ACTA ARITHMETICA XXIII (1973)

On the congruence $a_1x_1^k + ... + a_sx_s^k \equiv N \pmod{p^n}$

J. D. BOVEY (Heslington)

§ 1. Introduction. Let p^n be any prime power and k any positive integer. We define $\Gamma(k, p^n)$ as the least positive integer s such that

$$(1) x_1^k + \ldots + x_s^k \equiv N(\operatorname{mod} p^n)$$

has a primitive solution for all integers N (a primitive solution is one in which not all the variables are divisible by p). Dodson [3] has shown that for sufficiently large k and for any prime p such that $\frac{1}{2}(p-1)$ does not divide k

$$\Gamma(k, p^n) < k^{\frac{7}{8} - \eta}$$
 for all n

where η is a small positive absolute constant.

The object of this paper is to extend this estimate to the more general congruence

$$c_1 x_1^k + \ldots + c_s x_s^k \equiv N \pmod{p^n}$$

where c_1, \ldots, c_s are prime to p.

We define $\Gamma^{\dagger}(k, p^n)$ as the least s such that (2) has a primitive solution for all integers c_1, \ldots, c_s prime to p and for all integers N.

We also define

$$\varGamma_p(k) = \sup_n \varGamma(k, p^n)$$

and

$$\Gamma_p^{\dagger}(k) = \sup_n \Gamma^{\dagger}(k, p^n).$$

Plainly $\Gamma_p(k) \leqslant \Gamma_p^{\dagger}(k)$ (indeed $\Gamma(k, p^n) \leqslant \Gamma^{\dagger}(k, p^n)$ for all n) and in the other direction we prove

THEOREM 1. For all positive integers k and all primes p we have

$$\Gamma_p^{\dagger}(k) \ll (\log k)^7 \Gamma_p(k),$$

where « as usual denotes inequality with a fixed positive constant.

From this and the result of Dodson it clearly follows that

THEOREM 2. For all sufficiently large k and all primes p such that $\frac{1}{2}(p-1)$ does not divide k we have

$$\Gamma_p^{\dagger}(k) < k^{7/8}$$
.

We remark that $\Gamma_p^{\dagger}(k)$ is the least s such that we can solve the equation

$$c_1 x_1^k + \ldots + c_s x_s^k = N$$

non-trivially in the ring of p-adic integers, for all p-adic units c_1, \ldots, c_s and all p-adic integers N.

In § 2 we prove some special cases and then in § 3 we prove the main results.

§ 2. We define $\gamma(k, p^n)$ as the least s such that we can solve (1) for all integers N. Similarly we define $\gamma^{\dagger}(k, p^n)$ as the least s such that we can solve (2) for all integers c_1, \ldots, c_s prime to p and all integers N. The difference between Γ , Γ^{\dagger} and γ , γ^{\dagger} is that in the latter case we allow non-primitive solutions.

Clearly

(3)
$$\gamma(k, p^n) \leqslant \Gamma(k, p^n) \leqslant \gamma(k, p^n) + 1$$

and

$$\gamma^{\dagger}(k,\,p^n)\leqslant \varGamma^{\dagger}(k,\,p^n)\leqslant \gamma^{\dagger}(k,\,p^n)+1$$

for all k and p^n .

If k is a positive integer and p a prime we can then write $k = p^* dm$ where d = (k, p-1) and p does not divide m. We write

$$u = egin{cases} au + 1, & p ext{ odd}, \ au + 2, & p = 2. \end{cases}$$

LEMMA 1. If $k=p^*dm$ where d=(k,p-1), p does not divide m and p is a prime $\geqslant 3$ then

$$egin{aligned} \gamma(k,p^{m{r}}) &= \gamma(p^{m{r}}d,p^{m{r}}) \leqslant arGamma_p(k) = arGamma_p(p^{m{r}}d) \leqslant \gamma(p^{m{r}}d,p^{m{r}}) + 1, \ \gamma^{m{t}}(k,p^{m{r}}) &= \gamma^{m{t}}(p^{m{r}}d,p^{m{r}}) \leqslant arGamma_p^{m{t}}(k) = arGamma_p^{m{r}}(p^{m{r}}d) \leqslant \gamma^{m{t}}(p^{m{r}}d,p^{m{r}}) + 1. \end{aligned}$$

