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1. Introduction. A. well known conjecture attributed to B. Artin i
as follows: '

Let B denote a p-adic number fidld. If f1(X),...,[.(X) are r homo-
geneous forms of degrees di, ..., d, in n> D@ variables X, ..., X, with
coefficients in K, then the system of equations: :

(1.3) X)) = .. =f(X) =0

has @& non-trivial solution with Xy, ..., X, all in K.

In 1943 R. Brauer [5], showed the existence of a funetion 1{d,, ..., &}
such that if n > A, then the system (1.1) has a non-trivial solution in XK.
The most general result on Artin’s eonjecture is due to Ax and Kochen {17,
who used technigques from model theory to prove the following result.

TEEOREM. If d,,...,4d, are given positive integers then there ewists
an integer A(dy, ..., d,) such that every system of equations {1.1) with integral
coefficients has a non-trivial solution in each @, for oll p > A(dy, ..., d,) -
provided that n > Y'd:. '

Unfortunately a major defect in their proof is that the function
A(dy, ..., d,) is non-constructive. This blemish was removed, in principle
at any rate, by T'. J. Cohen [7], who gave a “constructive” proct of the
above theorem. However it does not seem to be possible to actually com-
pute, say A(4) by Cohen’s method in a reagsonably short period of time.

Interest in the Ax—Kochen theorem was increased when counter-
examples to Artin’s conjecture were found by Terjanian [16] and later
by Browkin {6], which imply that A (d) is greater than any given integer
for a suitable value of d. Hence it is of some interest to know when the
Artin conjecture is true. Prior to the Ax—Kochen theorem there were
several special cases known.

There was the old result of Meyer {15], which asserts that a single
quadratic form in » > 4 variables with integral coefficients has a non-
trivial zero in each @,. Later, Demyanov [12] proved that a pair of
quadratic forms in = > 8 variables with coefficients in ¢, has a non-
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trivial zero in @,. Demyanov’s proof was later simplified by Birch, Lewis
2

ol ;\‘{)?Ehsgrsgeil of three quadratic forms in # > 12 variables Birch and
Lewis [3] essentially showed that if the residue class field of K, has odd
characterishic and iz of order greater than 49, then the system of equ&tions
has a non-trivial zero in K,. Their proof was ammended by Schur and
the “49” wag reduced to “17” in an unpublished University of Michigan
Ph. D. diggertation.

" For a single cubic form, Demyanov [11] and Lewis [14] independently
verified Artin’s conjecture. For single forms of degree 5, 7 and 11, Birch
and Lewis [4] and Laxton and Lewis [13] verified Artin’s conjecture,
provided that the residne class field of KU, was sufficiently large.

In recent years much effort has been expended by Davenport and
Lewis in studying “additive” or “diagonal” equations of the form }e, X7
= (. Their first main regult [8] is that Artin’s conjecture is true for a single
diagonal form of degree % with integral coefficients.

Later Davenport and Lewis [9] proved that Artin’s conjecture is
true for a pair of diagonal forms of odd degree % and with mtecfml coeffi-
clents.

Tor a pair of diagonal forms of even degree only a weak form of Artin’s
conjecture could be proved, namely:

If w2z Td® then the system has a non-trivial zere in each Q.

On extending their work to systems of » diagonal forms each of
degree & in n variables with integral coefficients Davenport and Lewis [10]
prove that if » iy greater than 9r?k-log(3rk), if % is odd ov if » is even,
greater than 48r2k®-log(3rk?), then the system has a non-trivial solution
in each @,. This is, of course, weaker than Artin’s conjecture.

icm

In this, paper we study a system of three diagonal guadratic forms . -

in 13 variables with integral coefficients and verify Artin’s conjecture
for the case p odd.

