Since g_1, g_2, \ldots, g_r looked at modulo p have only the trivial zero in common, it follows that, unless all the a_i 's are zero, $\xi_{n+1} \not\equiv 0 \pmod{p}$ and then $\xi_{n+1}^{-1}\xi$ is a solution of (4.2). If all the a_i 's are zero, the lemma is trivially true.

Remark. For convenience, we note here the useful fact that if $ab \not\equiv 0 \pmod{p}$, one may always find a solution to $X^2 + aY^2 \equiv b \pmod{p}$.

LEMMA 4.4. Suppose that modulo p

$$f_1(X) = a_1 X_1^2 + a_2 X_2^2 + a_3 X_3^2,$$

$$f_2(X) = b_1 X_1^2 + b_2 X_2^2 + b_3 X_3^2$$

have a common zero of p-rank 2. Then there is an integer m such that at least one of the pairs $\{f_1(X), f_2(X)\}\$ or $\{f_2(X), f_1(X)\}\$ represents every pair (Y, mY) in $Z/p \times Z/p$.

Proof. Applying the matrix transformation

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \hat{a}_3 \\ 0 & 1 & \hat{b}_3 \end{pmatrix}$$

we may suppose that $f_1(X) = X_1^2 + \hat{a}_3 X_3^2$ and $f_2(X) = X_2^2 + \hat{b}_3 X_3^2$, where \hat{a} and \hat{b}_3 are p-adic units. Also, $-\hat{a}_3$ and $-\hat{b}_3$ are squares modulo p and so there is a t_0 such that we have $\hat{a}_3 t_0^2 \equiv \hat{b}_3 \pmod{p}$.

Clearly, everything of the form (X_1^2, X_2^2) can be represented without the use of the third variable. In particular, for each $X_1 \in \mathbb{Z}/p$, $X_1^2(1, t_0^2)$ can be represented. Independently of the first two variables, everything of the form

$$(\hat{a}_3 X_3^2, \, \hat{b}_3 X_3^2) \equiv (\hat{a}_3 X_3^2, \, \hat{a}_3 t_0^2 X_3^2) \equiv \hat{a}_3 X_3^2 (1, t_0^2) \pmod{p}$$

is represented. Adding a representation of the first form, obtained by using the first two variables, to one of the second, which uses only the third variable, we see that $(X_1^2 + \hat{a}_3 X_3^2)$ (1, t_0^2) is always represented. Since $X_1^2 + \hat{a}_3 X_3^2$ represents every $X \in \mathbb{Z}/p$, we have the result with $m = t_0^2$ for forms of the given shape. In the general case, we can not be sure that m is a non-zero square because of the transformation.

LEMMA 4.5. Let $f_1(X) = a_1 X_1^2 + a_2 X_2^2 + a_3 X_3^2 + a_4 X_4^2 + a_5 X_5^2$ and $f_2(X) = b_1 X_1^2 + b_2 X_2^2 + b_3 X_3^2 + b_4 X_4^2 + b_5 X_5^2$. If the associated coefficient matrix has two disjoint submatrices of p-rank 2 and if no pair $(a_i, b_i) \equiv (0, 0) \pmod{p}$ then the pair $\{f_1(X), f_2(X)\}$ looked at modulo p represents all $(a, b) \in \mathbb{Z}/p \times \mathbb{Z}/p$.

Proof. Without essential loss of generality, we may suppose that $(a_1, a_2) \equiv (1, 0) \pmod{p}$ and $(b_1, b_2) \equiv (0, 1) \pmod{p}$ and that the matrix

$$\begin{pmatrix} a_3 & a_4 & a_5 \\ b_3 & b_4 & b_5 \end{pmatrix}$$

has p-rank 2.

Suppose first that the congruences

$$a_3 X_3^2 + a_4 X_4^2 + a_5 X_5^2 \equiv 0 \pmod{p},$$

$$b_3 X_3^2 + b_4 X_4^2 + b_5 X_5^2 \equiv 0 \pmod{p}$$

have a common non-trivial solution of p-rank 2. It follows from Lemma 4.4 that there is an m such that all (Y, mY) are represented by $\{f_1(X), f_2(X)\}$, reversing the order and renumbering f_1 and f_2 if necessary. This representation does not use the first two variables.