Proof. It is well known (see [2], page 36 for instance) that if, for an integer a, we can solve

$$x^k \equiv a \pmod{p^{\nu}}$$

with p not dividing x, then we can solve

$$x^k \equiv a \pmod{p^n}$$
 for all n .

It follows at once from this that

$$\sup_n \gamma(k, p^n) = \gamma(k, p^n), \quad \sup_n \gamma^{\dagger}(k, p^n) = \gamma^{\dagger}(k, p^n)$$

and the result follows from this and (3) and (4).

LEMMA 2. Let M be any integer, and let a_1, \ldots, a_n be incongruent (mod M) and b_1, \ldots, b_m incongruent (mod M) and such that $b_1 = 0$ and $(b_i, M) = 1$ for $i = 2, \ldots, m$.

Then $a_i + b_j$ represents at least $\min(m+n-1, M)$ different residue classes \pmod{M} .

Proof. This is due to I. Chowla [1] but a more convenient reference is [6], p. 49, Theorem 15.

PROPOSITION 1. If $k = 2^{\tau}m$ where m is odd, t > 0 and k > 2 then

$$\Gamma_2^{\dagger}(k) = \Gamma_2(k) = 2^{\tau+2}$$
.

Proof. It can easily be seen that x^k can represent just 1 and $0 \pmod{r+2}$. Hence for any fixed $c_i \not\equiv 0 \pmod{2}$ $c_i x^k$ represents 2 different residue classes $\pmod{2^{r+2}}$ with one of them $\equiv 0$ and the other coprime to 2^{r+2} . Thus, using Lemma 2 inductively

$$c_1 x_1^k + \ldots + c_s x_s^k$$

represents at least $\min(s+1, 2^{\tau+2})$ different residue classes (mod $2^{\tau+2}$). Putting $s = 2^{\tau+2} - 1$ we see that

$$\gamma^{\dagger}(k, 2^{\tau+2}) \leqslant 2^{\tau+2} - 1$$

and hence by Lemma 1

$$\Gamma_2^{\dagger}(k) \leqslant 2^{r+2}$$
.

On the other hand

$$x_1^k + \ldots + x_s^k \equiv 2^{r+2} \pmod{2^{r+2}}$$

has a primitive solution only if $s \ge 2^{r+2}$ and so we have

$$2^{\tau+2}\leqslant I_2(k)\leqslant I_2^{\dagger}(k)\leqslant 2^{\tau+2}$$

and the result follows.

In Proposition 2 we determine $\Gamma_p^{\uparrow}(k)$ when $\frac{1}{2}(p-1)|k$. These results are not needed in the rest of the paper but are included here for completeness.

For the proof of the next proposition we make use of the number $\gamma^*(k, p^n)$ which is defined as the least s such that

$$c_1 x_1^k + \ldots + c_s x_s^k \equiv 0 \pmod{p^n}$$

has a primitive solution for all c_1, \ldots, c_s prime to p.

PROPOSITION 2. Suppose k is of the form $k = p^*dm$ where d = (k, p-1), p does not divide m and p is an odd prime. Then

where t = (p-1)/d.

Further

(i) if
$$d = p - 1$$

$$\Gamma_n^{\dagger}(k) = p^{\tau+1} = \Gamma_n(k);$$

(ii) if
$$d = \frac{1}{2}(p-1)$$
 and either $p > 5$ or $\tau > 0$ then

$$\Gamma_p^{\dagger}(k) = \frac{1}{2}(p^{\tau+1}-1) = \Gamma_p(k);$$

(iii) if
$$d=2$$
, $p=5$, $\tau=0$ then

$$\Gamma_5^{\dagger}(k) = 3 = \Gamma_5(k) + 1;$$

(iv) if
$$d = 1$$
, $p = 3$, $\tau = 0$ then

$$\Gamma_3^{\dagger}(k) = 2 = \Gamma_3(k)$$
.