The anthor hag verified Artin’s con]ecture for the cage p = 2 as well,
but the proof is prohibitively long for inelusion here,

2. Congruences and p-adic solubility. In this section we colleet
together several results which will be needed in later gections. We will
be concerned with finding non-frivial solutions to the following system
of congruences

0, X3+ a0, X3+ ... +a, X, = 0 (modp),

(2.1) b X b X5+ ... +by Xy =0 (mOdPN_) ’
6 X+, X3+ ... 405, X% = 0(modyp’),
where st+ and a;, b;, ¢, Z for 1 <1< 13,
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DEFINITION. A solution X = & of the congr uences (2.1) is of p-rank §
if the matriz

a8y G &, @13 €13
b bk, biyéia
615 6 &y 13 s

looked at modulo p, has rank S.

If we let: M be the mafrix consisting of those column veetors (@5 sy ¢)
from the coefficient matrix :

Gy By ... by
By by ... by
€1 €3 ... Cyg

for which §; s 0{modyp), then & is of p-rank 8 exactly when rank (M ) ==
Levva 21 In (1) set v =1if p #£2 and » =3 if p = 2. If the
congruences have o solution of p-rank 3 then there iz a wowtmmal p-adic
tnieger solution lo the equations (1.1).
Proof. Let X = & be a p-rank 3 solation to the congruences (2,1},
We may take the £ to be integers in. the range 0 < §; < p"—1 and write
the congruenees a8

S Fagt ... +af; =94,
biE+b.8+ ... byl = p'B,
a8+ s+ ... +epél =90,

where 4, B, 0 are integers.
~ Since the solution has p-rank 3 there is a (3 x3) submatrix of the
coefficient matrix, consisting of say the first three columns, whose deter-
minant and &, 62, &; are p-adic units. We now solve the equations
Yt aY, +a,¥, = —4,
bh¥,4+-b,¥,+b,¥, = —B,
¥+ eY,+6¥, = -0,
in the ring of p-adic integers.

Setting » = (Yl, Y,, ¥, 0,0,
tions

..y 0) we obtain the following equa-

Zai(53+nip”) =0,
2 hdéinp) =0,
2 alsi+np’) =0,
‘where the summations are over those ¢ in the interval 1 < i< 13,

3 — Acta Arithmetica XXIIL2
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The following observation gives a pon-frivial p-adic zolation fo the
system of equations (1.1L). o -

Levva. If ryscZ, and v i8 G p-adic wnit, then (r*+-8p°) 18 @ square
in Z, provided that v =1 ifp #2and v=234f p =_2. .

Proot. The ith term in the formal binomial expansion of (1 -+ p”s 7} is
(1--2(—1))s'p"
72t ‘

1(1—2)...

We see that if p is odd and » =1, ov if p = 2 and» = 3, the fit.h term tends
to zero p-adieally ag ¢ — oo and hence (r24-8p”) 18 o square in Z,,.

3. A normalization. In this chapter we describe a, no?.'nmlimtion on
the system {1.1) which is used by Davenport and Lewxfs [8]. For the saal‘e::e
of completeness and convenience for the_ reader, W‘(? include th(_3 det.aﬂs.
of this Davenport and Lewis normalization as applied to our situation.

We begin by defining «; to be the .column vector (@, b;, ¢) Wh.(.’zre
a;, by, ¢; are the coefficients in (1.1) and j = 1,2,...,13, We then define

8(fs, fas o) = Indet(ajl’ Ly s ajg)'

Wherelthe product is extended over all subsets of 3 distinet suffixes G1yday s

from 1,2, ..., 13, two subsets being considered the same only if they are

identical, The number of these subsets is 13 x12 x11 = N.
Lemya 3.1, (i) If
Ji( Xy, o,

for i =1,2,3, then

ey Xig) = [i(p"1 Xy, 92 Xy, ooy 9713 A y)

