ACTA ARITHMETICA XXIII (1973)

Gauss sums and the number of solutions to the matrix equation $XAX^{T} = 0$ over $GF(2^{y})$

by

PHILIP G. BUCKHIESTER (Clemson, S. C.)

1. Introduction. Let GF(q) denote a finite field of order $q=p^{\nu}$, p a prime. Let A and B be symmetric matrices of order n, rank m and order s, rank k, respectively, over GF(q). Carlitz [2] has determined the number $N_s(A,B)$ of solutions X over GF(q), for p an odd prime, to the matrix equation

$$(1.1) XAX^T = B$$

of arbitrary rank when n=m. Furthermore, Hodges [4] has determined the number N(A, B, r) of $s \times n$ matrices X of rank r over GF(q), p an odd prime, which satisfy (1.1). Perkins [6], [7] has determined the number $N_s(I_n, 0)$ of solutions X over GF(q), $q=2^y$, to the matrix equation $XX^T=0$ and has enumerated the $s \times n$ matrices X of given rank r over GF(q), $q=2^y$, such that $XX^T=0$.

The purpose of this paper is to determine the number $N_s(A, 0)$ of solutions X over GF(q), $q = 2^y$, to the matrix equation $XAX^T = 0$. In determining this number, Gauss sums, as developed in Section 2, are used. Also needed are Albert's canonical forms for symmetric matrices over fields of characteristic two ([1]).

Throughout the remainder of this paper, GF(q) will denote a finite field of order $q=2^y$ and V_n will denote an *n*-dimensional vector space over GF(q).

2. Gauss sums and alternating bilinear forms. For α in GF(q), let t be the mapping from GF(q) into GF(q) defined by $t(\alpha) = \alpha + \alpha^2 + \dots + \alpha^{2^{y-1}}$. Then t maps onto the prime subfield of GF(q). Hence, for each α in GF(q), $t(\alpha) = m \cdot 1$ where m = 0 or 1. Let e be the map from GF(q) onto the multiplicative subgroup $\{-1, 1\}$ of the reals defined by

(2.1)
$$e(\alpha) = (-1)^m$$
 where $t(\alpha) = m \cdot 1$.

Clearly, $t(\alpha+\beta) = t(\alpha) + t(\beta)$ for all α , β in GF(q). It follows that $e(\alpha+\beta) = e(\alpha) \cdot e(\beta)$ for all α , β in GF(q) and that

(2.2)
$$\sum_{\beta} e(\alpha\beta) = \begin{cases} q & (\alpha = 0), \\ 0 & (\alpha \neq 0), \end{cases}$$

where the summation in (2.2) extends over all β in GF(q). From (2.2), it follows that

(2.3)
$$\sum_{\alpha,\beta} e(\alpha\beta) = q$$

where the summation in (2.3) extends over all α , β in GF(q).

Perkins [7] has shown that

(2.4)
$$\sum_{B} e(\sigma(DB)) = \begin{cases} \frac{s(s+1)}{2} & (D=0), \\ 0 & (D\neq 0), \end{cases}$$

where D is an $s \times s$ symmetric matrix, where the sum extends over all $s \times s$ upper triangular matrices B, and where $\sigma(DB)$ denotes the trace of the matrix DB.

Let f be a symmetric bilinear form on $V_n \times V_n$. Let $V_n^* = \{y \in V_n | f(x,y) = 0 \text{ for all } x \text{ in } V_n\}$. We say that f is nondegenerate if $V_n^* = \{0\}$. Clearly, V_n^* is a subspace of V_n . The rank of f is defined to be n-dim V_n^* . f is said to be an alternating bilinear form if f(x,x) = 0 for all x in V_n . An alternate matrix over GF(g) is a symmetric matrix with 0 diagonal. Chevalley [3] has shown that for each nondegenerate alternating bilinear form f on $V_n \times V_n$, there exists a basis for V_n such that, relative to that basis, $f(\xi,\eta) = \xi D\eta^T$ for all ξ,η in V_n , where

