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ACTA ARITHMETICA
XXTIT (1973)

On the congruence a,#f+... +a,2f = N(modp")
by
J. D). BoveYy (Heslington)

§ 1. Introduction. Let " be any prime power and % any positive
integer. We define I'(k, p™) as the least positive integer & such that

1 - : a4 ... +af = N(modp™)

hag a primitive solution for all integers N (a primitive solution is one
in which not all the variables are divigible by p). Dodson [3] has shown
that for sufficiently large % and for any prime p such that 3{p —1) does
not divide & ‘ ' '

;
Dk, p™) < & " for all »

where % is a small positive absolute constant.

The object of this paper ig to extend this estimate to the more general
congruence

(2) et 4. e, a8F = N (modp™)
where ¢,, ..., ¢, are prime to p.
We define I'f (%, p*) as the least s such that (2) has a primitive solu-

tion for all integers ¢y, ..., ¢, prime to p and for all integers N.
We also define

Ly (k) = sup I'(k, p")
n
and
(k) = sup I't (6, p™).

Plainly (k) < I} (k) (indeed I'(k, p™) < (&, p™ for all ») and in the
other direction we prove o '
TuroREM 1. For all positive integers k and all primes p we have

i) < (logh) I'y(k),

where < as usual denotes inequality with a fived posilive constant.
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From this and the result of Dodson it clearly follows that
THrOREM 2. For all sufficiently lovge &k and oll primes p such that
Hp-—1) does not divide k we have

If(k) < k™
We remar ]‘. that I, (k) is the least s such that we can solve the equation
Cat - e,wt o= N

non-frivially in the ring of p-adic integers, for all p-adic units e, ..., ¢,
and all p-adie integers V.

In § 2 we prove gome special cases and then in § 3 we prove the main
Tesults.

§ 2. We define y(%, p") as the least s such that we can solve (1) for
all integers . Similarly we define 7 (%, ") ad the least s such that wo
can solve (2) for all integers ¢, ..., ¢, prime to p and all integers N. The
difference between [, I'" and y, »' 1s that in the Immor case we allow non-
primitive solutions.

Cleaxly _
(3) y (T, ") < I'{le, ) <5 p (b, p™) 41
and
(4) Yk, p") < T (e, p™) <5 97 (B, ™ 4L

for all & and p™
If & is a positive integer and p 2 prime we can then write &k = p*dmn
where & = (k, p—1) and p does not divide m. We write
‘ r—[—l; p odd,
) 742, p =2

Levya L. If & = p™dm where d == (k, p ~1), p does not divide m and p
18 o prime = 3 then

7k, P7) =y (974, 9") < Ty(k) = T (p7d) < p(p°d, ") +1,

maw=wwmmﬁﬁwmmuwh*wmmwh
Proof. It is well known (see [2], page 36 for instance) that if, for
" an integer 4, we can solve

#* = a(modp”)

with p not dividing =, then we can solve

I

- @ = a(modp™) for all n.
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It follows ab once from this that
supy (e, %) = (&, 2},  supy’(k, p") = pi{k, p)
1 n

and the result followy from this and (3) and (4).

Lemma. 2. Let M be any integer, and let ay,...,a, be incongruent
(mod M) and by, ..., by, incongruent (modM) and such that b, =0 and
(byy M) == L for & =2,..., m.

ffbm ey by W’wewm.? at least min(m4n—1, M) different residue
classes (mod M).

