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Some r_esﬁl't__s on the disfribution of additive
arithmetic functions, I1
by
G. Joamsm BABU (Caleutta)

Introduction. Let f be a real-valued additive arithmetic function.
In this paper we characterize the spectrum of the digtribution of {f(n)—
—f(fn,-l—l),...,f(n+h-—1)'—f(n+k)} whenever the above distribution
exists, where % is a positive integer. We obtain s theorem of Erdos and
A. Bchinzel [3] as a corollary of one of our Propositions. Under wvery
general conditions we shall show that, for any m > 1, {f: (Fl(m)),
cooy Ju [Ty (m))} belongs to the spectrum of the distribution of {filFo(n)}, ...
oy Ja[TR(m))} if it exists, where f;, .-y Jn are real additive arithmetic
functions and ¥y, ..., F, are positive integer-valued polynomials. In the
last section we give a sufficient condition. for an additive arithmetic

~function to have a singular distribution. Finally we shall show, under

fairly general conditions on F, that if the distributions of f(#) and F(F(m))
exist (F is an integer-valued polynomial) and if the distribution of fim)
is absolutely continuous, then the distribution of f(F(m)) is also abso-
lutely continuous. At the end we shall give an example to show . that
this is the best possible result. '

Notations and definitions. Define,

P = {I: T iy an integer-valued polynomial of degree ¥p =1 which
is not divisible by the square of any irreducible polynomial and F(m) > 0
form =1,2,...}.

Let (¥, d) denote the number of incongruent solutions of the con-
gruence relation F{m) = 0 (mod ). '

2 4, ... denote prime numbers.

2, dencte the sum over prime numbers.

»

Put o
fipy i |ftp)l < 1,
1 - otherwise.

e =



i=0,1,...,
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Results.
ProposirioN 1. Suppose that the series

1 L () )
25

i
is convergent. For any positive infeger h,

(1) {fm) —fn+1Y, coey FloTo 1) —f (1 -- B)}

has o distribution and for any g =1, the vector {f{ng) —f(no 1), ooy flng -

+h—1)—F(n,- 1)} belongs fo HM’ s'pcwlmm. of the digiribution of (1)
Moreover, of Ny, Ny, ..., N, are positive integers such that for aoll

hy (N, (h--1)! ) ml and (N Nj) =1 (054 <§<h), then

{f (o)~ F(@2N), fN) —F (BN o), ..o fAN, 1) —F((h+1) N3}

is in the spectrum of the distribution of (1).
CoROLTARY (Hrdds and A. Schinzel [31). Let £ (n) be an additive arithme-
tie function satisfying the following conditions:

' oy . .
1. Z‘-——-ﬁ;———«‘\ 0o}

»

2. There is a number ¢, such that, for any integer M > 0, the sel of
numbers f(N), where (N, M) == 1, is dense in (61, o0). .

Then for amy given sequence of h real numbers ay, a,, caey iy and s‘> 0
the set {n>=1: |f(n-+3) —fn-+i—1)—a] < &i=1,...,h} has positive
natural density.

Prorosrrion 2. Suppose that By, ..., Ty belong to P. Supppse

LM, ) 0
as p—> oo for b =1, ...,vp~1 whenever vy, 3= 2. If, moreover, the disiri-
bution of
(2) () o, o T ()}

ewigls; then one oan find o K, such that the spectrum 8 of the distribution
of (2) 48 the closure of the set

A={{ D a D heh.n Y L)

T T - 700}-.
11 £ i in

PYIE () PRy m, | Mg,
pg:(k) ) ﬂf‘.(fa ) :u%(n’c )

Remark 1. Clearly 4 o B = {(fl(ﬂ‘l(m)), oy ol (m))) m 5 1}-

" Proofs.
Proof of Pro;posxtuon 1. Let H,_ (%) ==fnt+i—1)—~Ffn+1),

i=1,..., M We extend the functions H,; to the polyadie dornain (see

NOVOSBlOV, [8]) and show that for each 4, H;e$, ([8]), proceading as follows.

icm
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Let
1 i pk” Ly
¢ otherwise.

w( k7$) =

. For any prime ﬁumber p define

Jol®) = 3 foh o o% o+,

k=1

t=0,1...,h—1.