0(f1, far f3) = PV 0(f1s fo) o)
where » = vy +vy+ o0 T ¥
(u) If ' _
: FrUEy, Xy ooy X)) = dpfr+Bufotdiuks
where i = 1, 2,3 ond dct(di;) = D = 0, then
B fa o fs) = DY 6(f1,s foy fu)-
Proof. (i) We have of = p™a; and so
. det(a:,-l, a}z, d;s) = p“det(aj}, Gy g,)
where u =vjl+vj2+vj3. o o
When we sum gz over all N subsets of 3 distinet suffixes ji, Js; Js
we get 3N»/13, whence the resulf.
(ii) We have ¢ = (dy)o; and so
det(a};, C‘;';a a;-;) == Ddet(ey, o, aj3),

whenece the result.
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We define two sets of forms fi, f,, fs, with rational integral coeffi-
cients to be p-equivalent if one set can be obtained from the other by
a combination of the operations (i) and (ii) of Lemma 3.1. Here »,, v,, s,
are integers (positive, negative, or zero) and the dy; are rational numbers
with D 5% 0. The operations (i) and (ii) are commutative. If the equations

f1=~“0, f2207 fa=0

have a simultaneous non-trivial solution in the p-adic field, then so do
the equations of any p-equivalent system.
We shall suppose initially thab

H(flrfzrfs) = 0.

It is obvious that for any u there exist forms £{¥) with rational integral
coefficients such that af — a;, 3 —b,, o) — ¢, are divisible by p* and such
that O(f", i, f#) 50, for i =1,2,3 and j = 1,..., 13. Suppose that
the equations

fi?=0 (i=1,23)

have a non-trivial p-adic integral solution X = X®. Since the equations
are homogeneous, we can suppose. that one coordinate at leagt of X® is
not divisible by p. Thus the point X® lies on the surface of the cube
14Xyl < 1 in the space of points with p-adic coordinates. Here ||, denotes
the p-adic valuation. If x goes to infinity through a suitable seqiuence,
then :

Iim X® = X

H—0

exists in the p-adic sense and is not the origin. We have

limf,(X*¥) = f,( X)
and
(XU, = 1F(X0) — g (x|, < p~e,
Thus

Fi(X) = 0.

It follows that we may, without loss of generality, assume that 0
I3 not zero.

TFrom all systems of forms that are p-equivalent to the given system,
subject to the limitation of having integral coefficients, we select one for
which the power of p dividing 6 iv least. This is possible since we are
assumning that 6 is non-zero. Such a system of forms will be said.to be
p-normalized. The following lemma gives some properties of a system which
i% p-normalized. :
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Levia 3.9. Let fo, fa, fos be @ p-normalized system of additive quadratic
forms in thirteen variables. Then
(i) They can be written (after renumbering the variables) as

(3-1) fi = Fi(XIJ [EXT} Xt) +PG5(Xt+1a vy Xm)

for i =1,9,8, where 1> 7. Back of Xy, ..., X, ocours in one at least of
7, By, Py with a coefficient not divisible by ».

(i) Bach of Xyiqs-+.) Xug 000UTS in at least one of G, Gy, &y with
& coefficient not divisible by p.

(ili) For 8= 3, if we form 8 linear combinations of fi, fas fs (these
combinations being linearly independent modulo p) and denote by tg the num-
ber of variables that ocour in one at least of these combinations with & coefficient
not divisible by p, then

(3.2) \ t,>28 (8§ =1,23).

If g5 is the number of variables that oceur in one at least of these combi-
nations with a coefficieni not divisible by p?, then

(3.3) (8 =1,2,3).

(iv) If G is the 3 X (13 —1) matriz whose i-th row consists of the coeffi-
cients of G; (i =1,2,3), then the largest 3 x j submatriz of G whose rank
is r, has ot most § = 2r columns, where r =1, 2, 3.

Proof. Although, for the sake of clarity, we have stated (i) firgt,
it is readily seen to be a special case of (iil).

We obtain (3.1) simply by including in the forms F; all those variables
that oceur in one at least of the f; with a coefficient not divisible by p,
and then renwmnbering these variables as X,,..., X;.