Proof. The results for $\Gamma_p(k)$ are well known (see [7]) but we prove them here.

For any fixed $c_i \not\equiv 0 \pmod{p}$ $c_i x_i^b$ (for $n_i \equiv 0$ or $p \nmid n_i$) represents t+1 different residue classes $\pmod{p^{r+1}}$ with one of them = 0 and the rest coprime to p^{r+1} . Hence by induction using Lemma 2

$$c_1 x_1^k + \ldots + c_s x_s^k$$

represents at least min $(st+1, p^{r+1})$ different residue classes $(\text{mod } p^{r+1})$ Putting $s = (p^{r+1}-1)/t$ gives the inequality.

In (i) d = p-1, so that t = 1 and (5) together with Lemma 1 gives

$$\Gamma_{p}^{\dagger}(k) \leq p^{\tau+1}-1+1 = p^{\tau+1}.$$

On the other hand $x^k \equiv 1$ or $0 \pmod{p^{\tau+1}}$ and so we can only solve

$$x_1^k + \ldots + x_s^k \equiv p^{r+1} \pmod{p^{r+1}}$$

non-trivially if $s \geqslant p^{r+1}$. Hence we have

$$p^{\tau+1} \leqslant \varGamma_{\mathcal{P}}(k) \leqslant \varGamma_{\mathcal{P}}^{\dagger}(k) \leqslant p^{\tau+1},$$

which gives the required result for (i).

It is easy to see, using the same method as in Lemma 1 that

$$\sup \gamma^*(k, p^n) = \gamma^*(k, p^r) = \gamma^*(k, p^{r+1})$$

for p odd.

Therefore we have (since $\gamma^{\dagger}(k, p^{r+1})$ allows the possibility of a non primitive representation of 0)

$$\Gamma_p^{\dagger}(k) \leqslant \max(\gamma^{\dagger}(k, p^{\tau+1}), \gamma^{\star}(k, p^{\tau+1})).$$

In the case $d = \frac{1}{2}(p-1)$ Dodson ([4], p. 179) has shown that

$$\gamma^*(k, p^{\tau+1}) = \left\lceil \frac{(\tau+1)\log p}{\log 2} \right\rceil + 1$$

and so in this case we have

$$arGamma_p^{ au}(k) \leqslant \max\left(rac{p^{ au+1}-1}{2}, \left\lceil rac{(au+1)\log p}{\log 2}
ight
ceil + 1
ight)$$

The first term is larger if $p^{r+1} > 5$ and so in (ii) we have

$$\Gamma_p^{\dagger}(k) \leqslant \frac{p^{\tau+1}-1}{2}$$

but x^k represents just 1, -1 and $0 \pmod{p^{\tau+1}}$ and so clearly we cannot solve

$$x_1^k + \ldots + x_s^k \equiv \frac{1}{2}(p^{r+1} - 1) \pmod{p^{r+1}}$$

unless $s \ge \frac{1}{2}(p^{\tau+1}-1)$, thus we have

$$\Gamma_n(k) \geqslant \frac{1}{2}(p^{r+1}-1)$$

and (ii) follows. If p=5 and $\tau=0$ the second term equals 3. Clearly we cannot solve $2x^2+y^2\equiv 0\,(\mathrm{mod}\,5)$ non-trivially and so (iii) follows. Part (iv) is trivial.

When $d^2 < p$, exponential sum techniques give good estimates for $\gamma^{\dagger}(d, p)$.