$$D = \begin{bmatrix} 0 & I_r \\ I_r & 0 \end{bmatrix},$$

an alternate matrix of rank 2r. Chevalley [3] has also shown that if f is a bilinear form of rank t on $V_n \times V_n$ and if $f(\xi, \eta) = \xi A \eta^T$ for all ξ, η in V_n , then the matrix rank of A is t. It follows that if f is a degenerate alternating bilinear form of rank p on $V_n \times V_n$, then there exists a basis such that, relative to that basis, $f(\xi, \eta) = \xi D \eta^T$ for all ξ, η in V_n where

$$D = \begin{bmatrix} 0 & I_r \\ I_r & 0 \\ & & 0 \end{bmatrix}$$

and, hence, p = 2r.

Albert [1] has proved the following theorems:

THEOREM 2.1. Every matrix congruent to an alternate matrix is an alternate matrix.

THEOREM 2.2. Let D be an $s \times s$ nonsingular alternate matrix over GF(q). Then there is a nonsingular matrix P such that

$$PAP^{T} = \begin{bmatrix} 0 & I_{r} \\ I_{r} & 0 \end{bmatrix}.$$

THEOREM 2.3. Let D be an $s \times s$ alternate matrix of rank p over GF(q). Then there is a nonsingular matrix P such that

$$PAP^T = egin{bmatrix} 0 & I_r \ I_r & 0 \ & 0 \end{bmatrix} \quad (p = 2r).$$

THEOREM 2.4. If A is an $s \times s$ symmetric, nonalternate matrix of rank r over GF(q), then there is a nonsingular matrix P such that

$$PAP^T = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}.$$

Let D be an $s \times s$ matrix over GF(q) and let g_D be the bilinear form defined by $g_D(\xi, \eta) = \xi D\eta^T$. Define

(2.5)
$$T(g_D) = \sum_{\xi,\eta} e[g_D(\xi,\eta)],$$

where the summation extends over all ξ , η in V_s .

THEOREM 2.5. Let D be an $s \times s$ alternate matrix over GF(q). If $M = PDP^T$ for a nonsingular matrix P, then $T(g_M) = T(g_D)$. Furthermore, if D is of rank 2r, then $T(g_D) = q^{2(s-r)}$.

Proof. We have

$$\begin{split} T(g_M) &= \sum_{\xi,\eta} e[g_M(\xi,\eta)] \\ &= \sum_{\xi,\eta} e[\xi M \eta^T] = \sum_{\xi,\eta} e[(\xi P) D(\eta P)^T] \\ &= \sum_{\gamma,\delta} e[\gamma D \delta^T] = \sum_{\gamma,\delta} e[g_D(\gamma,\delta)] = T(g_D), \end{split}$$

since P is nonsingular.

By Theorem 2.3, if D is of rank 2r, there is a nonsingular matrix P such that

$$PDP^{T} = \begin{bmatrix} 0 & I_r \\ I_r & 0 \\ & & 0 \end{bmatrix}.$$

275

Thus, $T(g_R) = T(g_R)$, where

$$R = \begin{bmatrix} 0 & I_r \\ I_r & 0 \\ & 0 \end{bmatrix}.$$

But

$$g_R(\xi,\eta) = \xi R \eta^T = \sum_{i=1}^r \xi_i \eta_{r+i} + \sum_{i=1}^r \xi_{r+i} \eta_i.$$

Hence,

$$\begin{split} T(g_D) &= T(g_R) = \sum_{\xi_1, \dots, \xi_S \in \mathrm{GF}(q)} e \left[g_R(\xi, \eta) \right] \\ &= \sum_{\substack{\xi_1, \dots, \xi_S \in \mathrm{GF}(q) \\ \eta_1, \dots, \eta_S \in \mathrm{GF}(q)}} e \left[\sum_{i=1}^r \xi_i \eta_{r+i} + \sum_{i=1}^r \xi_{r+i} \eta_i \right] \\ &= \sum_{\substack{\xi_1, \dots, \xi_S \in \mathrm{GF}(q) \\ \eta_1, \dots, \eta_S \in \mathrm{GF}(q)}} \left[\prod_{i=1}^r e(\xi_i \eta_{r+i}) \right] \cdot \left[\prod_{i=1}^r e(\xi_{r+i} \eta_i) \right] \\ &= \sum_{\substack{\xi_{2r+1}, \dots, \xi_S \\ \eta_{2r+1}, \dots, \eta_S}} \left[\prod_{i=1}^r \sum_{\xi_i, \eta_{r+i}} e(\xi_i \eta_{r+i}) \right] \cdot \left[\prod_{i=1}^r \sum_{\xi_{r+i}, \eta_i} e(\xi_{r+i} \eta_i) \right] \\ &= \sum_{\substack{\xi_{2r+1}, \dots, \xi_S \\ \eta_{2r+1}, \dots, \eta_S}} \left[\prod_{i=1}^r q \right] \cdot \left[\prod_{i=1}^r q \right] \quad \text{by (2.3)} \,. \end{split}$$