Proof. This iy dne to I. Chowla [1] but a morve convenient reference
is [6], p. 49, Theorem 105,

PrOPORITION L. ff & == 2"m awhere m is odd, 1> 0 and k> 2 then

P{{k) = To(k) = 27,

Proof. It can easily be seen that #* can represent just 1 and 0(mod™*%),
Hence for any fixed ¢; # 0(mod?2) c;z" represents 2 different residue
clagges (mod27*) with one of them =0 and the other coprime to 272
Thus, using Lemma 2 inductively

6o ... el

represents at- least min(s--1, 27"%) different residue classes (modZ2**2).
Putting s = 2°"* 1 we sec that ' '

¥y 27 < 27 -1
and hence by Lemma 1
If (k) < 27
On the other hand
W pal = 2772 (mod 271
hag o primitive solution onlv if 8= 27 and so we have
9T I (B < I (B) < 27

and the vesull follows, '
In Proposition. 2 we determine I‘*(]’o) When #{(p—1)|%k. These results
are not needed in the rest of the paper but are inclnded here for com-

pleteness.
I'or the proof of the next propomtlon we malke use of the number

(3’0, 2™ which is defined as the leagt s such that
e ..+ o,mF = 0(modp™)

has a primitive solution for all ¢, ..., ¢, prime to p.



260 ' J.D. Bovey

ProrosrrioN 2. Suppose L is of the form k = pTdm where d = (k, p—1),

p does not divide m omd p is on odd prime. Then

T+1__l
(5) o, p ) < 2 p
where 1 = (p—1)/d.
Further
{Hyifd =p—1
Tf(k) = p™t' = Ty(k);
i) if & = 4(p-—1) and either p >0 or 7> 0 then
Lk = Hp™' —-1) = Ip(k);

(ili) if d =2, p = b, v = 0 then

Ty =3 = Fy(k)-+1;
(iv)if d =1, p =3, 7 = 0 then

TH{k} == 2 == Ty(k).

Proof. The results for I',(%k} are well known (see [7]) but we prove
them here,

For any fized e¢; = O0{modp) ¢af (for n; = 0 or ptm,) represents
t4-1 different residue classes (modp® Hl) with one of them = 0 and the
rest coprime to p*t'. Hence by induction using Lemina 2

-
G T - Gy

represents at least. min(st+1, p*) different residue classes (modp™ ')
Putting s = (™ —1)/t gives the inequality.
In (i) & = p—1, so that { = 1 and (5) together with Lemma 1 gives

Ti(k) < p™ P —L 41 = p*h,
On the other hand #* = 1 or 0(modp™') and go we can only solve
Bk af = P (mod g™t
" Hence we have

pr-l-l Q -[.;J(?G) g Iwg(k) _‘“<-.PT-}'1’

non-trivially if ¢

which gives the required result for (i).
It is eagy to see, using the same method as in Lemma 1 that
Sl:t‘py*(k, ) = Nk, p’) = ?*(TG, ™)

for p odd.
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Therefore we have (since y¥ (%, p™*') allows the possibility of & non
primitive representation of 0)
IY(k) < max(yf (&, p™}, v*(k, p™)).
In the case d = }(p-~1) Dodson ([4], p. 179) has shown that

* (. peily o | L7 l0gp
Pl = [ ]

and so in thiz case we have

P 1 T (x40
Tk < nux( 5 ,[ Tog3 gp] -1_1). .
The firsgt term is Imger it p** = 5 and so-in (i) we have
T+1 —1
rim <

but 2* represents just 1, ~—1 and 0(modp*!) and so clea.rly ‘we ¢annhot
solve .

ah+... o = H(pT—1) (modp™™)
unless ¢ 3= }(p*'-—1), thus we have
Tp(k) = $(p™ 1)

and (i) follows. If p = 5 and v == 0 the second term equals 3. Clearly
we cannot solve 2a%--y? = 0(mod5) non-trivially and go (iii) follows.
Part {iv) iz trivial.

When 2 < p, exponential sum techniques give good estimates for
¥ (d, p).

Weo write
Imid

ea(b) = e?
n—1

S(b) = 2 e’p(bmd):

n—1

) =) 2(@),(),

w=1

where g is any -.I")irichlot character (modp) and x, is the principal character-
It iy easily ghown that [8)
= M),
L X
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whf,re the sum is over the d—1 non principal characters y smtlsfylng
1% = g3 and that for non principal characters y,
(ol =2
Levinta 3. Suppose &< p and d|p—1. Then

1/-

yi(d, p) < 6.
Proof. SBuppose that for some ¢, ..., ¢, N wo cannot solve
e, 084, e = N(modp).