We write

$$e_{p}(b) = e^{\frac{2\pi i b}{p}},$$
 $S(b) = \sum_{x=0}^{p-1} e_{p}(bx^{a}),$
 $\tau(\chi) = \sum_{x=1}^{p-1} \chi(x) e_{p}(x),$

where χ is any Dirichlet character (mod p) and χ_0 is the principal character. It is easily shown that [8]

$$S(b) = \sum_{\chi} \overline{\chi}(b) \tau(\chi),$$

where the sum is over the d-1 non principal characters χ satisfying $\chi^d = \chi_0$; and that for non principal characters χ ,

$$|\tau(\chi)| = p^{1/2}.$$

LEMMA 3. Suppose $d^3 < p$ and $d \mid p-1$. Then

$$\gamma^{\dagger}(d,p) < 6$$
.

Proof. Suppose that for some c_1, \ldots, c_s, N we cannot solve

$$c_1 x_1^d + \ldots + c_s x_s^d \equiv N(\operatorname{mod} p).$$

We show that this implies s < 6.

We have that

$$\sum_{y=0}^{p-1}\sum_{x_1=0}^{p-1}\ldots\sum_{x_s=0}^{p-1}e_p\big(y\,(c_1x_1^d+\ldots+c_sx_s^d-N)\big)=0\,,$$

i.e. that

$$p^{s} + \sum_{y=1}^{p-1} S(yc_1) \dots S(yc_s) e_p(-yN) = 0$$

on rearranging

$$\sum_{y=1}^{p-1} \sum_{z_1} \dots \sum_{z_s} \overline{\chi}_1(ye_1) \dots \overline{\chi}_s(ye_s) \tau(\chi_1) \dots \tau(\chi_s) e_p(-yN) = -p^s$$

where χ_1, \ldots, χ_s are again summed over all the d-1 non principal characters satisfying $\chi^d = \chi_0$.

Taking the moduli we get

$$\sum_{y=1}^{p-1}\sum_{x_1}\cdots\sum_{x_g}p^{s/2}\geqslant p^s$$

and hence certainly

$$(p-1) (d-1)^s p^{s/2} \geqslant p^s, \quad d^s > p^{s/2-1}$$

But by hypothesis $d^3 < p$ and so s/3 > s/2 - 1 which implies s < 6 as required.

§ 3. Let c_1, \ldots, c_s be a finite sequence of integers. We say a set of r terms in the sequence is an (r, a, N) set if the sum of the terms is congruent to $a \pmod{N}$. Let $k = p^* dm$ as usual and consider the congruence

(6)
$$c_1 x_1^k + \ldots + c_s x_s^k \equiv N(\operatorname{mod} p^{r+1}).$$

Suppose we can find $\gamma(k, p^{\tau+1})$ disjoint $(r, a, p^{\tau+1})$ sets of the c_1, \ldots, c_s for some a not divisible by p and for some $r \ge 1$. Then by putting $x_i = x_i$

if c_i and c_j are in the same set and $x_j = 0$ if c_j is in non of the sets, we find that we can solve (6) if we can solve

$$a(x_1^k + \ldots + x_{\gamma}^k) \equiv N \pmod{p^{r+1}}$$
 where $\gamma = \gamma(k, p^{r+1})$,

which we clearly can by the definition of $\gamma(k, p^{t+1})$. The following two combinatorial lemmas give sufficient conditions to make this possible.

LEMMA 4. Let p be an odd prime and let $c_1, ..., c_s$ be a finite sequence of integers prime to p. Let γ be any positive integer and suppose

$$s \geqslant 36(\lceil \log p \rceil + 1)^4 \gamma$$
.

Then for some a prime to p and for some r we can find γ disjoint (r, a, p) sets.

Proof. Suppose c_1, \ldots, c_s is such that for all r and for all a prime to p we cannot find γ disjoint (r, a, p) sets. We shall show that this implies $s < 36(\lceil \log p \rceil + 1)^4 \gamma$. We can assume $\gamma \leq s$.