If $m \neq 0 \pmod{p}$ we can always solve the system $X_1^2 + Y \equiv a \pmod{p}$ and $X_2^2 + mY \equiv b \pmod{p}$ by solving $mX_1^2 - X_2^2 \equiv ma - b \pmod{p}$ and setting $Y \equiv a - X_1^2 \pmod{p}$. This gives a representation of (a, b).

If $m \equiv 0 \pmod{p}$, then we will show that $b_5 \equiv 0 \pmod{p}$. We may take $a_3b_3 \not\equiv 0 \pmod{p}$, then the system with matrix

$$\begin{pmatrix} a_3 & a_4 & a_5 \\ b_3 & b_4 & b_5 \end{pmatrix}$$

represents all pairs (Y, 0) if and only if the system with coefficient matrix

$$\begin{pmatrix}1&a_4'&a_5'\\1&b_4'&b_5'\end{pmatrix}$$

where a_i' and b_i' are $a_i a_3^{-1}$ and $b_i b_3^{-1} \pmod{p}$, represents all (Y, 0).

Recall that in constructing m we implicitly assumed that we applied the inverse to the transformation

$$\begin{pmatrix} 1 & a_4' & a_5' \\ 1 & b_4' & b_5' \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & a_5'' \\ 0 & 1 & b_5'' \end{pmatrix} \pmod{p}.$$

Let t_0 be as in the previous lemma and apply the inverse transformation to see that if the system with coefficient matrix

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \boldsymbol{a_{\mathrm{s}}^{\prime\prime}} \\ \mathbf{0} & \mathbf{1} & \boldsymbol{b_{\mathrm{s}}^{\prime\prime}} \end{pmatrix}$$

represents all $(Y, t_0^2 Y)$, then the system with matrix

$$egin{pmatrix} 1 & a_4' & a_5' \ 1 & b_4' & b_5' \end{pmatrix}$$

represents all pairs $Y(1+a_4't_0^2,1+b_4't_0^2)$. Since $m\equiv 0$, we must have $1+b_4't_0^2\equiv 0\,(\mathrm{mod}\,p)$. Also, $b_5'\equiv a_5''(t_0^2b_4'+1)\equiv 0\,(\mathrm{mod}\,p)$, and so $b_5\equiv 0\,(\mathrm{mod}\,p)$. In this case, the lemma is clearly true.

Suppose next that (4.4) has no non-trivial solution. If the pair $(a_3X_3^2++a_4X_4^2+a_5X_5^2,b_3X_3^2+b_4X_4^2+b_5X_5^2)$ represents all pairs of the form $(-w^2,-z^2)$, then we can always solve the system $X_1^2-w^2\equiv a$, and $X_2^2-z^2\equiv b\pmod{p}$ and we have the lemma. So suppose this pair does not represent $(-1,-c^2)$. Then the system

$$X^2 + a_3 X_3^2 + a_4 X_4^2 + a_5 X_5^2 \equiv 0 \pmod{p},$$

 $c^2 X^2 + b_3 X_3^2 + b_4 X_4^2 + b_5 X_5^2 \equiv 0 \pmod{p}$

has no zero and by Lemma 4.3, represents every pair $(a, b) \pmod{p}$. The lemma follows on taking $X_1 = X$, $X_2 = cX$.

Finally, if (4.4) has only a *p*-rank 1 zero, then it is equivalent to a system with coefficient matrix

$$\begin{pmatrix} 1 & a_4' & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

in which case the lemma holds easily.

Remark. Since we will be dealing with p-normalized systems, the only systems of the type described in Lemma 4.5 which do not have two disjoint rank 2 submatrices are equivalent to a system having matrix

$$\begin{pmatrix} 1 & a_2 & a_3 & a_4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

LEMMA 4.6. Suppose that the system (1.1) is p-normalized. Then the system of congruences (2.1) with v = 1 has a zero of p-rank greater than 1.

Proof. By Chevalley's Theorem, there is at least a p-rank 1 zero, say $X = \xi$. If there is a rank 2 or 3 zero we are done, so suppose ξ has rank exactly 1. We will show how to construct a zero of at least rank 2 starting from ξ .

Since there is a rank 1 zero, we will show that the system may be taken to be equivalent, without loss of the normalization, to one of the form

$$egin{aligned} f_1 &= F_1\!+\!F_1'\!+\!pG_1, \ f_2 &= pF_2\!+\!F_2'\!+\!pG_2, \ f_3 &= pF_3\!+\!F_3'\!+\!pG_3 \end{aligned}$$

as follows. Into the F portion we put all columns which are dependent upon those involved in the zero and apply the obvious transformation. By Lemma 3.2, part (iii) with S=2 applied to f_2 and f_3 , we see that $J(F') \ge 5$. Also, since the zero is non-trivial, $J(F) \ge 2$, while $F_1(\xi) \equiv 0 \pmod{p}$.