We show that this implies s < 6.
We have that

n—=1 p-1 a1
D Y eyt teal— ) =0,
y=0 m=0 2g==0
i.e. that
p--1
Pk D) S(ye) ... Slye)ey(—yN) =0
¥=1

on rearanging

p—1
D2 D nlyed o ez -
=1 Xg

where yq, ..., s are again summed over all the d—1 nen principal char-
acters satistying »% = »,.
Taking the moduli we get

Sy mew

y=1 2y

"«'(%s)ﬂp( “‘?}'N) == ____,ps

and hence certainly

(p-1) (B—10p" > p%, &> p!

But by hypothesis 42 < p and 80§ /3 = §/2-1 which implies s < 6 ag
required.,

§ 3. Leb ¢y, ..., ¢, be a finite sequence of integors. We say o set of
7 terms in the sequence is an {, @, N) set if the vam of the texms iy con-
gruent to a(mod N}. Leb & = p*dm as usual and consider the eongruence
(6) i +oal = Nimodp™t). |

Suppose we can find y(k, p™*"} disjoint {r, a ;p’“) sets of the ¢, ..., ¢,
for some @ not d1us1ble by p and for some » = L. Then by putting @, ==
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if e; and ¢; are In the same set and #; = 0 it ¢ is in non of the sets, we
find that we can solve (6) if we can solve

a(wf+.. y =y, p**Y,

which we clearly can by the definition of y(k, p*+Y). The following two
combinatorial lemmas give sofficient conditions to make this possible.

Lpytva. k. Let p be an odd prime and let ¢, ..., ¢, be a fimite seguence
of integers prime to p. Let v be any positive mmge; (md SUppose

& 2 36{[logp]-FL)*y

k) = N{modp™) where

Then for some a prime to p and for some v we can find y disjoint (v, a, p)
sels, .

Proof. Suppose ¢, ..., ¢, is such that for all » and for all o prime
to p we cannot find dlSJOlIlt (ry @, p) sets. We shall show that this implies
§ < 36([logpl--1)*y. We can assume y < s.

We let f(r, a) be the number of (r, @, ») sets and let

F() = max f(», a).
a0 (p)

We find an upper bound for f(r). Suppose p does not divide ¢ and 2 << r
<8 16t Xy, ..., A De a mnlmal set of digjoint {r, a, p) sets ine,..,c.
Then our a‘hsum])tlon above implies « < y.

A U X; containg ar terms and any (r, @, p) set in ¢, ..., ¢, must

f==1
contain ab least one term in X. Moreover if say ¢y, ..., ¢ is an (r.a, p)

set then g —ey = ¢y-F ...+ e (modp) and 80 ¢, ..., ¢ s an {r—1, a—e;, p)
sot. Thus sines every (r, o, p) set hag ab Imht one element ¢ By in X,
the number of (r, a, p) .sots

) :5;2]”(1"—-1, a—e).

(A
By hypothesis less than o of the ¢ ean be congruent to a and so we can
write
fry a) < prf(r—1)+ 9/ (r =1, 0}
And thos '
(7 J) < yif(r 1)+ 9f(r—1, 0).

Next we (‘Htmw,{: f (1' -1, 0). For any r the number of # tupleb (PP )
with A AR a(modp) is equal to r1f(r, a). For each Cypy b = 1 £y
the numbor of r-tuples (6, ..., ¢ ) satisfying :

-'i“ ooy, = (modp)
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is egual to (r—-1)!f{r—1, —¢; ), and s0 we have
8

PUf(r, 0) = Y

g1

"'"1) !f(i" ”"’17 - Gi) H

which gives

®) Flry 0) < —fr—1).
Substitating (8) in (7) gives, for 3 L r s
9) 1) < prfir =)+~ (r—2),

and as f(1) < y and f(1, 0) =0, (7) implies that
(10) f(2) < 290

Now if we let
{r~1)/2
(r) = 7’( ) g(r)
f yris
and substitute this in (9) we get

(r—1)/2 Py {r—2)j2 -
T R L

which on simplifying gives

(r—2)! (s )(T e
Al —9
P » g{r—2)

: 12 _
g(*r)((%) g(rml)mkﬁg(rHZ) for r=3.

