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). Introduction. Let GF(q) denote a finite field of order q = pY,
P & prime. Let A and B be symmetric matrices of order , rank m and
order 8, rank k, respectively, over GF(g). Oarlitz. [2]1 has determined the
number N (4, B) of solutions X over GF(g), for p an odd prime, to the
matrix equation .

(1.1) XAXT — B

of arbifrary rank when n = m. Furthermore, Hodges [4] has determined
the number ¥ (4, B, r) of s x » matrices X of rank r over GF(g), » an odd
prime, which satisfy (1.1). Perkins [6], [7] has determined the namber
Ng(I, 0) of solutions X over GF(g), g = 2% to the matrix equation
X X7 =0 and has enumerated the s x n matrices X of given rank r over
GF(q), ¢ = 2¥ such that XX7 = (.

The purpose of this paper iy to determine the number N,(4,0) of
solutions X over GI'(g), ¢ = 27, to the matrix equation XAXT = . In"
determining this number, Gauss sums, as developed in Bection 2, are
used. Also needed are Albert’s canonical forms for symmetric matrices
over fields of characteristic two ([1]). ' ‘

Throughout the remainder of thiy paper, GF(¢) will denote a tinite
field of order ¢ = 2¥ and V, will denote an n-dimensional vector space
over GF(g). .

2. Gauss sums and alternating bilinear forms. For « in GF (q), let ¢
be the mapping from GF(g) into GF(g) defined by #(a) = a-+a2-L...
oo, Then ¢ maps onto the prime subfield of GF(¢). Hence, for each
ain GF(q), {(a) = m-1 where m = 0 or 1. Let ¢ be the map from GF(q)
onto the multiplicative subgroup {—1,1} of the reals defined by

@.1) 6(a) = (—1)™ where #(a) = m 1.
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Cleazly, t(a?}—ﬁ) = t{a)+4(f) for all a, g in GF(g). Tt follows that e(a+ p)
= ¢(a)-¢(p) Tor all o, B in GIF{g) and that

Q (¢ = 0),
20t = (a#0),

where the summauon in (2.2) extends over all ﬂ in GF(¢g). From (2.2),
it follows that

(2.3)

(2.2)

Sle(ap) =4
af

where the summation in (2.3) extends over all a, § in GF (q).
Perking [7] has shown that
g{s-+1)
: D=0
0 (D 3£ 0),

B
where D is an ¢ X s symmetric matrix, where the sum extends over all
8 x s upper triangular matrices B, and where o(DB) denotes the trace
" of the matrix DB, .

- Let f be a symmetric bilinear form on V,, X V. Liet Vi, = {ye V.| f(z, v}
= 0 for all @ in. V,.}. We say that f is nondegenerate it V) = {0}. Clearly,
¥, is a subgpace of ¥,,. The rank of f is defined to be n-dim V. fis said
to be an alternating bilinear form it f{z, @) = 0 for all w in V,,. An allernate
matris over GEF(¢) is a symmetrie matrix with 0 diagonal. Chevalley [31
has shown that for each nondegenerate alternating bilinear form f on

- Vux ¥y, there exists a basis for V, such that, relative to that basis,
&, 5) = El)n’f for all & n in V,, where

= . [0 1]
D =
I. 0

an alternate matrix of rank 2s. Chevalley [3] has also shown that if f
is a bilinear form of rank ¢ on V, x V,, and if f(£, 5) = £An” for all & 5

in V,, then the matrix rank of 4 ig ¢. Xt follows that 1f Fisa degenmmo
alternating bilinear form of rank p on. V% ”VM then there exists a basis
such that, relative to that basis, (&, %) = £Dy" for all & » in V, where

0 I,
I, 0
0

(2.4)

D=

and, hence, p = 2r,
Albert [1] has proved the following theorems:

THEOREM 2.1. Bvery mairiz _congruent o an allernate matriz is an
aliernate matriz.
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THROREM 2.2. Let D be an s % s nonsing gular alternate matrie over
GI(q): Then there is ¢ nonsingwlar matric P such th
) ol

papr - |° 7]
: I, 0

TrozoriM 2.3. Let D be an s X s alternate matriz of rank p over GF(g).
Then there is a w,oqf.',%fnr}nmr wmatrie P sueh that
0 I,,.
PAPY =T 0 (p = 27).
0

TumoreM 2.4. Tf A is an s % s symmetric, nonalternate matriz of rank r

 over GF(q), then there is a nonsingular matrie P such that

PAPY = Lo .
’ U

Let D be an s X § matrio over GF(g) and let g, be the bilinear form
defined by gp(&,n) = £Dy%. Define

Tgp) = D elgnl&, )1,

£

(2.5)

where the summation exiends over oll £, 5 in V,.

TuroREM 2.5. Let D be an sx s alternate matriz over GF(g). If M
= POP" for u w,ow,sw gular matric P, then T(g,) = T(gﬂ) Furthermore,
if D s of vamk 2, then T{g,) = qg(‘"‘”’)

Proof, We ha.ve

D elgadé, )

St

 Meledy™] = 3 e[(eF) D (nP)7]

& 1

T(g3) =

o DelyDst) = Ze[gp 7y O = 2Lgo),

L

sinee P iy nounsingular,
By Theorem 2.3, if 1) is of rank 29 there is a nonsmgular matrix P
such that
0 I

PDPY = l:I,, 0
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Thus, T(gp) == T'{ggr), where

But
g€, 1) = EByT = ;Em“ FZ Eraitli-
Hence, B -
T(gp) = T(gn) = g;e[gx(é, 7))

== 2 [2 Eifra +z €rs ;"?w,]

£l aves Ege BT Fum ]
nl”..,nﬁeGF{ } ‘

-3

r

“T"”(‘EWW)] ' [ﬁe(frw’?i)]

neRs =
r
= Z [” G(EL??J“M] [” L_‘ 6 1 1,'?71')]
e UL BT AT, bl frgpgty
Tigp1r -0 Wy
- X [[I4{]d v es.
S9p 1y eenn by E=1" i=]

Nopdls s tig

Thus, T{gp) = ¢ ¢#=2) . g% = ¢2e=1) Define

(2.6) @, == {B| B is an s % s upper triangulaxr matriz with 0 diagonal}
and ' “
“{2.7) & ={D| D is an sx¢ alternate matrix},

Let M(s, 2+) denoj;e the number of s X § upper mmngulm matrices B such
that rank (B-B%) = 2v. Let K(s, 2r) denote the number of B in #

such that rank (B4 B”) = 2r. Let Ty (s, t) denote the nuraber of D in &

of rank #,
. MaeWilliams [5] has found that
_ 0 o (if ¢is odd),
A{2.8) Lo(s, ) =1 L g2 fr=3 . :
o H 1” ¢71) (i 1 = 27).
=1 =0 .
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THEOREM 2.6. The mapping v from %, into sf defined by v(B) =
8 @ one-lo-one mapping onto . For each r = 0,1, .
denotes the largest integer not emceeding s/2, define Q = {Be B,| rank
(B+BY) = 2r} and define o (r) = {Dest| rank D = 2?} Then t,, the

restriction of © to By(r), is & one-lo-one mapping onto = () for each v = 0, 1,
..y [8/2]. '

Proof, Clearly, v has its range in o and is onto. If B, and B, are in
Boand i 7(B,) = v(B,), then B, + Bf = B,+ BY. Thus B,+B, = BF + BY,
from which it follows that B, + B, is upper triangular and lower triangular.
Since By+ B, has 0 diagonal, B,+B, = 0. Thus B, = B,.