Since the random variables {f,,(z): pis a prlme} are mutbually independent
([8]) and

IR0

Ny ’
P

by Eclmogorov’s three seriey theorem, it follows that

;{f@(m)— ! '“”}

»

converges almost everywhere for ¢ = 0,1, ..., k. Hence

Z{f{j@ (@) — fragnp (@)}

converges a.e. for 4 =0,1,..., A—1, Moreover, it is easy to see that
the random variables [{fy,(®)—fuin,(®)}: 2 is a prime] are mutually
independent random variables for each 4 = 0,1, ..., h—-1,
Let
gi('m) _ g.{fip(m) _"f(i+1)p(w)}

if it converges,
otherwise .

Clearly g;(») is an extension of H,(). By using the Turén—Kubiliug
inequality ([5]), it is easy to show that H,(n)e$, ([8]) and the distri-
bution of H,(n) is @;(¢) = P{w: g;{») < ¢}

Note that for any k-tuple (4),...,%,_,) of real numbers the distri-

-1
bution. of 3 t.H,(n) is given by
g i=0

fu1
P {m: 2 trgs (@) < c}.

Hence by the Cramer-Wold device ([47) we find that the distribution
of {Hy(n), Hy(n), ..., H, (n)} is given by
)< 0y 4 =0,..., h—1}.

Q(cn:"-?ch-l P{:L‘ g-z
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Lot 0 < 6 << 1. Since
{(fn:p fm w): 7f(7a~1)1’)(w)"_fi’ip(m)): P is a ]_’)]‘i]‘l‘](&};
is a sequence of mutually independent random variables, by nsing Tigoroff’s
theorem one can find a I’ = € such that P(H) > 1—4 and 3 {f,(0)--
P
—fusnp(®)} converges uniformly on I for 4 == 0,1,..., k1.
Now fix a positive integer =y and a real number &> 0. Tk

N =ty (1) -
such that for se i

‘ E{fe‘p(m) "‘f(v?-}-l)m;(m)}l <e for dea0y.,h-1.
nk .
Hence
Plo: | 3 i@ ~fnp(@)]] = & S0r & = 0, .0y B} > 1~ 5.
>k

Now the dengity of
fnz=1: |fintd—1) —flnt+0) —fng+9)| < e, 9 s 1,2, ..., h}
ig greator than or equal to

{ I Z rfﬁ 1MJ fw (“’

< g and

FE
D Famn @) =Fip (@] == flmg~ti 1)~ F{my-3) for 4 = 1,..., k} =
»gk
(1— 5)P{w= Z[f@_up{m) —fm(w)]%f(nﬁi-—l) ~Jltg+4); 8 == 1, .0, h}-
sk ‘
Put
Pe[lo, Q=3P

~Fsmp(@)] = fimg i) — it i41); 6 = 0,..., k=1

P{m: Z[fip

ek
—Dcnmty of {n e Z[f“’ 1) == fanayn (0] == F{Rg -48) ~F (g -8 -F 1Y
Pl . .
6 =0, laﬂ'-l};?:"é >0,

In fact, since (P, ¥) =1, we can find an { such that
b=ny (mod %) and 1 =1 (modP).

- It is easy to show that, for any integer ¢,

Qi
g+ i=0,1,..., 4,
] . .

- (my--h). Lot B be any integer groater than N and
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ig an integer not divisible by any prime p < % Since k>N %, we have

(QH—H—'@
g+ 1

Hence for any ¢ such that @t -+I> 0, we get
2 QD —Fuon (Qt+) =F(@+ 140 —F(Qi+1+i+1),

sk

?%U+i) :1-

e_—01 hl

But the density of the positive mtegers of the form Qe+1 is equal to
1/@. This proves the first part of Proposition 1. The proof of the second
part of Proposition 1 is gimilar to the above praof. So here we only note
the following fact:

We put _ .
W= oMy Niy P=[[]p and Q= (h41)1H°P.
’ <k
PN

Since (N;, (h+1)!} =1 ford =0,..., % and (N, §,) =1L (0<i<ji< h),
it follows from the Chinese Rema.mder Theorem that there exists a number
{ satisfying the congruence relations