Congider the forms

P X e Xy Xy -

'7‘X13)
= I X,y X)) HG(Xppas oo s sy

for i =1, 2, 3. These are derived from the forms f;( Xy, ..., X)) by & com-
bination of the two operations of Lemma 3.1. The first operation i uged
with » == £ and the second with D = p~%, Hence the value of 6 for the new
forms is obtained from that for the old forms by multiplying by p*¥** -
Sinee the new forms have integral ecoefficients, it follows from the minimal
choice made in the definition of a p-normalized systemn that we have
6Ni/13 —3N > 0, whence %3 7. This proves. (i).

We observe that (i) is in fact a special case of (iv) with r = 0. We
include the prootf of (ii} in the proof of (iv).

We next copsider (iil). Let fi, ..., fs be any § linear combinations
~of f1, fas f5. This get can be completed to give & set of 3 linear combinzbions

icm

Three diagonal quadratic forms 143

which are independent modulo p. Then fi,f,,f; are derived using the
second operation of Lemma 3.1 with D not divisible by p. As above, we
have ¥ associated with f; and F; is in fact derived from F;. Let tg be the
number of variables oceurring in one at least of Fy, ..., Fy with a coeffi-
cient not divisible by p, and take these variables to be X, ..., X, . The
forms :

P (p Xy, N 2. Y. COPETIND. §7Y
fi(pXy, sy Xy X1y ooy Xua)

have integral coefficients and are derived from f,, f,, f; by the operations
of Lemma 3.1 with » =ty and D = p~* D, where p does not divide D,.
‘We now easily see 15 > 28. _ .

Similarly, if gy is the number of variables which occur in f;, ..., fy
with & coefficient not divisible by p?, then take these variables to be X, ...
.oy Xgoo The forms

G =1,..., 8,
(¢ == 841, 8)

P i (pXs, ey DXy Xty s Xga) (E=1,..., 8),
Fi0Xrs ooy PX gy Tgginy oo Xig) (0 = 841, 3)

have integral coefficients and are derived from f,, fs, f; by the operations
of Lemma 3.1 with » = g5 and D = p~** D, where p does not divide D,.
It follows that gg > 48.

Finally we prove (iv). Setting § =3 —r we see that from f, £, fi
we derive a system fi, fi,f; such that the forms

p‘—zf‘;(p‘xlﬂ "',.quSJ XQ‘S-I-I’ R Xls) ('5 = 17 w2 S)’
I}—lf’(P-Xn'“-:PXgS; Xq'3+17 vy Xyg) (2 =841, 3)

are integral. Here » = gg = 13—j and D = p~**~6-N D, where p does
not divide D,. From this it follows that gg > 2(3+8) whenee § < 2¢+1.

In part (iv) of the statement of Lemms 3.2, we defined a matriz ¢
whose rows are made up of the coefficients of the ;. Similarly, we define
& matrix ¥ whose rows are made up of the coefficients of the F,. In sub-
sequent sectlons we will frequently use this notation.

Furthermore we will often renumber variables in order to agsume thatb
the fixst three columns of ¥ are independent. We then apply operations
of the second type in Temma 3.1 to achieve a p-equivalent system which
hag the property that the firgt three columns of the coefficient matrix
ATe £, &gy £3. The d;; in this case may cerbainly be agsumed to have unit
determinant modulo p, so that the p-normalization is not ehanged.

We shall often have occasion to refer to the number of columns in

& given matrix. If I is a matrix, we shall denote the number of columns
in ¥ by J(H).
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4. The case p # 2. Thronghout this section we will be assuming
that p is an odd prime. We will prove the following result.

THEOREM 4.1, Let p be an odd prime. Then a system of three diagonal
guadratic forms with integer coefficients in n = 13 variables always has
@ non-irivial p-adic zero.

The following two general lemmas will often be used in proving this
theorem.

