icm

If l > 4 our l-1 numbers $Y_j^{(l-1)}(0)$ may be approximated better than almost all (l-1)-tuples in R^{l-1} . It is not difficult to show, by the methods of these papers, that one can never approximate much better in the above case, i.e. with a somewhat larger exponent on the $\log |q_N|$ the last inequality could only be satisfied finitely often for any choice of q_N and $P_{N,j}$.

References

- [1] Frances Throndike Cope, Formal solutions of irregular linear differential equations, Part I, Amer. J. Math. 56 (1934), pp. 411-437.
- [2] Charles F. Osgood, A method in diophantine approximation, Acta Arith. 12 (1966), pp. 111-128.
- [3] A method in diophantine approximation (II), Acta Arith. 13 (1967), pp. 383-393.
- [4] A method in diophantine approximation (III), Acta Arith. 16 (1969), pp. 5-22.
- [5] A method in diophantine approximation (IV), Acta Arith. 16 (1969), pp. 23-38.
- [6] A method in diophantine approximation V, Acta Arith. 22 (1973), pp. 353-369.
- [7] J. Popken, Über arithmetische Eigenschafter analytischer Funktionen, Dissert, Groningen 1935, Amsterdam, Nord-Hollandische Uitgerversmy (1935), pp. 1-121.

MATHEMATICS RESEARCH CENTER NAVAL RESEARCH LABORATORY Washington, D.C.

Received on 22. 4. 1972 (272)

ACTA ARITHMETICA XXIII (1973)

On the difference of consecutive terms of sequences defined by divisibility properties, II

рż

E. SZEMERÉDI (Budapest)

In a paper of the same title P. Erdös proved the following theorem: Let $b_1 < b_2 < \dots$ be an infinite sequence of integers satisfying

$$\sum \frac{1}{b_i} < \infty \quad (b_i, b_j) = 1.$$

Denote by a_1, a_2, \ldots the sequence of integers not divisible by any b. Then there is an absolute constant c, independent of our sequence $b_1 < b_2 < \ldots$ so that for all sufficiently large x the interval $(x, x + x^{1-c})$ contains a's.

P. Erdős conjectured that perhaps $a_{i+1} - a_i = o(a_i)^{\epsilon}$ holds for every $\epsilon > 0$. We are unable to prove this at present, but we are going to prove the following sharpening of the result of P. Erdős.

THEOREM. Let $B = \{b_1 < b_2 < \ldots\}$ be an increasing sequence of positive integers such that

$$\sum_{i=1}^{\infty} \frac{1}{b_i} < \infty$$

and

$$(ii) (b_i,b_j)=1 if i\neq j.$$

Then for every $\varepsilon > 0$, if x is large enough, the interval $(x, x+x^{1/2+\varepsilon})$ contains a number a which is divisible by no b_i .

Proof. We can assume $b_1 > 1$. Let us define ε_1 and α so that

(1)
$$\epsilon_1 = \min \left\{ \prod_{j=1}^{\infty} \left(1 - \frac{1}{b_j} \right), \, \epsilon^2 \right\}$$

and

(2)
$$\sum_{j=a}^{\infty} \frac{1}{b_j} < \varepsilon_1^2 < \varepsilon/8.$$

We shall assume that x is greater than a suitable function of ε , ε_1 and α .

Denote by P the set of all primes $p \notin B$. Put

$$egin{align} H(x) &= \{pt\,\epsilon\,(x,\,x+x^{1/2+\epsilon})\colon\, p\,\epsilon\,P\,\cap\,(2x^{1/2},\,x^{1/2+\epsilon})\}\,, \ & ilde{H}(x) &= \{y\,\epsilon\,H(x),\,b_j
mid\,y\,\, ext{for}\,\,j\leqslant a\} \end{split}$$

and then for $p \in P \cap (2x^{1/2}, x^{1/2+\epsilon})$

$$H(x, p) = \{ y \in H(x) \colon p \mid y \},$$

$$\tilde{H}(x, p) = H(x, p) \cap \tilde{H}(x).$$

Let

$$B(x) = \{b_i \in B, b_i = pt \geqslant x^{1/2+\epsilon}, 2x^{1/2} \leqslant p < b_i\},$$

 $\tilde{B}(x) = \{y \in (x, x + x^{1/2+\epsilon}); \frac{\exists}{b_j \in B(x)} b_j \mid y\}$

and

$$\begin{split} L(x) &= \{ y \, \epsilon \, (x, \, x + x^{1/2 + \epsilon}); \quad \exists \ b_i \, \epsilon \, (b_a, \, x^{1/2 + \epsilon}), \, b_i \mid y \}, \\ T(x) &= \tilde{H}(x) - L(x) - \tilde{B}(x). \end{split}$$

