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ACTA ARITHMETICA
XXIV (1973)

On the number of solutions of f(#) = « for additive
functlions '

by
P. Ernds, I. Ruzga, jr., and A. 8Argdzr (Budapest)

Denote by o(n} the sum of divisors of #. A well known and probably
hopeless problem in number theory sbates: Prove that o(n) = 2Zn has
intinitely many solutions, i.e. there are infinitely many perfeet numbers.

More generally, one can try to estimate the number of solutions
of o(n)/n = a, 1 <n<< 2. A method of Hornfeck and Wirsing [2] gives
that for fixed & the number of solutions of a(n)jfn = a, 1L <n = o, 18 o(z).

a{n)/n iz multiplicative and the logarithm of a multiplicative function
is additive. Henceforth in this paper we will study real valued additive
fonctions. '

We will try 1o give upper bounds for the number of solutions of
(1 fm)=¢ 1gKn<ga.

Denote by @(z, e) the number of solutions of (1). We will make
various regtrictions on f(n) in trying to get as sharp estimates as pogaible,
To get non-trivial results we first of all have fo exclude the case f(n) =0,
henceforth this will always be assumed. First of all we prove the following
gimple ' '

TomorEM 1. For any f(m) we have uniformly in o

Giryc) < (1—g)n.

To prove Theorem. 1 observe that since f(w) is not identically 0
there is an integer m for which flim) # 0. In fact the smallest such m is
always o power of a prime, m = pyo '

Leti ¢ be any integer with p,1 6. Clearly f{£) s f(ip30) and hence { and
tpy? can not both satisfy (1), or

Gz, c) < w'—[_ﬁ -+ [—ﬁﬁ] < (L—gj)w

which completes the proof «fj}?f’jjheqrem 1.,
i [T %
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It ix easy to see that Theorem 1 ig best possible. Let f(n) = 0 if ptn,
: _ 2
f(n) =1 if pin. Then G(w,0) = mw—[-;}
To get less trivial results put

G{z) =maxG{w,c) and Gy(r)= Jila,x(}(w, c).
[ o] ’

We are going to prove the following five theorems.

THRoREM 2. Let fln) be an arbitrary real valued odditive function.
Then

Tim Fo@)
Xe=00 @&
evists and the limit is <%.
Clearly Theorem 2 is best posgible, e.g.

0 if »n is odd,
1 i »is even.

fin} =

*

TaporEM 3. Let f(n) be totally additive (i.e. flab) = f(a)+f(b) for~

every a and b). Then
amec ¥ 2

. THEOREM 4. For every a> 0 there is o totolly additive function for
which

1
lim%)«>mms.

g=s0 €

‘We can prove that the limit iz always < 1/e but the proof is very
complicated. ' :

"THEQREM b.

o
log2 < Iim infmax»«fu(ﬂ.
Te=00 b &

Theotem 5 does not contradiet Theorem 2, since in Theorem 2 the
additive function was fixed and % ténded to infinity and here both o
and f{n) can vary. :

TIIEOREM 6. There is an absolute eonstam 0> 0 so that

Go(@) -
@

lim sup max <1-0C.

X=mcO ki

On the number of golutions of fin) = a 3

Now we prove Theorem 2, Assume first that

But then G4(z) = o(w) follows from a well known theorem of Erdés [1].

Assume next 3 1/p < oo. Let ¢y = 0, ¢4, ... be the range of f(n)
Hp)#0
and denote by g; the density of the integers with f(n) =¢;. A simple

sieve process shows that g; exist and g; > 0, 2 g; = 1. All these results
i

are both simple and well known. Thus to prove Theorem 2 it suffices
to show ¢; <3 Let 2 =P, <p.<.,. be the gequence of consecutive
primes. Put fi(pf) = f(ps) for 1<i<j and fi(pf) = 0 for £ > j. Denote
by ¢ the density of the integers satistying fj(n) = ¢;. Clearly

(2) g = lim g,

Thus to prove our Theorem it suffices to show
(3) g < g

We profe (3) by induction. (3) is trivial for j = 1. Agsume that it
holds for all j < & and we prove it for k1. Consider the equation fy.;(#n)
- It is immediate that the density of the integers » satisfying p,.,1n,

fep1(n) = e, equals gff’(l—p ) (Since if p‘:f"n, 1€ i<k fi(n) depends
k41 o

only on the pf and thus the solutions of fk(n) = ¢ are equidistributed
modprys-)