Lvwa 4.2 (Chevalley’s Theovem). Let g¢y(Xq, Xay ...y X,), (X,

Xoyoory XYy ovny G Xqy Xy ooy X)) be homogeneous forms of degree It in
Z[ Xy Xyy ooy X, Then if n > Tr the congrusnoces

91(Xyy Koy ooy X)) = 0{modp),
(4.1) 9o &y Xgy ooy X)) = 0{modp),

.................

g ( Xy Koy ooy X)) = SH(modp)

always have a common non-trivial zero (modp).

Leywa 4.3. Let g,(Xy, Xy, .., X)), 0( X0, Xy oy X0 oy 00( X,
Xay ooy Xp) be as in Lemma 4.2 with n = kr. If the congruences (4.1) have

no common non-trivial solution, then the system
, gl &gy Xy, X)) = ag(modyp),
(4.2) ga( Xy, Loy oon

9:(Xyy Xyyoevy X} = a.(modp),

where the a; are any integers, always has o solution.
Proof. The system of congruences

g (X)— 0, X%, =0
(4.3) ' go(X)~ 0, X7, = 0(modp),

Q'T(X) - az-X:{z,..].l e= () (mO(ip)

satmﬁes the conditions of Lemma 4.2 and so has 2 non-trivial zero, say
= ¢, Since ¢, gy, ..., g, looked at modulo p have only the trivial zero
in common, it follows that, unless all the as are zero, £,,, = 0(modp)

and then &} is a solumon of (4.2). If all the a,’s are zero, the lemma is
trivially true..

Remark. For convenience, we note here the useful fact that if
_ab # 0(mod p), one may always find a solution to X?4-¢¥? = b(modp).
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LMy 4.4. Suppose thal modulo p
filX) = a; X]+a, X3+ a, X3,
fz(X) = bl-I%‘f‘bng‘;‘bslrg

have a common zevo of p-rank 2. Then there is an integer m such that at least
one of the pairs {fl(X) Jo( XY or {f2(X), fi{X)} vepresents efueiijan (X, mY)
n ZlpxZfp.

Proof. Applying the matrix fransformation

a4y Gy ay (1 0 a,

- -

by by By 0 1 b
we may suppose that f; (X) X§+a3X3 and f,(X = X:-+b, X2, where &
and b, are p-adic units. Also, —% and ~b3 are squmes modulo p and so

there is @ f, such that we have &, = b(modp).
(Clearly, everything of the form (X%, X2) can be represented without
the use of the third variable. In particular, for each X,eZ/n, X711, )

can be represented. Independently of the first two variables, everything
of the form -

(65 X3, b, X3) = (@ X3, 515 X5) = &, X3(1, 1) (modp)

ig represented. Adding a repregentation of the first form, oblained by nsing
the first two variables, to one of the second, which uses only the third
variable, we see that (X:+o,X3)(1,#) iz always rvepresented. Since
X7+ 0, X; represents every XeZ/p, we have the result with m = & for
forms of the given shape. In the general case, we can not be sure that m
is a non-zero square because of the transformation. ‘

Leawa 4.5, Let fi(X) = 0, X5+ 0p X5+ ay X3+ a, X3+ a, X2 and fo(X)
= b X3 +b X+ 0, X3+ 0, X3+ 0, X3 If the associated coefficient mairiz
has two disjoint submatrices of p-rank 2 and if no pair (a;, b;) = (0, 0)(mod p)
then the pair {f,(X), f.(X)} looked at modulo p represents all (a, b)e Zjp 3< Z jp.

Proof. Without essential loss of generality, we may suppose that
(a1, 65) = (1, 0)(modp) and (,, by) == (0, 1)(modp) and that the matrix

Gy Oy O
b3 b4 bS
has p-rank 2
Suppose first that the eongruences

s X3+ a, X3+ a, X2 = 0(modp),

(4:'4:) oy o 9
by X340, X5+ b X; = 0(modp)
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have g common non-irivial solution of p-rank 2. It follows from Lemma 4.4
that there is an m such that all {¥, m ¥} are repre_sented by {fi(X), fo(X)},
reversing the order and renumbering f, and f, if necessary. This repre-
sentation does not use the first two variables.