We let f(r, a) be the number of (r, a, p) sets and let

$$f(r) = \max_{a \neq 0(p)} f(r, a).$$

We find an upper bound for f(r). Suppose p does not divide a and $2 \le r \le s$, let X_1, \ldots, X_a be a maximal set of disjoint (r, a, p) sets in c_1, \ldots, c_s . Then our assumption above implies $a < \gamma$.

 $X = \bigcup_{i=1}^{a} X_i$ contains ar terms and any (r, a, p) set in c_1, \ldots, c_r must contain at least one term in X. Moreover if say c_1, \ldots, c_r is an (r, a, p) set then $a - c_1 \equiv c_2 + \ldots + c_r \pmod{p}$ and so c_2, \ldots, c_r is an $(r-1, a-c_1, p)$ set. Thus since every (r, a, p) set has at least one element c say in X, the number of (r, a, p) sets

$$f(r, a) \leqslant \sum_{r \in \mathcal{X}} f(r-1, a-e)$$
.

By hypothesis less than γ of the e can be congruent to a and so we can write

$$f(r, a) < \gamma r f(r-1) + \gamma f(r-1, 0)$$
.

And thus

(7)
$$f(r) < \gamma r f(r-1) + \gamma f(r-1, 0)$$
.

Next we estimate f(r-1, 0). For any r the number of r-tuples $(c_{i_1}, \ldots, c_{i_r})$ with $c_{i_1} + \ldots + c_{i_r} = a \pmod{p}$ is equal to r! f(r, a). For each $c_{i_1}, i_1 = 1, \ldots, s$, the number of r-tuples $(c_{i_1}, \ldots, c_{i_r})$ satisfying

$$c_{i_1} + \ldots + c_{i_n} \equiv 0 \pmod{p}$$

is equal to $(r-1)!f(r-1, -c_{i_1})$, and so we have

$$r!f(r, 0) = \sum_{i=1}^{s} (r-1)!f(r-1, -e_i),$$

which gives

(8)
$$f(r, 0) \leqslant \frac{s}{r} f(r-1).$$

Substituting (8) in (7) gives, for $3 \leqslant r \leqslant s$

(9)
$$f(r) < \gamma r f(r-1) + \frac{\gamma^8}{r-1} f(r-2),$$

and as $f(1) < \gamma$ and f(1, 0) = 0, (7) implies that

$$(10) f(2) < 2\gamma^2.$$

Now if we let

$$f(r) = \gamma^r r! \left(\frac{s}{\gamma}\right)^{(r-1)/2} g(r)$$

and substitute this in (9) we get

$$\gamma^{r} r! \left(\frac{s}{\gamma}\right)^{(r-1)/2} g(r) < \gamma^{r} r! \left(\frac{s}{\gamma}\right)^{(r-2)/2} g(r-1) + \gamma^{r-1} \frac{(r-2)!}{r-1} s \left(\frac{s}{\gamma}\right)^{(r-3)/2} g(r-2)$$

which on simplifying gives

$$g(r) < \left(\frac{\gamma}{s}\right)^{1/2} g(r-1) + \frac{1}{r(r-1)^2} g(r-2) \quad \text{for} \quad r \geqslant 3.$$

Also by (10), g(1) and g(2) are < 1. We can assume w.l.o.g.

$$\left(\frac{\gamma}{s}\right)^{1/2} < \frac{1}{2}$$
 and $\frac{1}{r(r-1)^2} < \frac{1}{2}$ if $r \ge 3$

and so by induction g(r) < 1 for all $r, 1 \le r \le s$. We get therefore

$$f(r) < \gamma^r r! \left(\frac{s}{\gamma}\right)^{(r-1)/2}.$$

Now

$$f(r, 0) \leqslant \frac{s}{r} f(r-1) < \frac{s}{r} \gamma^{r-1} (r-1)! \left(\frac{s}{\gamma} \right)^{(r-2)/2} < \gamma^{r} r! \left(\frac{s}{\gamma} \right)^{r/2}$$