By Chevalley's Theorem, $F_2'(X)$ and $F_3'(X)$ have, modulo p, a common non-trivial zero, say $X = \eta$. We can always solve $F_1(Y) \equiv F_1'(\eta) \pmod{p}$ and this gives at least a rank 2 zero.

Remark. Suppose the system is normalized and there is a rank 2 solution to (21) with $\nu=1$, but no rank 3 solution. As above, the system of forms is seen to be unimodularly equivalent to a normalized system

of the shape

(4.5)
$$f_1 = F_1 + F_1' + pG_1,$$

$$f_2 = F_2 + F_2' + pG_2,$$

$$f_3 = pF_3 + F_3' + pG_3,$$

where the following conditions are satisfied:

(i) $F_1(Y)$ and $F_2(Y)$ have a common rank 2 zero modulo p.

(ii) By the normalization, f_3 has at least 3 non-zero coefficients, also p does not divide any coefficient of F_3 . Thus $J(F') \ge 3$.

(iii) If F_1' , F_2' , F_3' have a common non-trivial zero modulo p, then addition would give a rank 3 zero. So F_1' , F_2' , F_3' , have no common non-trivial zero modulo p.

In the following, we will always assume that the systems we are handling are normalized, at least initially, and have a p-rank 2 zero.

LEMMA 4.7. If J(G) = 6, the system has a p-adic zero.

Proof. By Lemma 3.2, part (iv), we know that the longest p-rank 2 subset of G has length at most 4. Since J(G) = 6, this gives us at least two units in each row of G. If, in fact, 3 or more units occur in G_3 , then multiplying the variables of F' (in (4.5)) by p and multiplying the "new" f_3 by p^{-i} we get the equivalent system

$$egin{align} f_1' &= F_1 + p^2 F_1' + p G_1, \ f_2' &= F_2 + p^2 F_2' + p G_2, \ f_3' &= F_3 + p F_3' + G_3. \end{array}$$

Since G_2 must represent every element of \mathbb{Z}/p non-trivially, this system has a rank 3 zero modulo p and hence a p-adic zero.

If there are only two unit coefficients in each G_i suppose that the common zero of $F_1(X)$ and $F_2(X)$ in (4.5) is $X = \xi$. If $F_3(\xi) \not\equiv 0 \pmod{p}$ or if G_3 represents 0 non-trivially we may proceed as in the previous paragraph, and get the result. On the other hand, if $F_3(\xi) \equiv 0 \pmod{p}$ but after a transformation as in the above paragraph we still have only a prank 2 zero, we continue as follows. Rewrite the F part of (4.5) as F + F'' where the new F' includes all the columns for which $\xi_i \not\equiv 0 \pmod{p}$ and all those which are dependent on them. The F'' part includes any remaining columns. A p-adic unimodular transformation then gives a system equivalent to (4.5) of the shape

$$\hat{f_1} = F_1 + F_1'' + p^2 F_1' + p G_1,$$

 $\hat{f_2} = F_2 + F_2'' + p^2 F_2' + p G_2,$
 $\hat{f_3} = p F_3 + F_3'' + p F_3' + G_3.$

Multiply all variables of F+F'' and G by p. Then multiplying $\hat{f_1}$, $\hat{f_2}$ by p^{-2} and $\hat{f_3}$ by p^{-1} gives a system, equivalent to (4.5), of the shape

(4.6)
$$\begin{split} \tilde{f_1} &= F_1 + F_1'' + F_1' + pG_1, \\ \tilde{f_2} &= F_2 + F_2'' + F_2' + pG_2, \\ \tilde{f_3} &= p^2 F_3 + pF_3'' + F_3' + pG_3. \end{split}$$

Here F' is as in (4.5) and so $J(F') \ge 3$. Now we have that $F_1(\xi) = F_2(\xi) = 0 \pmod{p}$ is a p-rank 2 zero. Next set all variables of G, F'' and F' in (4.6) to pX_i , and multiplying the resulting last form by p^{-2} gives the equivalent system of the shape

$$egin{aligned} \ddot{f}_1 &= F_1 + p^2 F_1^{\prime\prime} + p^2 F_1^{\prime} + p^3 G_1, \ \ddot{f}_2 &= F_2 + p^2 F_2^{\prime\prime} + p^2 F_2^{\prime} + p^3 G_2, \ \ddot{f}_3 &= F_3 + p F_3^{\prime\prime} + F_3^{\prime} + p G_2. \end{aligned}$$

As observed above, $J(F') \ge 3$ so there is clearly a p-rank 3 zero, and hence a p-adic zero, to this system.