Thus, $T(g_D) = q^{(s-2r)} \cdot q^{(s-2r)} \cdot q^{2r} = q^{2(s-r)}$. Define

(2.6) $\mathscr{B}_0 = \{B \mid B \text{ is an } s \times s \text{ upper triangular matrix with 0 diagonal}\}$ and

(2.7)
$$\mathscr{A} = \{D \mid D \text{ is an } s \times s \text{ alternate matrix}\}.$$

Let M(s, 2r) denote the number of $s \times s$ upper triangular matrices B such that rank $(B+B^T)=2r$. Let K(s, 2r) denote the number of B in \mathscr{B}_0 such that rank $(B+B^T)=2r$. Let $L_0(s,t)$ denote the number of D in \mathscr{A} of rank t.

MacWilliams [5] has found that

(2.8)
$$L_0(s,t) = \begin{cases} 0 & \text{(if } t \text{ is odd),} \\ \prod_{i=1}^r \frac{q^{2i-2}}{q^{2i}-1} \prod_{i=0}^{2r-1} (q^{s-i}-1) & \text{(if } t = 2r). \end{cases}$$

Theorem 2.6. The mapping τ from \mathscr{B}_0 into \mathscr{A} defined by $\tau(B) = B + B^T$ is a one-to-one mapping onto \mathscr{A} . For each $r = 0, 1, \ldots, \lceil s/2 \rceil$, where $\lceil s/2 \rceil$ denotes the largest integer not exceeding s/2, define $\mathscr{B}_0(r) = \{B \in \mathscr{B}_0 \mid rank \ (B+B^T) = 2r\}$ and define $\mathscr{A}(r) = \{D \in \mathscr{A} \mid rank \ D = 2r\}$. Then τ_r , the restriction of τ to $\mathscr{B}_0(r)$, is a one-to-one mapping onto $\mathscr{A}(r)$ for each $r = 0, 1, \ldots, \lceil s/2 \rceil$.

Proof. Clearly, τ has its range in $\mathscr A$ and is onto. If B_1 and B_2 are in $\mathscr B_0$ and if $\tau(B_1) = \tau(B_2)$, then $B_1 + B_1^T = B_2 + B_2^T$. Thus $B_1 + B_2 = B_1^T + B_2^T$, from which it follows that $B_1 + B_2$ is upper triangular and lower triangular. Since $B_1 + B_2$ has 0 diagonal, $B_1 + B_2 = 0$. Thus $B_1 = B_2$.

For any $r=0,1,\ldots, \lceil s/2 \rceil$, it is clear that τ_r is one-to-one. Choose any D in $\mathscr{A}(r)$. Since τ is onto, there is a B in \mathscr{B}_0 such that $\tau(B)=B+B^T=D$. Since D is in $\mathscr{A}(r)$, rank $(B+B^T)=\mathrm{rank}\ D=2r$. Thus, $B\in\mathscr{B}_0(r)$, and it follows that τ_r is onto $\mathscr{A}(r)$.

Since K(s, 2r) is the number of elements in $\mathscr{B}_0(r)$ and $L_0(s, 2r)$ is the number of elements in $\mathscr{A}(r)$, Theorem 2.6 yields

(2.9)
$$K(s, 2r) = L_0(s, 2r)$$
 for each $r = 0, 1, ..., \lceil s/2 \rceil$.