and so we get that for all a and for all r

$$f(r,a) < r! (\gamma s)^{r/2}.$$

Now for any r we have that $\sum_{a=0}^{p-1} f(r, a)$ is the number of all possible sets of r terms chosen from the s coefficients and so we have

$$\sum_{a=0}^{p-1} f(r, a) = \binom{s}{r}$$

and so

$$pr! (\gamma s)^{r/2} > \frac{s!}{(s-r)!r!},$$

whence

$$pr^{2r}(\gamma s)^{r/2} > (s-r)^r.$$

Extracting rth roots we get

$$s < p^{1/r} r^2 \gamma^{1/2} s^{1/2} + r < 2 p^{1/r} r^2 \gamma^{1/2} s^{1/2}$$

and putting $r = [\log p] + 1$ we get

$$s < 6(\lceil \log p \rceil + 1)^2 \gamma^{1/2} s^{1/2}$$
.

i.e.

$$s < 36([\log p] + 1)^4 \gamma$$

as required.

LEMMA 5. Let b_1, \ldots, b_s be a finite sequence of integers, let β be any positive integer and suppose

$$s \geqslant 15(\lceil \log p^{\tau} \rceil + 1)^3 \beta$$

where p is an odd prime. Then for some a and for some r prime to p we can find β disjoint (r, a, p^{τ}) sets.

Proof. Suppose that b_1, \ldots, b_s is such that for all a, and for all r prime to p, we cannot find β disjoint (r, a, p^r) sets. We will show that this implies $s < 15(\lceil \log p^r \rceil + 1)^3\beta$. We let f(r, a) be the number of (r, a, p^r) sets and we show by induction on r that

$$f(r, a) < \beta^r r! \left(\frac{s}{\beta}\right)^{[r/p]}$$
 for all r, a .

Clearly it is true for r=1. Suppose that for some r and for all a

$$f(r-1, a) < \beta^{r-1}(r-1)! \left(\frac{s}{\beta}\right)^{[(r-1)/p]}$$

We consider 2 cases:

(i) p does not divide r. Let a be any integer and let X_1, \ldots, X_a be a maximal disjoint set of (r, a, p^r) sets. Then $a < \beta$ and $X = \bigcup_{i=1}^{n} X_i$

J. D. Bovey

On the congruence $a_1x_1^k + \ldots + a_nx_n^k = N \pmod{p^n}$

267

contains ar terms. Any (r, a, p^{τ}) set must contain some term in X and so

$$f(r,a) \leqslant \sum_{b \in \mathbb{X}} f(r-1,a-b) \leqslant ar\beta^{r-1}(r-1)! \left(\frac{s}{\beta}\right)^{\lfloor (r-1)/p \rfloor} < \beta^r r! \left(\frac{s}{\beta}\right)^{\lfloor r/p \rfloor}$$

as required.

(ii) p | r. For each i = 1, ..., s the number of (r, a, p^r) sets containing b_i is less than or equal to $f(r-1, a-b_i)$ and so we get

$$f(r, a) \leqslant \sum_{i=1}^{s} f(r-1, a-b_i) < s\beta^{r-1}(r-1)! \left(\frac{s}{\beta}\right)^{\lfloor (r-1)/p \rfloor}$$
$$< \beta^r r! \left(\frac{s}{\beta}\right)^{\left(\frac{s}{\beta}\right)^{\lfloor (r-1)/p \rfloor}} = \beta^r r! \left(\frac{s}{\beta}\right)^{\lfloor r/p \rfloor} \quad \text{as } p \mid r$$

and this again is what is required.

Now we have

$$\sum_{a=0}^{p^{\tau}-1} f(r, a) = {s \choose r}.$$

Whence

$$p^{\tau}\beta^{r}r!\left(\frac{s}{\beta}\right)^{[r/p]} > \frac{s!}{(s-r)!r!}$$

and as we can assume $s \geqslant \beta$

$$p^{\tau} \left(\beta r^2 \left(\frac{s}{\beta}\right)^{1/p}\right)^r > (s-r)^r$$
.