If m = 0(modp) we can always solve tl;nte system Xi+¥ = a(modp)
and Xi4+mY¥ =b(modp) by solving mX]-—X; = ma—b{modp) and
sebting ¥ = o —X3(modp). This gives a representation of _(a, D).

¥ m = 0(modp), then we will show that by = 0(modp). We may
take a,b, == 0(modp), then the system with matrix

& & “s)
represents all pairs (¥, 0) if and only if the system with coefficient matrix

1 a a
1 by by
where a; and b; are a;a;' and b;b; (modp), represents all (¥, 0). -

Reeall that in constructing m we implicitly agsumed that we applied
the inverse to the transformation

I s l 0 a}.’f
. af‘ af) —->( ,5,) {modp).
1 b, b 0. 1 b

Leat 2, be as in the previoug lemma and apply the inverse transformation
to see that if the system with coefficient matrix

1 0 a
0 1 b

represents all (¥, Y), then the system with mabrix

1 a, ag
b5
represents all pairs ¥ (L-+ayf, 1-+bi)). Since m =0, we must have
14Dyt = 0(modp). Also, by = ay (i2b;-+-1) = 0(modp), and so by =0
(modp). In this cage, the lemma iy clearly true.
Suppose next that (4.4) has no non-trivial selation. If the pair (@, X3+
+a, X3+ o X3, b, X340, X340, X3) reprosents all pairs of the form
(—w?% —¢?), then we can always solve the system X%—w® =a, and
X;—2* = b(modp) and we have the lemma. So suppose thiz pair does
not represent {—1, —e?). Then the system

X2t 4y X3+ 0, X3 405 X3 = 0(modlp),
X+ by X5 + b, X+ by X} = 0(modp)
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hag no zero and by Lemma 4.3, represents every pair (a, b)(modp).The:
lemma follows on taking X, = X, X, = ¢X.
Finally, if (4.4) has only g p-rank 1 zero, then it is equivalent to a sys-
tem with coefficient matrix
1 a, 0
0 0 1

in which case the lemma holds easily.

Remark. Since we will be dealing with p-normalized systems, the
only systems of the type deseribed in Lemma 4.5 which do not have
two disjoint rank 2 submatrices are equivalent to a system having

matrix
1 a ay a, 0
00 0 o0 1/

Lemus 1.6, Suppose that the sysitem (1.1) és p-normalized. Then
the system of congruences (2.1) with » = 1 has a zero of p-rank greater
than 1. : '

Proof. By Chevalley’s Theorem, there is at least a p-rank 1 zera,
say X = & If there is a rank 2 or 3 zero we are dome, 50 suppose & has.
rank exactly 1. We will show how to construct a zero of at leagt rank 2
starting from &, :

Sinece there is a rank 1 zero, we will show that the system may be
taken to be equivalent, without loss of the normalization, to one of the
form

fa =F1+F;+PGJ_7
Jo = pFy+ Ty pGy,
fs =PF3+F£\+?G:;

as follows. Into the # portion we put all columns which are dependent.
upon those invelved in the zero and apply the obvious transformation.
By Lemma 3.2, part (iii) with § = 2 applied to f, and f,, we see that
J (') = 5. Also, since the zero is non-trivial, J{(F)> 2, while F, (&)
= 0{mod p).

By Chevalley’s Theorem, ¥, (X) and F(X) have, modulo p, a common
non-trivial zervo, say X = y. We can always solve Iy(¥) = F(y) (mod.p}
and this gives at least a rank 2 zero. :

Remark. Suppose the system is normalized and there is a rank 2
solution to (21) with » = 1, but no rank 3 solution. As above, the system
of forms is seen to be unimodularly equivalent to a normalized gystem.
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of the shape

fi = Fi+Fy+ p6y,
fa = Fo+ 15+ pbh,
Jo = pFy 4 Fy+pGy,

(4.5)

where the following conditions are satisfied:
(i) 7y (¥) and F,(Y) have a common rank 2 zero modulo p.