We may now suppose that $J(G) \ge 5$ and hence $J(F+F') \ge 8$.

LEMMA 4.8. If in (4.5), $J(F) \geqslant 5$, then the system has a p-adic zero.

Proof. If $F_1(X)$ and $F_2(X)$ do not satisfy the conditions of Lemma 4.5, by the remark following that lemma they could not have a p-rank 2 zero in common. Also, since $J(F')\geqslant 3$, we know that $F_3'(X)$ has a non-trivial zero, say $X=\eta(\bmod p)$. Then solving $\{F_1(X),F_2(X)\}\equiv \{-F_1'(\eta),-F_2'(\eta)\}$ modulo p, and adding, we get a zero with non-zero coordinate in both F' variables and in F variables, and so is of rank at least 2. If indeed this zero is only rank 2, we have (4.5) unimodularly equivalent to a system of the shape

$$f_1 = F_1 + pF'_1 + pG_1,$$

 $f_2 = F_2 + F'_2 + pG_2,$
 $f_3 = pF_3 + F'_3 + pG_3.$

Since the above is unimodularly equivalent to (4.5), it is still normalized and so each form must have at least 3 unit coefficients. Thus F_1 has at least 3 unit coefficients. Since we are assuming only a p-rank 2 zero if any of these unit coefficients were included in the above constructed zero, we would have to have p-rank 3 and so be done. Call these three unit coefficients a_1, a_2, a_3 . We may further suppose that b_4 is a unit and we may always solve

$$a_1 X_1^2 + a_2 X_2^2 + a_3 X_3^2 \equiv 0 \pmod{p}$$

non-trivially. Call a zero $X = \gamma$. Then either

$$b_1\gamma_1+b_2\gamma_2+b_3\gamma_3\equiv 0 \pmod{p},$$

in which case we clearly get a p-rank 3 zero, or

$$b_1\gamma_1+b_2\gamma_2+b_3\gamma_3 \not\equiv 0 \pmod{p},$$

in which case the pair $\{a_1X_1^2 + a_2X_2^2 + a_3X_3^2, b_1X_1^2 + b_2X_2^2 + b_3X_3^2\}$ represents (0, b) and hence, multiplying through by X_1^2 , every pair $(0, bX_1^2)$. Since b_4 is a unit, (F_1, F_2) also represents $(0, \hat{b}X_2^2)$ for some b, without the use of X_1, X_2, X_3 . From F' we get all $(0, b'X_3^2)$ represented for some $b' \not\equiv 0 \pmod{p}$ and $F_3'(X) \equiv 0 \pmod{p}$ for each representation. Solving $bX_1^2 + \hat{b}X_2^2 + b'X_3^2 \equiv 0 \pmod{p}$ with $X_1X_2X_3 \not\equiv 0 \pmod{p}$ gives the result.

Again referring to (4.5) we see that we may, by the above two lemmas and the normalization, assume that $J(F') \ge 4$. In order to complete the proof of Theorem 4.1, it remains only to consider the situation $J(F') \ge 4$.

LEMMA 4.9. If in (4.5) $J(F') \ge 4$ there is a p-adic zero for the system.

Proof. As usual suppose that $X = \xi$ is a common p-rank 2 zero of $F_1(X)$ and $F_2(X)$. Renumbering if necessary, we may suppose that $\xi_1 \xi_2 \not\equiv 0 \pmod{p}$. Also, by a unimodular transformation we may assume the first column of F is $\varepsilon_1(\bmod p)$ and the second is $\varepsilon_2(\bmod p)$. Then ξ will still be a zero of the transformed system.

If $J(F') \ge 5$, Chevalley's Theorem tells us that F'_1 and F'_3 have a common non-trivial zero modulo p. Then multiplying through by a square we see that F' represents every triple $(0, aZ_3^2, 0) \pmod{p}$ for some a.