Extracting rth roots and taking $r = [\log p^r] + 1$ we get that

$$6\beta r^2 \left(\frac{s}{\beta}\right)^{1/p} > s$$

and so

$$6\beta^{(p-1)/p}r^2 > s^{(p-1)/p},$$

i.e.

$$6^{p/(p-1)}\beta r^{2p/(p-1)} > s.$$

But $p \geqslant 3$ and so

$$s < 6^{3/2} \beta r^3$$

or

$$s < 15 (\lceil \log p^{\tau} \rceil + 1)^3 \beta$$

as required.

THEOREM 1. For every positive integer k and every prime p we have $\Gamma_n^{\prime}(k) \ll (\log k)^{\gamma} \Gamma_n(k)$.

Proof. As usual we write $k = p^{\tau}dm$ with d = (p-1, k), p does not divide m. We can assume that p is odd because if p=2 the result follows from Proposition 1.

Suppose that $\tau = 0$ and we have c_1, \ldots, c_s prime to p with

$$s \ge 36([\log p] + 1)^4 \gamma(d, p),$$

then, by Lemma 4, we can find $\gamma(d, p)$ disjoint (r, a, p) sets of the c_i for some r and for some a prime to p. Hence we can solve

$$c_1 x_1^k + \ldots + c_s x_s^k \equiv N(\bmod p)$$

for all integers N and we have

$$\gamma^{\dagger}(d, p) \leqslant 36(\lceil \log p \rceil + 1)^4 \gamma(d, p)$$

and thus by Lemma 1

$$\Gamma_p^{\dagger}(k) \leqslant \gamma^{\dagger}(d, p) + 1 \leqslant (\log p)^4 \gamma(d, p) \leqslant (\log p)^4 \Gamma_p(k).$$

But by Lemma 3 we can assume $d^3 > p$ and so

$$\Gamma_n^{\dagger}(k) \ll (3\log d)^4 \Gamma_n(k) \ll (\log k)^4 \Gamma_n(k)$$

as required.

Now suppose $\tau \geqslant 1$ and we have c_1, \ldots, c_s prime to p with

$$s \ge 15([\log p^{\tau}]+1)^336([\log p]+1)^4\gamma(k, p^{\tau+1})$$

By Lemma 4 we can find $15([\log p^{\tau}]+1)^3\gamma(k, p^{\tau+1}) = \gamma_1$ say disjoint (r, a, p) sets X_1, \ldots, X_r , for some r and some a prime to p. Suppose

$$\sum_{c\in X_j}c=a+pb_j, \quad j=1,...,\gamma_1.$$

By Lemma 5 we can find $\gamma(k, p^{\tau+1}) = \gamma$ say disjoint (r', b, p^{τ}) sets of the b_j, Y_1, \ldots, Y_n say for some b and for some r' prime to p. If we let

$$Z_i = \bigcup_{b_i \in Y_i} X_j, \quad i = 1, ..., \gamma,$$

then the Z_i form $\gamma(k, p^{\tau+1})$ disjoint $(rr', r'a + pb, p^{\tau+1})$ sets of the c_i and pdoes not divide r'a.

If we let $x_i = x_i$ if c_i and c_i are in the same one of these sets and if we let $x_i = 0$ if c_i is in none of these sets; then we can see that we can solve

$$c_1 x_1^k + \ldots + c_s x_s^k \equiv N \pmod{p^{\tau+1}}$$

if we can solve

$$(r'a + pb) (x_1^k + \ldots + x_n^k) \equiv N \pmod{p^{r+1}}.$$

But we can always solve this by definition of $\gamma = \gamma(k, p^{\tau+1})$ and because r'a + pb is prime to p. Hence we have

$$\gamma^{\dagger}(k, p^{\tau+1}) \leqslant 15(\lceil \log p^{\tau} \rceil + 1)^{3}36(\lceil \log p \rceil + 1)^{4}\gamma(k, p^{\tau+1}) \leqslant (\log k)^{7}\gamma(k, p^{\tau+1})$$

and this, with Lemma 1, gives the result. We deduce

THEOREM 2. If k is sufficiently large and $\frac{1}{2}(p-1)$ does not divide k then

$$\Gamma_p^{\dagger}(k) < k^{7/8}$$
.