=1 (mod (B+1) !P},

I= —i+N,(mod FY) (0<i<h).
It is easy to see that for every integer ¢ the numbers

(Q+1 406 1)NY, i=1,...,h,

are integers which are nof divisible by any prime p < k. Also the density
of the integers @f-+1 is 1)@ > 0.
This completes the proof of Proposition 1. :
Proof of the Corollary. Let : be a positive nuunber and let a se-
quence a; (¢ ~=1,...,») be given. By condition 2 we can find positive
integers Ny, Ny, ..., N, such that

(N (h41)1) =1 (3 =0,..., ), (N;,N) =1(0<i<j<h),

f(l\T)>al+Igta€XL{f(%+1)“g it
and

[ F) ~ {f @) =16+ 1+ Y afl< et @<i<n).
Henee "

(3) NAGT DT~ OGN, ) —a] < &2 (A <i<h).



- are independent events on Novoselov’s gpace If @51, by .0,

" and
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By Proposition 1, we have

(4)  {n>1: [F—F(n-+1)—F(No) +FEN)]| < o2, ...
[Fm+h—1) —F (4 h) —f(hNpy) - F{(h 1) V)| <e/2}

has positive density. Hence the corollary follows from (3) and {4).

Proof of Proposition 2. We neei the tfollowing two lemumas.

Yoyma 1. If h(m) and g(m) are integer-valued polynomials having no
common factors, then there exisls a by such that p > &, implics that there is
no m sych that k(m) = 0 (mod p) and g{m) == 0 (mod p).

Luvma 2. If Be P, then there cuists a b such that p > k implies

f‘(lﬂ, "pz) i f‘(]_‘n, _p) fOT a;u Z :3 14

Also there exists a constant e such that r(F, p') < e for all p and 1.
Yor proofs of these lemimag see [9].

Let Fy{m) = n F;(m), where {Fy(m): j ==1,...,1} are irreducible

and each Fye P. Suc:h o factorization. is possible and is unigue.

Let: {Gl, @ ={Fyj=1,..., 14 =1,..., such that 6, and
@; have no commen factors if ¢ s j. By Lemma 1 choose a %, such that
P > k, implies that there is no m sueh that G;(m) = 0 (nod p) and & (m)
=0 (mod p) (L<é<j=<h) Lot Gy{») be the continuous extension of
&;(m) to Novoselov’s gpace @.

It is eagy to soe that
{(mg] G(@); ¢ =1, ..., B, (Pe] i@, € =1, .., 0, ..

(piww) is=1,..., W}

" are mdependent events if #; are non-negative integers, == 1,9,> ky,
Py E Dy if i #4 and m, is not divigible by any prime p > &, (4 =1, ..., k).

Since either l’ﬂ(m)
woe infer that

{{m | Folw), i =1, ...,

B (m) or Fy{m) and F,(m) are mumm]l"y prime,

8}, (M”Ilnt(m):'i =1, . 7‘9):“'
(Pl | Ty, 0

“ly oy 8)}

Py Ky
P #p; i 4 £ 7 and my i3 mot divigible by any prime p >k, for any
t=1,...;8.

Now choose &, > T, (by using Lemma 2) such that, if p > &, then

(B, pY) = r(Fy,p) for tELd=1,...,s

r(Fy,p)<pl2s, T=1,...,s

icm

Suppose k< p < k and p% || F
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We now show that 4 < 8. Let
Jiol®) = Z'fa(fp T =1,...,8.

13}'6[ z(m)
Dtk

For p > pyand ¢ =1, ..

Fin() —[f‘

.y 8, we put

it p*| Fyw), k=1,
if either ptF;(w) or p”| Fy(») for all k> 1

By Theorem 2 of [1], we conclude that

Zfl (£, p)

converge. Hence by Kolmogorov’s three series theorem » f@(m) con-
=Ky

(fi(p)r (T, p)

and Z ,-pp

»

verges a.e.
Fix a positive real number J§ < 1/4s. By Egoroff’s theorem choose
H = @ such that P(H) > 1-—46 and, on H, } f;,(») converges uniformly

P>k
for i =1,...,s.

Now fix e> 0, k> %, and m = 1. Chooge &, > k guch that
1){50: ] Zfip(m)‘< g5 =1y ...,
p>ky

Let D{...} denote the natural density of integers satisfying the conditiong
mentioned in {...}.

s}> 1—5 whers # = ds.