For any r = 0,1, ..., [5/2], it is clear that =, is one-to-one. Choose
any D in #(r). Since 7 is onto, there is a B in #, such that t(B) = B-+ BT
= D. Since D i in & (r), rank (B+ B?) = rank D = 2r. Thus, Be Fo(r),
and it follows that =, is onto ().

Since K (s, 2r) is the nwmber of elements in @,(r) and T{s, 27)
is the number of elements in & (r), Theorem 2.6 yields

(2.9) K(s,27) = Ly(s, 2) s [8/2].

Lmvyma 2.1, M(s, 2r) = ¢"Ly(s, 27), for each r = 0,1, ..., [3/2].

Proof. If B is any matrix from #£,(r) and if ¢ = B+ D, where D
is any s x s diagonal matrix, then B-- BT = ¢+ (T f10m which it follows
that rank (04 C%) = 2¢, Thus, M 8,21 = @K (s, 2r) = ¢°Ly{s, 27) by
2.9).
( )The following lemma will be needed in Sections 3 and 4.

Lemya 2.2, Let A be any n x n symmetric matriz. If there 45 a nonsin-
gular matric P such that PAPT = C, then N (4, 0) = N (C, 0).

Proof. Clearly XOX* = 0 if and only if ¥AY” = ( where ¥ = XP.
Since P iz nongingular, the result follows.

B+ BT
. [3/2], where [5/2]

for each r =0, 1,

3. Determination of ¥,(4,0), A a nonalternate symmetric matrix.
Porking [7] has found the number N (I,, 0) of s x« mafrices X over

GF(q) such that XXT = 0.
Let 4 be any » X n nonalternate symmetric matrix of mnk ¢. By
Theorem 2.4, there is & nonsingular matrix P such that

PAPY = I‘-’G.
00

= N,(C, 0), where
I,0
=1y ol

X0XT =0

By Lemma 2.2, N, (4, 0)

Congider the equation
(8.1)



276 Philip G. Buckhiester

= [X,, X;}, where &, s sx ¢ and X; 18 8 (n— ). Then, (3.1)

X,
= X, X%,
o ol]x,

Thus, if X;X¥ = 0 and X, is any s X (n— p) matrix, then X =
satisfies (3.1). The number of ways to chooge X, Is ¢¢a,
This proves the following theorem.
ToeoreM 3.1. Let A be an n X n nonllernale symmetric matrie of
rank . Then the number of s X n matrices X over GF (q) such that X AX? = ¢
18

Let X =
becomes

0 = XOX" = [Xy, Xz]

-N,-;(Aﬂ 0) == Qg(nwe)Ns(rw 0)'

4. Determination of ¥, (4, 0), 4 alternate. Let 4 be an # x # alternate
matrix of rank ¢. By Theorem 2.3, there is a nousingunlar matrix P such
that

0 I,
PAPY =1, 0 , t=2p.
0
By Lemma 2 2 Ny (4,0) = NJ(R, 0) where
0 1,
=1, 0 |
0

Thus, it suffices to find N, (R, 0). Since B iy symmetrie, XRX” is symmeb-
s(s-;-l)_
2.4) Ze( o(XRXTB)) = ¢ * if and only if XRXT =

and ‘}, (7(XREX*B)) = 0 otherwise, where the summation extends over

ric. Hence, by |

all s >< § upper triangnlar matrices £. Thus

33

A gimple calculation shows that

(XRXT - 2[2 2 Py, rlabﬂmﬂr]

Rl =l fu=]

#{341)

Y IRXTB) = 3] Slo(o(XRXTB)) = Ny(B, 0)q * .
X B

(+.2) 2 | 2 S by

Homeg-k) F==l 'iml

Let g5 e the bilinear form defined by gz(x, ) } = wBy” for all @, yin V.
Then, gz(z, y) = 2, Z #ihyy; . Thus, (4.2) becomes

2

Il

(43) . O-(XRXT N gﬂ(mk? wl‘c-—ﬂ)'

=041

g
2 mk; ok ‘f‘
k=1 k

[y, X1
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Hence,

Z 2 e G‘(XRXTB Zﬁ [Z I5(@y B p) + j 95 (2, mk—g)]
P g hogtl
[ e(gB(mkr %4-}4))] [ H e(gB(ﬂ’k: wk—e))]

k=1 F=p+1

]

i

fi
Sl N uM
Mg M
—l~

5

695 (24, m,00)) 0 (98(@prs 22)).