Also, because we have a p-rank 2 zero involving ε_2 F represents $(0, -\xi_2^2 Z_1^2, 0)$ for every Z_1^2 , without the use of X_2 . We patch together a rank 3 zero by solving $-\xi_2^2 Z_1^2 + Z_2^2 + a Z_3^2 \equiv 0 \pmod{p}$ with the Z_i units, and adding.

Finally take J(F')=J(F)=4. If F' represents $(-X^2,0,0)$, or $(0,-Y^2,0)$, we may proceed as in the above paragrah. If F' represents $(-X^2,-Y^2,0)$ we would have η , say so that $F_3'(\eta)\equiv 0 \pmod{p}$ and considering $X_1^2+(-X^2)$ and $X_2^2+(-Y^2)$ we see there is a p-rank 3 zero. Thus, F' augmented by the first two columns of F does not have a zero, and by Lemma 4.3 must then represent every non-zero triple (d_1,d_2,d_3) modulo p.

Consider next the remaining two columns of F. If these are $a\varepsilon_1$ and $b\varepsilon_2$ in form, a p-rank 3 zero is easily constructed. So assume this is not the case. We may then assume that either $a_3a_4\not\equiv 0$ or $b_3b_4\not\equiv 0 \bmod p$. Assume the latter. Then $b_3X_3^2+b_4X_4^2$ represents every non-zero element of Z/p, and in particular, it represents $-d_2$ where d_2 is not a square. Say $b_3\delta_3^2+b_4\delta_4^2\equiv -d(\bmod p)$ with δ_3 and δ_4 both units. Then set $-d_1\equiv a_3\delta_3^2+b_4\delta_4^2$ and $d_3\equiv 0 \pmod p$. Now F' augmented by the first two columns

of F represents (d_1, d_2, d_3) . However, since d_2 is not a square, columns of F' must be used in the representation. Also, we observe by the remark following Lemma 4.5, that (a_3, b_3) is independent of (a_4, b_4) so patching together must give a rank 3 zero.

This completes the proof of Theorem 4.1.

Bibliography

- [1] J. Ax and S. Kochen, Diophantine problems over local fields, Amer. J. Math. 87 (1965), pp. 605-630.
- [2] B. J. Birch, D. J. Lewis, and T. G. Murphy, Simultaneous quadratic forms, Amer. J. Math. 84 (1962), pp. 110-116.
- [3] and D. J. Lewis, Systems of three quadratic forms, Acta Arith. 10 (1965), pp. 423-442.
- [4] - On p-adic forms, J. Indian Math. Soc. 23 (1959), pp. 11-32.
- [5] R. Brauer, A note on systems algebraic equations, Bull. Amer. Math. Soc. 51 (1945), pp. 749-755.
- [6] J. Browkin, On forms over p-adic fields, Bull. Acad. Polon. Sci. Ser. A, 14 (1966), pp. 489-492.
- [7] P. J. Cohen, Decision procedures in real and p-adic fields, Comm. Pure Appl. Math. 22 (1969), pp. 131-151.
- [8] H. Davenport and D. J. Lewis, Homogeneous additive equations, Proc. Roy. Soc. Ser. A, 274 (1963), pp. 443-460.
- [9] Two additive equations, Number Theory, Proc. Sympos. Pure Math. 12, Houston, Tex. (1967), pp. 74-98.
- [10] Simultaneous equations of additive type, Philos. Trans. Roy. Soc. Ser. A, 264 (1969), pp. 557-595.
- [11] V. B. Demyanov, On cubic forms in discretely normed fields, C. R. Doklady 74 (1950), pp. 889-891.
- [12] Pairs of quadratic forms over a complete field with a finite residue class field, Izv. Acad. Nauk U.S.S.R. 20 (1956), pp. 307–324.
- [13] D. J. Laxton and D. J. Lewis, Forms of degree 7 and 11 over p-adic fields, A. M. S. Symposium in Pure Math. 8 (1965), pp. 16-21.
- [14] D. J. Lewis, Cubic homogeneous polynomials over p-adic number fields, Ann. of Math. 56 (1952), pp. 473-478.
- [15] A. Meyer, Über quadratischen Formen, Vierteljschr. Naturforsch. Ges. Zürich 29 (1884), pp. 209-222.
- [16] G. Terjanian, Une contre exemple du conjecture d'Artin, C. R. Acad. Sci. (Paris) 269 (1966), pp. 1040-1041.

UNIVERSITÉ DE BORDEAUX 33 - Talence, France

Recu le 22. 4. 1972

(269)

151