Algo by (10}, g(1) and g(2) are < 1. We ean assume w.lo.g.

1/2
¥ 1 . 1 -
and B e ]_:[ ’}';53
(s) <p o rir—1)* 2

and so by induction g(r) < 1 for all 7, L < r < 8. We gob therefore

. e
() fr) <y w(y) .

Now
()2 g\r/8
W“WT*lﬂ(m) <71“( )
¥ s

and so we get that for all o and tor all 7

12) - ey ey < iy

flr, 0} < f(?” 1)<

icm
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Now for any » we have that 2 J(ry a) is the number of all possible sets

of r terms chosen from the s coeﬂwlentb and so we have
Frind
2 Jir, o) ( )

=0 -
and so

!
Pl (ys) > E:%MW’
‘whenee
P (ys) > (s—r).
Extracting rth roots we get
5.<_,p1,'r -3 ”281/2+'r<2p”r'r2
and putting r = [logp]+1 we get

§ < 6([logp]+1)'ys,

ylfz ey

i.o. .
§ < 36([logp]-+1)*y
a8 required. :

LoMwMA 5. Zet by, ..., b, be a finite sequence of integers, let ﬁ be any
posztwe nteger and suppose

= 15([logp"]+1)*p

where p is an odd prime. Then for some a and for some v prime to p we can.
find B disjoint (r, @, p°) sets.

Proof. Suppose that b,, .. s by 18 such that for all @, and for all T
prime o p, we canunot find g dmomt (r, a, p*) sets. We will show that

Ghis implies & < 13 ([logp™] 1) . We let f(r, a) be the number of (r, a, p7)
sots and we show by induetion on » that

s \[rizl '
flr,a) < ! (wﬂ—) ~ for all ,a.
Olearly it i true for ¢ = 1. Suppose that for some r and for all a

[(r—1)/0}
Jir=1, @) < (r 1) ( ﬂ) .

" 'We consider 2 cages:

Xbe

2 maximal digjoint set of (fr @, p%) sets. Then e<f and X = U X,
=l

(i) p does not divide . Let o be any integer and let X, .,
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. ’ tain some term in X and so
contains ar terms. Any (¢, a, 7'} set must conta

g\l—1ipl \ sl
< ;\f(w—l, a—b) =S arﬁ’“l(aﬂ——l)!(—.é—) < f r(?)
b

uired. »
® Te(llll) plr. For each i = 1, ..., s the number of {r, a, p*) sets containing

b; is less than or equal to f(r—1, a— bi) and so we got

% lr=1)/2]
flrya)< Ef r—1, 4—5;) < sﬁ"*’l(fr....l)l (ﬁ)

=l

g ( % ) ( % )[(r~1)fm _ o ( % )lrfml s ol

and this again is. what is required.
Now we have

Whence

and a3 We can assume § > f

Al -

Extracting rth roots and taking » == [logp*]+1 we get that
g\1®
6 r“(-——) > 8
T

and 'so

Gﬁ(pul)!p,ﬂ ~ s(zawl)!:n’
i.e. . '

Gp}(p»-l)ﬁ,ﬂ"pf(m—-l) = §.
But p=3 and s0

g < 6% gy
o or ‘ _ - .
. & < 15([logp*]+118

as required.

THROREM 1. For every posilive integer k and every prime p we have

T3(k) < (loghy" (k)
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Proof. As usual we write k — p*dm with d = (p —1, k), p does not
divide m. We can assume that p is odd because if p = 2 the regult follows
from Troposition 1.