D{fi(Fum)— > fulm)—fum)|<si—1,..,5
ky<p<k
Plo: finl@) = falm)y D) ful@) = D fyim)

kg=p=k ky<n<k

and. l Zfip(w)leq g 7 :1,‘,..,.5-}

D>k

Z(L—nPiw: fi(@) = f(m), d —‘l’-- 8} X

% [T Plo:foplo) =fypim),i =1,...,8) x HP{fw(w)wM—.l 18}

hy<pesk < psion
Qlearly
P{fpiz) = 0,i =1,...,8 =1—P{w: fi,(x) # 0 for some ¢}
(P, 1
= 1__Z?_(_ﬁ;;m— it p>k.
. P 2
i=]

) for some I; 3> 1 and for some (4, §).
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In this ease by the definition of %y, we have clenrly
Po: ful0) = fiplm)y i =1, ..., 5} 3 Plans p% || By())
T(Fﬁaﬁ i) 1 (B,

> 0.

Let &,(m) = [] p'. Note that
p“n(’m)

P{@: folo) =fulm), i =1,...,5)
> D{fIJ (m) | Xs(n) and Dy(m)ptFy(n) for any p < ly and for ¢ =1, .., , 8}
>0 (since m =m is a solutiom of the above relations).

Bo.d = 8. Hence B « A < 8. Oleatly B is dense in §. This cotopletes the
proof of Proposition 2.

Absolute continuity of the distributions of f(m) and f{F(m)).
Remark 2. Let f be the strongly additive arithmetic fanction defined
by '
0 if  psef,
fp)=1y_ L
(loglogp)**
Let #F{m) be any polynomial taking positive integral values for

= 1. From Theorem 1 of [1] we can conelude that f (#{m)) has a dlstn-
butlon Since .

it p>é

. N
Z%ﬁ = rloglogn+ 0 (1)

DEH

(see [9]} whelre + is the number of distinet irreducible factors of F.

Following an: argument similar to the argument given in [2] it is not
difficult to conclude that the dmbrxhu’umn of f(F(m)} is absolutely con-
tinuons.

Remark 3. Let f be any real-valued additive arithmetie function.
baving a distribution, Suppose that there exist sequences of rtml numher
Iy Uy, 8y and a constant b sueh that gNZN—ﬂ»O by > o0,

HZrer (g, w e

PEEN V>IN )
and, there exist positive mtegers Meyy ooy My, cOMPOBd of primoes p < gy
iy
1 : _
Togsn i-.Z; oy bfor s_ufll sufficiently large &, Then the dlEtI'.lb"ll.thn
of f iz singular.

such that

Some vesuité-o@ the  distribution 323

This fact can be proved as follows.  Without logs of generality we
can asswme that f is strongly additive and |f(p)] < 1. We write every
positive integer m = m'm’‘, where m’ is composed of primes p < sy

and m”’ of primes p > 'sN. The density of integers m == m'm’ such that

w' = m, for some 4 = 1,. oy by I8

. —y IN‘l .

®) H( -——) ~ N Do,
1==1 p=§_s 08 Sy i=1 #y

where 9 is Huler’s constant.
For <G and any prime p, pubt

(0) mlf(p) if zﬂlff,
0 otherwige.
Since f hag a digtribution, » fu(w) converges almost everywhefe ([81)
and ’ | ' '
’ D{n: f(n} < ¢} = P{m: Dlfola) < o}.
 Clearly ’

{ me(-’”’>9zv} {fo‘(p) ( yf(p )}

fpmeny ' nan B8N
a8 N = oo.

Congider the open interv;:ls (f(m;) — Oy f(m¢)+gN), t=1,...,1y. By (5)
and (6)
iy
i pr(ac e U (11 5’N¢f(mz)+9'N)J |
_ FRP [\ Sip)y . be
P 2 X))
b D>an -

for all guifficiently large N.

And the sum of the lengths of these I, intervals is less than or equal
W0 2¢y . Hence it follows that the distribution of f(m) cannot be absolutely
continuons. Hence it iy singular.

ProrositioN 3. Lot Fe P. Let f be o real- valued addvtwe arithmetie
function such thet

f(pl“_)fv‘(iﬂ,ja]")—}D a8 p—>oo for b=1,...,9p—1,

if 97 2. (This condition can be dropped if F is a product of linear poly-
nomialg.) : : o
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Let Q be a set of primes such that

(M Yi< oo-and ¢ ¢ Q implies either v(I, q) # 0
P
r(F, q) = 0 and f(g) = 0.