LEMMA 2.1. $M(s, 2r) = q^s L_0(s, 2r)$, for each $r = 0, 1, ..., \lceil s/2 \rceil$.

Proof. If B is any matrix from $\mathcal{B}_0(r)$ and if C = B + D, where D is any $s \times s$ diagonal matrix, then $B + B^T = C + C^T$ from which it follows that rank $(C + C^T) = 2r$. Thus, $M(s, 2r) = q^s K(s, 2r) = q^s L_0(s, 2r)$ by (2.9).

The following lemma will be needed in Sections 3 and 4.

LEMMA 2.2. Let A be any $n \times n$ symmetric matrix. If there is a nonsingular matrix P such that $PAP^T = C$, then $N_s(A, 0) = N_s(C, 0)$.

Proof. Clearly $XCX^T = 0$ if and only if $YAY^T = 0$ where Y = XP. Since P is nonsingular, the result follows.

3. Determination of $N_s(A, 0)$, A a nonalternate symmetric matrix. Perkins [7] has found the number $N_s(I_n, 0)$ of $s \times n$ matrices X over GF(g) such that $XX^T = 0$.

Let A be any $n \times n$ nonalternate symmetric matrix of rank ϱ . By Theorem 2.4, there is a nonsingular matrix P such that

$$PAP^{T} = \begin{bmatrix} I_{e} & 0 \\ 0 & 0 \end{bmatrix}.$$

By Lemma 2.2, $N_s(A, 0) = N_s(C, 0)$, where

$$C = \begin{bmatrix} I_{\varrho} & 0 \\ 0 & 0 \end{bmatrix}.$$

Consider the equation

$$(3.1) XCX^T = 0.$$

27

Let $X = [X_1, X_2]$, where X_1 is $s \times \varrho$ and X_2 is $s \times (n - \varrho)$. Then, (3.1) becomes

$$0 = XCX^{T} = [X_{1}, X_{2}] \begin{bmatrix} I_{q} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = X_{1}X_{1}^{T}.$$

Thus, if $X_1X_1^T = 0$ and X_2 is any $s \times (n - \varrho)$ matrix, then $X = [X_1, X_2]$ satisfies (3.1). The number of ways to choose X_2 is $q^{s(n-\varrho)}$.

This proves the following theorem.

THEOREM 3.1. Let A be an $n \times n$ nonalternate symmetric matrix of rank ϱ . Then the number of $s \times n$ matrices X over GF(q) such that $XAX^T = 0$ is

$$N_s(A, 0) = q^{s(n-e)} N_s(I_q, 0).$$

4. Determination of $N_s(A, 0)$, A alternate. Let A be an $n \times n$ alternate matrix of rank t. By Theorem 2.3, there is a nonsingular matrix P such that

$$PAP^T = egin{bmatrix} 0 & I_\varrho \ I_\varrho & 0 \ 0 \end{bmatrix}, \quad t=2\,\varrho\,.$$

By Lemma 2.2, $N_s(A, 0) = N_s(R, 0)$ where

$$R = egin{bmatrix} 0 & I_e \ I_e & 0 \ & 0 \end{bmatrix}.$$

Thus, it suffices to find $N_s(R,0)$. Since R is symmetric, XRX^T is symmetric. Hence, by (2.4), $\sum_B e\left(\sigma(XRX^TB)\right) = q^{-\frac{s(s+1)}{2}}$ if and only if $XRX^T=0$, and $\sum_B e\left(\sigma(XRX^TB)\right) = 0$ otherwise, where the summation extends over all $s \times s$ upper triangular matrices B. Thus

(4.1)
$$\sum_{B} \sum_{X} e(\sigma(XRX^{T}B)) = \sum_{X} \sum_{B} e(\sigma(XRX^{T}B)) = N_{s}(R, 0) q^{\frac{s(s+1)}{2}}.$$

A simple calculation shows that

(4.2)
$$\sigma(XRX^TB) = \sum_{k=1}^{e} \left[\sum_{j=1}^{s} \sum_{i=1}^{s} x_{i,\varrho+k} b_{ji} x_{jk} \right] + \sum_{k=\varrho+1}^{2\varrho} \left[\sum_{i=1}^{s} \sum_{d=1}^{s} x_{i,k-\varrho} b_{ji} x_{jk} \right].$$