Suppose that = = 0 and we have ¢, ..., ¢, prime to p with
- 83 36([logpl-+1)'y(d, p),

then, by Lemma 4, we can find y(d, p) disjoint (r, a, p) sets of the ¢
for some » and for some ¢ prime to p. Hence we can solve

62y + ...+t = N(modyp)
for all integers N and we have

¥4, p) < 36([logp1+1)*y(d, p)
and thus by Lemma 1

Ii(k) < y*(d, p)+1 < (Qogp)y(d, p) <

But by Lemma 3 we can assume d° > p and so

(logp)* Iy (%).

Ti(k) < (3logd)*T(k) < (logh)'T,(%)
a8 required.

Now suppose 7> 1 and we have ¢, ..., ¢, prime to p with

2 15([logp” ]~!-1) 36 (Mlogp]+LYy(k, p*+).

By Lemma 4 we can find 15([logp™]+1¥y(k, p™*) =y, say dlsgomt
{r,a,p) sets X,,.. » X, for some r and some a prime to p. Suppose

EO = q+pb;i7

.ce.X ¥

I=14.un.

By Lemma 5 we can find y(k, p™") = y say disjoint {(+', b, p°) sets of

the ¥;, ¥;,..., ¥, say for some b and for some #' prime to p. Jf we let
Zi=UZX; i=1,...,y,
bj£Y¢

then the Z; form y(k, p™) dIS]Omt (', 7 ‘a+pb, p*') sets of the ¢; and p
does not divide »'a.

It we Jet @; = a; if ¢; and ¢; are in the same one of these sets and
if we let ; = 0 if ¢; is in none of these sets, then we can see that we can
solve '

elmi‘—;—...-f—csmﬁ E:N(modp’“)
if we can golve : '

(ra+pb) (@ ... +a¥) = N(modp*t).
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But we can always solve this by definition of y = y (&, p"™') and because
r'a -+ pb is prime to p. Henee we have
1 (&, p™*") < 15([logp]-+1)*36 (Hogp] + 1)y (k, ™) < (logh)'y (k, p™7)
and this, with Lemma 1, gives the result. We deduce
THroREM 2. If & is sufficiently large and §{p —1) does not divide & then
i) < K '
Proof. Dodson [3] proved that if 4(p~1) does not divide & then
Ty(k) < Kl

where % i8 a small absolute positive constant. The result follows at once
from this and from Theorem 1.
If k is a positive integer we define I'(%) as the least s such that

e . o, 2F = N (modp™)
bas a primitiv'e'solution for all integers X, all prime powersls p" and all
integers ¢,,...,¢; with (¢, ¢) =1 if 4 # J. We note that if _s% (k)
and e, ..., ¢ are coprime rational integers then ¢, 2f+... -+ ¢.a repre-
sents every integer in every p-adic ring non-trivially. Olearly we have
I (%) < sup I8 (B) 1.,
Fi

In conclugion we prove
TuoorEM 3. LThere are an infinite number of positive intégers & wilh

k) < T

Proof. By Theorem 2 and Propositions 1 and 2 it is suffieient‘to
show that there are an infinite number of odd positive integers & which
are not divisible by 3 or by 4(p—1) for any prime p 3= 5. By Dirichlet’s
Theorem there are an infinite number of primes congruent to '.1.(1110(?}3).
Suppose & is prime and % == 1(mod3) with }(p—1)[% for some prime
p = 5. Then

Hp—-1) =k,

P=2k+1 == 0(mod3)"

Lo,

which is a contradiction,

Algo it i8 not difficalt to show that by virtue of Proposition 2 and
Theorem 2 together with Theorsm 2 in [6] that the average order of I'f
ig the same as that of I". In fact we have

b N* N
T 2log ¥ ( (log N)¥%2 ) '

Nt
& (%)
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