Thas, (4.1) becomes

s(8+1)
Ny(B,0)g *

(4.4)

22 Ye 9';;; Tps Torn } "’.(Q'B{mﬁk’ ).
k=1

B X

Let X = [a{, ..., 23], where @, = (2y, ..., #4), 1 < k < n. Furthermore,

let ) indicate a sum extending over all vectors «, in V,. Then (4.4)
i]

Tk
becomes
s{a-F1)
{4.5) NJ(R,0g *
N
=ZZ .- 2[”3(93(%:mg+k))‘3(9’}3(%+kamk))]
B m;t “f E=1.

Z 2 (93(“"1;7 Q+J’c)) (Q’B( Borky mk))]

T T k=1 T
Typ1 oy, o7, me-{-k
Next, consider
22 (95(£, m)elgsin, &)
= X oLEB - nBE] = Do [4By 4 ¢BTo]
&1 & _
= 2 oLE(B + B = D e[gn.5r(&; )]
&n
----- I (gnenr), - where T'(gp) is as defined in {2.5).

Thug, (4.5) becomes
s(a+1)

2 ~2 2 ZI;[”T(Q'B-FBT]

k=
"”29-1-1

— ¢ 3 [T{gn,a) P
i

(4.6) N, (R
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Since M (s, 2#) denotes the number of s xXs upper triangular matrices
such that rank (B4 BT) = 2r, it follows from Theorem 2.5 that

= sls+1) {821
{(4.7) N,(R,0)q 7 q-‘if’ﬂ-nw) 2 M(s 2?,)( 2(s-r))g
Fenll

From Lemma 2.1, it follows that

a{g-+1) faf21

(4.8) No(B,00g * =070 Y@ Lo(s, 20) (P60)0

el

This comopletes the proof of the following theorem.
TuroREM 4.1. Let A be an n X n aliernate matriw of rank 2 ¢ over GF(g).
The number of s x n matrices X over GT(q) such that XAXY =0 ¢s

g.!.‘r(n+1) [872] ‘
S Z Lo(s, 27) g~

2 rei
q

Ne(4,0) =

where Lyls, 29) is given by (2.8).
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Slowly growing sequences and discrepancy modulo one
by '
R. C. BAsxer (London)

§ 1. Introduction. Lebt #.,¥%,, ..., ¥; ... be numbers in the interval
[0,1) = {&: 0 <& <1} -

We say that vy, ¥e, ... 8 a wuniformly distributed sequence it for any

[a, b) (0 < & < b < 1), the number k' of yy, ..., ¥ falling in [a, b) satisfies
(1.1) K = (b—a)k+o(k) a8 k- co.

One can prove [3] that if (1.1} is trueforalle and b (0 < & < b <3),
it holds uniformly in @ and b: that is, the discrepancy D(k) of the sequence
(¥3)5uy, defined by

*

(1.2) D(k) = sup E_——(b—a) ,

1 a<bsy

satisties im.D (k) =
k—co

The behaviour of I)(L) is closely related to that of the exponential
sums

k
{1.3) sk, h) = lZijh

Je=1

(=1, A1),

It can be shown that

ke, 1
(1.4) lmD(k) =0 iff lim S0

] k~rco !

=0 forall h=1

and, more precisely,

1 (k, h) Ok = s(k, h-))
(1.5) oo mp—Tgrm(k)gmo(mH +Z A

il

for all integers m = 1 ([7], Theorem III and. [1], p. 14).
Now suppose that

(1.6) zlgﬂzg...gz,,g...