If $y \in T(x)$ and $b_i \in B$, then $b_i \nmid y$. Indeed

$$\begin{split} T(x) &= \{ y \in H(x); \ \bigvee_{j \leqslant a} b_j \nmid y, \ \bigvee_{b_a < b_i < x^{1/2 + a}} b_i \nmid y \ \bigvee_{b_j = at \geqslant x^{1/2 + a}} b_j \nmid y \} \\ &= \{ y \in H(x); \ b_i \mid y \Rightarrow b_i \geqslant x^{1/2 + a}, \ b_i \neq qt, \ 2x^{1/2} \leqslant q < b_i \} \\ &\subseteq \{ y = pt \in (x, x + x^{1/2 + e}); \ 2x^{1/2} < p < x^{1/2 + e}, \ p \notin B, \ b_i \mid y \Rightarrow b_i \geqslant x^{1/2 + e}, \ b_i \mid t \} \\ &\subseteq \{ y \in H(x) \ \bigvee_{b \in B} b_i, \ b_i \nmid y \}. \end{split}$$

Therefore, it suffices to show $T(x) \neq \emptyset$. Since

$$(3) \qquad \sum_{p \in (2x^{1/2}, x^{1/2+\epsilon})} \frac{1}{p} \geqslant \frac{\varepsilon}{4}$$

it follows by (2) that

(4)
$$\sum_{p \in P_{\gamma}(2x^{1/2}, x^{1/2} + s)} \frac{1}{p} \geqslant \frac{\varepsilon}{8}.$$

Using the sieve of Erathostenes for all $p \in P \cap (2x^{1/2}, x^{1/2+a})$ we obtain

$$|\tilde{H}(x,p)| \geqslant H(x,p) \prod_{i=1}^{a} \left(1 - \frac{1}{b_i}\right) - 2^a \geqslant \left(\frac{x^{1/2+a}}{p} - 1\right) \varepsilon_1 - 2^a.$$

For different p's in question the sets H(x, p) are disjoint. Since

$$ilde{H}(x) \supset \bigcup_{p \in P \cap (2x^{1/2}, x^{1/2+\epsilon})} H(x, p) \cap \tilde{H}(x) = \bigcup_{p \in P \cap (2x^{1/2}, x^{1/2+\epsilon})} \tilde{H}(x, p)$$

we get from (4) and (5)

$$\begin{split} |\tilde{H}(x)| &\geqslant \sum_{p \in P \cap (2x^{1/2}, x^{1/2 + \varepsilon})} |\tilde{H}(x, p)| \\ &\geqslant x^{1/2 + \varepsilon} \varepsilon_1 \frac{\varepsilon}{8} - (2^{\alpha} + \varepsilon_1) \pi(x^{1/2 + \varepsilon}) > \frac{\varepsilon_1 \cdot \varepsilon}{16} x^{1/2 + \varepsilon}. \end{split}$$

On the other hand, we obtain from (2)

$$|L(x)|\leqslant 2x^{1/2+s}\sum_{b_i\in (b_m,x^{1/2}+\varepsilon)\cap B}\frac{1}{b_i}\leqslant 2\varepsilon_1^2x^{1/2}+\varepsilon.$$

Since $(b_i, b_j) = 1$ for $i \neq j$ we have by the definition of B(x)

$$(8) \quad |B(x)\cap (0,2x)| = \sum_{\substack{b_{i}\in [x^{1/2},x^{1/2}+s_{]}\cap B\\b_{i}=p_{i}t_{i},2x^{1/2}< p_{i}< b_{i}}} 1\leqslant \sum_{1< t_{i}< x^{1/2}} \sum_{\substack{b\in B\\t_{i}\mid b}} 1\leqslant \sum_{1< t< x^{1/2}} 1< x^{1/2}.$$

Hence

$$(9) \qquad |\tilde{B}(x)| \leqslant \sum_{b \in B(x)} \left(\sum_{y \in (x, x + x^{1/2 + \theta})} 1 \right) \leqslant \sum_{\substack{b \in B(x) \\ h < 2x}} 1 < x^{1/2}.$$

Finally, the estimates (6), (7) and (9) give

$$|T(x)|\geqslant |\tilde{H}(x)|-|L(x)|-|\tilde{B}(x)|>0$$

which completes the proof of the theorem.

I express my thanks to the referee for the helpful criticism.

Reference

[1] P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), pp. 175-182.