(ii) By the normalization, f; has at loast 3 non-zero coefficients,
also p does not divide any coefficient of . Thus J (") 3= 8.

(iif) It 7, F;, F, have a common non-frivial zero modulo p, then
addition would give a rank 3 zero. So I, F,, Iy, have no common non-
trivial zero modulo p. .

In the following, we will always assume that the systems we are
handling are normalized, at least initially, and have a p-rank 2 zero.

Levma 4.7, If J(G) = 6, the system has o p-adic zero.

Proof. By Lemma 3.2, part (iv), we know that the longest p-rank 2
subset of G has length at most 4. Since J(G) = 6, this gives us at least
two units in each row of &. Tf, in fact, 3 or more units occur in @, then
multiplying the variables of F' (in (4.5)) by p and muliplying the “new?”
Js by p~* we get the equivalent system

fi = 1’11"‘1921’7,1'1"176?11
fr = Fz'l“?QFQ“FPGm
fy == By pTy+Gy.

Since ¢, must represent every element of Z/p mon-trivially, thiy gystem
has a rank 3 zero modulo » and hence a p-adic zero.

If there are only two unit cocfficlents in cach &, suppose that the
common zero of F,(X) and Fy(X) in (4.8) is X = & If Fy(&) = 0(modp)
or if &, represents 0 non-trivially 'we may proceed ag in the previous para-
graph, and -get the result. On the other hand, it Fg(€) == 0(modyp) but
after o trangformation ag in the above paragraph we still have only o p-
- rank 2 zero, we continue ag follows. Rewrite the J part of (4.5) as I+ F"
where the new # includes all the columns for which & 2 0(modp) and
all those which are dependent on them. The #* part ineludes any remaining
columng. A p-adic unimodwlar transformation then gives a system oquiv-
alent to (4.5) of the shape

= B+ F 4 pr T,
fa= FB—I—F;'—%}DE ;+PG2!
fa WPF3+F;’+PF:;+GB-
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Multiply all variables of F+¥#" and ¢ by ». Then multiplying fus f;
by p~* and f, by p~! gives & system, equivalent to (4.5), of the shape

fl =F1+F1’+F;-{~pG'1,
fo = Fy-b- By A Fy-1-pls,
fa =P2F3+PF;'+FQ+17G'3~

(4.6)

Here F' iy as in (4.5) and so J{F") = 3. Now we have that I, (&) = F,(&)
= 0(modp) is a p-rank 2 zero. Next set all variables of &, F and F’
in (4.6} to pX;, and multiplying the resulting last form by p~* gives the
equivalent system of the shape

fl = ’1+P2F1'+P2F;+PSG15
Jz:z = F2+P2F;’+P3FQ+I‘$’GZJ
fo = Fy+pFy + Fy+pG,.

As observed above, J(I')> 3 so there is cleaxly a p-rank 3 zero, and
hence a p-adic zero, to this system.

‘We may now suppose that J(@) =5 and hence J(F -+ F') > 8,

Luvwa 4.8. If in (4.5), J(F) = b, then the system has a p-adic zero.

Proof. If #,(X) and F,(X) do not satisfy the conditions of Lemma 4.5, .
by the remark following that lemma they could not have a p-rank 2 zero
in common. Also, since J(¥#') > 3, we know that F;(X) has a non-trivial
zero, say X = g(modp). Then solving {F,(X), F,(X)} = {—F1(y), —Fa ()}
modulo p, and adding, we geb a zero with non-zero coordinate in both F*
variables and in F variables, and so iz of rank at least 2. If indeed this
zero is only rank 2, we have (4.3) unimodularly equivalent to a system
of the shape
' fr = Fi+pF++pGy,
fo = Fot-Fy -+ pl,
fs = pFa+ Ty + pls.