Proof. Dodson [3] proved that if $\frac{1}{2}(p-1)$ does not divide k then

$$\Gamma_p(k) \ll k^{7/8-\eta}$$

where η is a small absolute positive constant. The result follows at once from this and from Theorem 1.

If k is a positive integer we define $I^{r}(k)$ as the least s such that

$$c_1 x_1^k + \ldots + c_s x_s^k \equiv N \pmod{p^n}$$

has a primitive solution for all integers N, all prime powers p^n and all integers c_1, \ldots, c_s with $(c_i, c_j) = 1$ if $i \neq j$. We note that if $s \geqslant \Gamma^{\uparrow}(k)$ and c_1, \ldots, c_s are coprime rational integers then $c_1x_1^k + \ldots + c_sx_s^k$ represents every integer in every p-adic ring non-trivially. Clearly we have

$$\Gamma^{\dagger}(k) \leqslant \sup_{p} \Gamma_{p}^{\dagger}(k) + 1.$$

In conclusion we prove

THEOREM 3. There are an infinite number of positive integers k with

$$\Gamma^{\dagger}(k) < k^{7/8}$$
.

Proof. By Theorem 2 and Propositions 1 and 2 it is sufficient to show that there are an infinite number of odd positive integers k which are not divisible by 3 or by $\frac{1}{2}(p-1)$ for any prime $p \ge 5$. By Dirichlet's Theorem there are an infinite number of primes congruent to $1 \pmod{3}$. Suppose k is prime and $k \equiv 1 \pmod{3}$ with $\frac{1}{2}(p-1) \mid k$ for some prime $p \ge 5$. Then

$$\frac{1}{2}(p-1) = k,$$

i.e.

$$p = 2k + 1 \equiv 0 \pmod{3}$$

which is a contradiction.

Also it is not difficult to show that by virtue of Proposition 2 and Theorem 2 together with Theorem 2 in [5] that the average order of Γ^{\dagger} is the same as that of Γ . In fact we have

$$\sum_{k \le N} \Gamma^{\dagger}(k) = \frac{5\pi^2 N^2}{24 \log N} + O\left(\frac{N^2}{(\log N)^{3/2}}\right).$$

Acknowledgements. I am very grateful to Dr. Maurice Dodson for suggesting the problem and for his advice and encouragement. Also I would like to thank the Science Research Council for the Maintenance Grant on which the research for this paper was done.

References

- [1] I. Chowla, A theorem on the addition of residue classes, Proc. Indian Acad. Sci. 2 (1935), pp. 242-243.
- [2] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Michigan 1962.
- [3] M. M. Dodson, On Waring's Problem in p-adic fields, Acta Arith. 22 (1973), pp. 315-327.
- [4] Homogeneous additive congruences, Philos. Trans. Roy. Soc. London, Ser. A, 261 (1967), pp. 163-210.
- [5] The average order of two arithmetic functions, Acta. Arith. 16 (1969), pp. 71-84.
- [6] H. Halberstam and K. Roth, Sequences, Vol. 1, Oxford 1966.
- [7] G. H. Hardy and J. E. Littlewood, Some problems of Partitio Numerorum, (VIII): The number $\Gamma(k)$ in Waring's problem, Proc. London Math. Soc. 28 (1928), pp. 518-542.
- [8] I. M. Vinogradov, The Method of Trigonometric Sums in the Theory of Numbers, London 1953.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YORK Heslington, York

Received on 15, 2, 1972

(258)