Let g_B be the bilinear form defined by $g_B(x, y) = xBy^T$ for all x, y in V_s . Then, $g_B(x, y) = \sum_{i=1}^s \sum_{j=1}^s x_i b_{ij} y_j$. Thus, (4.2) becomes

(4.3)
$$\sigma(XRX^TB) = \sum_{k=1}^{e} g_B(x_k, x_{e+k}) + \sum_{k=e+1}^{2e} g_B(x_k, x_{k-e}).$$

Hence,

$$\begin{split} \sum_{B} \sum_{X} e\left(\sigma(XRX^{T}B)\right) &= \sum_{B} \sum_{X} e\left[\sum_{k=1}^{\varrho} g_{B}(x_{k}, x_{\varrho+k}) + \sum_{k=\varrho+1}^{2\varrho} g_{B}(x_{k}, x_{k-\varrho})\right] \\ &= \sum_{B} \sum_{X} \left[\prod_{k=1}^{\varrho} e\left(g_{B}(x_{k}, x_{\varrho+k})\right)\right] \left[\prod_{k=\varrho+1}^{2\varrho} e\left(g_{B}(x_{k}, x_{k-\varrho})\right)\right] \\ &= \sum_{B} \sum_{X} \prod_{k=1}^{\varrho} e\left(g_{B}(x_{k}, x_{\varrho+k})\right) \cdot e\left(g_{B}(x_{\varrho+k}, x_{k})\right). \end{split}$$

Thus, (4.1) becomes

$$(4.4) N_s(R, 0) q^{\frac{s(s+1)}{2}} = \sum_B \sum_X \prod_{k=1}^{e} e(g_B(x_k, x_{e+k})) \cdot e(g_B(x_{e+k}, x_k)).$$

Let $X = [x_1^T, ..., x_n^T]$, where $x_k = (x_{1k}, ..., x_{sk}), 1 \le k \le n$. Furthermore, let $\sum_{x_k^T}$ indicate a sum extending over all vectors x_k in V_s . Then (4.4)

becomes

$$\begin{split} (4.5) \qquad & N_s(R,\,0)\,q^{\frac{s(\theta+1)}{2}} \\ &= \sum_B \sum_{x_1^T} \dots \sum_{x_n^T} \Bigl[\prod_{k=1}^{\varrho} e \left(g_B(x_k,\,x_{\varrho+k}) \right) \cdot e \left(g_B(x_{\varrho+k},\,x_k) \right) \Bigr] \\ &= \sum_B \sum_{x_{2\varrho+1}^T} \dots \sum_{x_n^T} \Bigl[\prod_{k=1}^{\varrho} \sum_{x_k^T} \sum_{x_{\varrho+k}^T} e \left(g_B(x_k,\,x_{\varrho+k}) \right) e \left(g_B(x_{\varrho+k},\,x_k) \right) \Bigr]. \end{split}$$

Next, consider

$$\begin{split} \sum_{\xi} \sum_{\eta} e\left(g_B(\xi, \eta)\right) e\left(g_B(\eta, \xi)\right) \\ &= \sum_{\xi, \eta} e\left[\xi B \eta^T + \eta B \xi^T\right] = \sum_{\xi, \eta} e\left[\xi B \eta^T + \xi B^T \eta^T\right] \\ &= \sum_{\xi, \eta} e\left[\xi (B + B^T) \eta^T\right] = \sum_{\xi, \eta} e\left[g_{B + B^T}(\xi, \eta)\right] \\ &= T(g_{B + B^T}), \quad \text{where } T(g_D) \text{ is as defined in (2.5).} \end{split}$$

Thus, (4.5) becomes

$$(4.6) N_s(R, 0) q^{\frac{s(s+1)}{2}} = \sum_B \sum_{\substack{x_{2g+1}^T \\ x_n^T}} \dots \sum_{\substack{x_n^T \\ x_n^T}} \left[\prod_{k=1}^c T(g_{B+B}T) \right]^e$$

$$= q^{s(n-2\varrho)} \sum_B \left[T(g_{B+B}T) \right]^e.$$

ACTA ARITHMETICA XXIII (1973)