Since the above is unimodularly equivalent to (4.5), it is still normal-
ized and so each form must have at least 3 unit coefficients. Thus ¥,
has at least 3 unit coefficients. Since we are assuming only a p-rank 2 zero
if any of these unit coefficients were included in the above consiructed
zero, we would have to have p-rank 3 and so be done. Call these three
unif coefficients a,, a,, a;. We may further suppose that b, is a unit and
we may always solve

ay X1+ 0y, X3 -+ 4, X3 = 0(modp)
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non-trivially. Call a zero X == y. Then either
By +bgye+ bays = 0{modp),
in which case we clearly get & p-rank 3 zero, or
byys+baps+ by # 0(modp),

in which case the pair {a,X} -+ a3 X534 ay X7, by X b, X2 4B Xﬁ} repre-
sents (0, ) and hence, multiplying through by ¥i, every pair (0, b¥3).
Since b, is a unit, (P, 7,) also reprosents (0, b ¥3) for some b, without
the use of Xy, Xy, X;. From & we geb all {0, b3 represented for some
b 2 0{modp) and Fy(X) = 0(modp) for cach representation. Solving
BY DXL ¥R = O(modp) with Y, ¥, ¥, # 0(modp) gives the result.
Again referring to (4.5) we soe that we may, by the above two lemmag
and the normalization, assume that J (') 2z 4. In order to complete the
proof of Theorem 4.1, it remaing only to consider the situation J(#') > 4.
Levws 4.9, If in (4.8) J (') = 4 there is o p-adic zevo for the system.

Proof. As usnal suppose that X = & is a4 common p-rank 2 zero of
P (X) and F,(X). Renumbering if necessary, we may suppose that £, &,
# 0(modp). Also, by a unimodular transformation we may assume the
firgt column of F is g;(modp) and the gecond iy £, (mods»). Then & will still
be a zero of the transformed sysbem. )

It J(F') = 5, Chevalley’s Theorem tells usg that ¥ and ¥ have a com-
mon non-trivial zero modulo p. Then multiplying through by a square
we see that F represents every triple (0, aZZ, 0)(modp) for some a.

 Also, because we have a p-rank 2 zero involving e, F represents
(0, ~£2Z7,0) for every %3, without the use of X,. We patch together
) mnk 3 zero by solving —-5%2 -[—Z +aZ; = 0(modp) with the Z; units,
and adding.

Tinally take J(F') = J(F) =4. If I represents (—X2 0,0), or
(0, —¥% 0), we may proceed as in the above pcmm,gra.h If 7 vopresents

(—Xﬂ Y% 0) we would have #, day so that Fi(y) == 0(modp) and

considering X%+ (—X% and X!+ (—X?) we see there is a p-rank 3 zoro.
Thus, I angmented by the first two columns of # does not have a zero,
and by Lemma 4.3 mmst then represent every non-zero triple (dy, da, da)
modulo p.

Oonsider next the remaining two columns of F. If these are as, and
be, in form, a p-rank 3 zero-is easily constructed. So assume thig is not
the ease. We. may then assume that either g, = 0 or byb, == 0modp).
Assume the latter. Then b, X3+ b, X2 represonts every nomn-zero element
ot Z/p, and in particular, it represents —d, where d, i3 not a square. Say
by 03-+b, 6 = —d(mod p) with 8, and &, both units. Then set —d, = a5+
+a,6; and d; = 0(modp). Now I augmented. by the first two columns
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of F represents (d,, dy, d;). However, gince d, is not a square, colurnns
of F' must be used in the representation. Also, we observe by the remark
following Lemma 4.5, thab (a,, b;) is independent of (s, b,) so patehing
together must give a rank 3 zero.

This completes the proof of Theorem 4.1.
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