If fim) and f(P(m)) have distributions, then the distribution of f(F (m)) is
absolutely condinuous of the distribution of f(m) 4% obsolutely continuous.

Proof. By Lemma 2 there exists a constant ¢ such that r{#, p*) < e
for all p and % and

(B, p") = r(F,p)  for all kit p > 0.

‘Without loss of generality we can assume that f is strongly additive.

Lemwma 3. If {X,} is a sequence of independent diserete random variables
and {¥,,} 18 another sequence of independent disorete ramdom variables such
that 2 P{X, 5% ¥,} < oo, then Z’X“ oomverges almost sverywhere and

qts d@smbutw% Junction is a,bsolmel o comtinuous off 3T, converges almost
everywhere and its distribition is absolutely contimaous.

The proof-of thig lemma iy well known [10].

Lpwrva 4. Suppose that 0 ¢(p) < ¢ and {a,} 15 o sequence of real

numbers. Then one can find o soquence of independont random variables
{¥gp: > 2¢} defined on a complete probability space (2, W, V) such thal

P{Y = 0} == _‘_S_f_f?_’
.

~ and another sequence of tndependent random variables {Xp: p > 20} defined .
on the same probobility space (2, A, P) suoh that

. 8{p) . s(p)
P{X, = 0} =’~1f'“"1‘9‘1 P{Xy == a,} = ﬁ"
and
2 Pix, " ifﬁ,}<: o0,

nwie

The proof of this leroma i eayy and so is nmltwcl

. Lumma 5. Suppose that h is the chavacteristic function of an infini-
tely divisible distribution with the Levy fumction M. If the total wariation

of M is finste and M is d@screte, ther the distribution cowespondmg to h 8
disorete.

{Bee [67, p. 124.)
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Now we prove Proposition 3. Let {X

'independent random vatriables such that

, 1
P{X, — 0} —1— =

and

, 1
P{X, =f(p)} =—-
by
By Lemma 3 and from the results of [1], if f hag an abselutely eontinuous

distribution, it follows that ' X, converges almost everywhere and its
»n>2e
distribution function is absolutely continuous.

By Lemmas 3 and 4 one can find a sequenée {X,} of independent
randor. variables such that

1
P{X, =0} =1-

1 1
P(X, = nf(p)} """F(“E)’ n=12, ...

M X, converges almost everywhere and its distribution iy absolutely
w2
continuous. If %(#) is the characteristic function of 3’ X, then clearly

n>ze

y #kf(p) 1

P20 Tt

2 +22kk<m’

nef) »>oc k=2

for some '. Since

by Lemma 5 wo infer that the distribution function corresponding to the
characteristic function

g ifip) V1
£ = ox { (elmp)mlwm__.___ *
o) = o) 2, | T (@7 p
g
BB
is absolutely continuous. From now on we write r(p) for 7(p, I).
Now suppose that {¥,: p > 26} is a sequence of independent random
variables such that

20 wd (v =) =T

P{Y, =0} =

: p> 20 be a sequence of
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as o distribution, > ¥, converges wlmost everywhere

e

Since f{I'(m))
pxae

[1] and the distribution function of f (F{m)) is an].utely con_tinuoﬁg
if the distribution function of ' ¥, is absolutely eontinuous. Again,
pmie :
by Lemmas 3, 4 and b as above, we conclude that the distribution function
of 3 ¥, is absolutely continuous if the disteibution function corresponding

pxic : :
to the characteristic function g(t) given by
g == expj X’(Gz‘!fﬁs) O W) ) .?f(}ff.)_}
. = P

e BES (j(ﬁ))z
74
is abgolutely continnous.
Hince
S ( A9y _..?’_J..”_(!{L_g) 1
ooy Lo ( (@ )) »
)
and
N (@wm B4 )) rip)
ey 1k (j (1’))2 r
me

converge abgolutely and uniformly in every compact interval of the
real line, '

Z(QW i) ) ) -1)
i S I(f@f)  p

fate]

converges absolutely and wmiformly in every compact interval of the
real line, Since »{p) =1 or f(p) = ¢ if p ¢Q, it follows that

) = m{ ¥ ((,jtf(w) e ]@:f)fﬂ(>)) (f':&?{z::};l;
£ 20 P
- ‘
is a characteristic function. We note that gty == () 1),

Since ¢(t) is a characteristic function of an absclutely eontinuous
~ distribution, ¢(t) is also a characteristic fonetion of wh absolutely conti-
nuous digtribubion. This completes the proof of Proposition. 3.