Since M(s, 2r) denotes the number of $s \times s$ upper triangular matrices such that rank $(B+B^T)=2r$, it follows from Theorem 2.5 that

$$(4.7) N_s(R,0)q^{\frac{s(s+1)}{2}} = q^{s(n-2\varrho)} \sum_{r=0}^{\lfloor s/2 \rfloor} M(s,2r) (q^{2(s-r)})^{\varrho}.$$

From Lemma 2.1, it follows that

$$(4.8) N_s(R,0)q^{\frac{s(s+1)}{2}} = q^{s(n-2\varrho)} \sum_{r=0}^{[s/2]} q^s L_0(s,2r) (q^{2(s-r)})^{\varrho}.$$

This completes the proof of the following theorem.

THEOREM 4.1. Let A be an $n \times n$ alternate matrix of rank 2ϱ over GF(q). The number of $s \times n$ matrices X over GF(q) such that $XAX^T = 0$ is

$$N_s(A,0) = rac{q^{s(n+1)}}{q^{rac{s(s+1)}{2}}} \sum_{r=0}^{[s/2]} L_0(s,2r) q^{-2\varrho r}$$

where $L_0(s, 2r)$ is given by (2.8).

References

- [I] A. A. Albert, Symmetric and alternate matrices in an arbitrary field, I, AMS Trans. 43 (1938), pp. 386-436.
- [2] L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), pp. 123-137.
- [3] C. Chevalley, The algebraic theory of spinors, New York 1954.
- [4] J. H. Hodges, A symmetric matrix equation over a finite field, Math. Nachr. 30 (1965), pp. 221-228.
- [5] J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), pp. 152-164.
- [6] J. C. Perkins, Rank r solutions to the matrix equation XX* = 0 over a field of characteristic two, Math. Nachr. 48 (1971), pp. 69-76.
- [7] Gauss sums and the matrix equation $XX^T = 0$ over fields of characteristic two, Acta Arith. 19 (1971), pp. 205-214.

CLEMSON UNIVERSITY Clemson, South Carolina

Slowly growing sequences and discrepancy modulo one

R. C. BAKER (London)

§ 1. Introduction. Let $y_1, y_2, ..., y_k$... be numbers in the interval

$$[0,1) = \{x \colon 0 \leqslant x < 1\}.$$

We say that $y_1, y_2, ...$ is a uniformly distributed sequence if for any [a, b) $(0 \le a < b \le 1)$, the number k' of $y_1, ..., y_k$ falling in [a, b) satisfies

$$(1.1) k' = (b-a)k + o(k) as k \to \infty.$$

One can prove [3] that if (1.1) is true for all a and b ($0 \le a < b \le 1$), it holds uniformly in a and b: that is, the discrepancy D(k) of the sequence $(y_k)_{k=1}^{\infty}$, defined by

$$(1.2) D(k) = \sup_{0 \leqslant a < b \leqslant 1} \left| \frac{k'}{k} - (b - a) \right|,$$

satisfies $\lim_{k \to \infty} D(k) = 0$.

The behaviour of D(k) is closely related to that of the exponential sums

$$(1.3) s(k,h) = \Big| \sum_{i=1}^k e^{2\pi y_i h} \Big| (k \geqslant 1, h \geqslant 1).$$

It can be shown that

(1.4)
$$\lim_{k \to \infty} D(k) = 0 \quad \text{iff } \lim_{k \to \infty} \frac{s(k, h)}{h} = 0 \quad \text{for all } h \geqslant 1$$

and, more precisely,

(1.5)
$$\frac{1}{2\pi} \sup_{h \geqslant 1} \frac{s(k,h)}{h} \leqslant kD(k) \leqslant 150 \left(\frac{k}{m+1} + \sum_{h=1}^{m} \frac{s(k,h)}{h} \right)$$

for all integers $m \ge 1$ ([7], Theorem III and [1], p. 14). Now suppose that

$$\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n \leqslant \ldots$$