(7} holds for many polynomials. Tn fact, if F has o linear factor,
1_‘4}1&11 condition. (7} obviously holds. (7) is not a necessary coudition, as
1§ evident from Remark 2. But Proposition 3 ig the Dest possible in the

Rense thatif condition (7) is omitted then the conclusion of the propofition
I8 not necessarily true. '

icm
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- Examerr. Let f be the strongly additive arithmetic function defined
by :
1
flp) =1 (loglogp)**
o otherwise.

P> and p =3 (mod 4),

Let F(m) be the polynomial m?-1.
The following lemma shows that f(¥(m)) = ¢ for all m and hence
FlF(m)) has a degenerate distribution. ' '
Lemma 6. If p i3 a prime ==1 (mod 4), the congruence
(8) %% = —1 (mod p)
hos exactly two incongruent solutions. The congruence (8) has no solution
when p 18 o prime = 3 (mod 4).
See [T], p. 99, Theorein 58.
Now we shall show that the distribution of f{m) exists and is abgoluntely
. 2

continnous.
We need the following

LomMA 7. If Fe P and the number of distinet factors of F is %, then

Ve Tlogloga -+ O (1).

BL
See [9]. : _
The characteristic function of the distributian function of f(m) is

given by
‘ 1— g
L = 1w»u-———~~~—-—~ .
[T
»
Now as in [2] for 4 = 0 o *‘
N 1 —exp(tu(loglogp)~>")
() 1T < [ [ - -

where the product [] for each fixed u £ 0, is taken over thoge primes
which satisfy the fellowing conditions: :

(10) p>e¢, p==3(modd) and 3= < 4u(loglogp) i < br.

. l -
Now sach factor of the product on the right of (9) is less than 1— 5;

T < ]'”]'_(1§%).

80 that
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Hence ‘ .
L)l = 0 (exp (-~ X 1/p));

where, for each fixed u 0, 3" denotes the sum over thosc primes which
patisty (10). By Lemmas 6 and 7 we geb

2fp = loglogw-- O(1).
prdimed )

Tence
1L ()] = O{{oxp (—clul*)}),

AACCY 1

Bo L{w) is integrable and hence L{u) is the characteristic function of an
absolutely continuons digtribution function.

where
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A simplification of the formula for Z(1, y) where
x is a totally imaginary Dirichlet character
of a real quadratic field

by

Dowazp B. Rmrovr* {St. John’s, Nfld.)

1. Tntroduction. Let & = Q(V4) be a real quadratic field, and let
% be a totally imaginary Dirichlet character of k. The Dirvichlet T-series
L(s, ) evaluated at s =1 can be written in the following form:

Ll 1) = =W () N(Dyb,)2 Y x(4)G(4))
A

where b, is the conductor of y, the summation ig over integral ideal Tep-
resentatives of the ray class group 1d(b,)/R(b,), the bar denotes complex
conjugation, W(y) is a constant of absolute value 1 (see [1], page 300),
&(A) is a rational number with denominator at most 125 whete b is the
smallest rational integer divisible by b,, and D, is the different of k. The
rational number G(4) does not depend on the class of 4 modulo E(b,).

‘For details see [4], p. 171

Of interest here is the rational number &(4) for any given infegral
ideal 4. We begin by defining &¢{4) explicitly.

For rational numbers u,v with w,ve [0,1) and (u,) 5= (0, 0) we
introduce the following modified theta function:

. 2 I = . gy
B(z w)=q“ ﬂ)l g"t)n(l "

where g = 6™ and 1 = g™,

If«' and ' are any rational numbers, we denote by ( ) the normalize
padir ( ) with 0 <2, v <L and o' ==u,9 = v (mod1).

Let BL(2, Z) denote the special linear group of two by two matrices
with. entrieg in Z and determinant 1. For any matrix M in SL{2, Z)
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. -A~8080.