Consider next those solutmns of f{n) = ¢, for which py,4|n. These
integers clearly coincide with the solutions of fi(n) = e, —f(Pri1)) Preil®.
Pub

eu—f(Pr1) = & o
Thus the densﬂ:y of these solutions equals ¢ (pi) —2piy™"). We have

9B <1 —g¥, To gee this observe that if # = w then this is obvious by

‘k) +9% <1, if 2z = u then ¢ < } is implied by the induction hypothesis.
Th’llﬂ finally

(&+1) O L (k) .
[ 14 (1 ) E (L—q") E ("" - —— )
I“ _ Prya Pkﬂ P!ﬂ—i—ll

w=]

2 )<1
pk-}-l \2’

n (k)(l_
.’Pk+1 g

by the induetion assumption.
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Tt is easy to see by using similar arguments that equality in Theorem 2

is possible only if f(n) has the following structure: f(2%) = 1 for all 4,

there may be onc exceptional prime p for which f(p*) = 0 or 1 for all «,

and for every other prime g, f(¢") = 0. None of these functiony are tota.lly

additive and this immediately implies Theorom 3.

Proof of Theorem 4. Let 4 = A(e) be sufficiently large and let
A <p,<...<p; be any sequence of primes satisfying

: iz 1
1—n< D <1y
= P

{e.g. we can take the primes in (4, 4%). The sieve of Eratosthenes gives
that the density of integers » which are divisible by exactly one of the
p.’s and which are not divisible by a.ny pi s

(162354

‘which pro{ras Theorem 4.
Proof of Theorem 5. We will show that for a bufhclently gmall
but fixed &

5,

lim mf;-nnx&‘ (@) > log2-+e.
1

L=oo

Te see thig we construet for every @ an ajdétitive function for which
the number of solutions not exceeding » of f(n) =1 iz greater than
#(e+log2). Tet n> ¢ be gufficiently small and putb

. 0 if p<aﬁ**”or >
Lt A
1 i 7 p

The number of solutions of f(n) =1, n<C & clearly equals

W Zl[ﬁ]“g[ﬁ]"”(zﬁﬁ“zwq)

where in ¥ " < p <  and in W< p<g<a pg<a Wo easily
obtain from the well known themem of Mertens (¢, and ¢, are absolute
congtants) :

x 1 : ’

(3) 215 = .loglogm'—10,;,g*log'ac%"J > log2 oy
and _

(6) 3 <o,

(4), (6) and (6) immediately impliey our assertion.

Un the number of solufions of f(n) = a . B

Tt would be easy to give an explicit bound for e and even to find
the best value of e which this method gives, but it it not eleaxr if this method

.1
gives lim —max@,(»).
T=00 4

Tet p; < pe<< ... < Pr= @ be any set of primes not exceeding a.
Denote by A.(p;, k ) the 1111mbel of integers m < # which are chvmble

by precisely & p's. Put

1
lim —max A (p;, k) = ¢

T=oa i

where the maximum is taken over % and the set of primes. Clearly

(7) lim x max@,(z) = e
Ts there equality in (7)1 The value of e could perhaps be determined,
it seems likely that one has to take k =1, _
Let us slightly modify owr problem: Let a, < @, << ... <2 be any
sequence of integers. Schinzel and Szekeres [5] proved that if 4, {(a,, 6., ...)
denotes the number of integers not exceeding ¢ divisible by precisely one
a; then for a suitable gequence

A oy, @y, .0) > 22— for some a>- 0.

@
(logz)*’ .

On the other hand Lubell [3] proved that If a;, < a4, < ... is a fixed
sequence of integers then the density of integers which are divisible by

exactly one a does not exceed 1.

The results of Schinzel-Szekeres and Lubell show the same contrast '
ag our Theorems 2 and b

Now finally we prove Theorem 6 (this contrasts with the Schmzel—-
Szekeres Tesult where no sueh bound exists). In fact we show

: 1
Tt would not be too difficult to prove
_ Gyl2) < 5
but we do not do this sinee it would involve some extra work and at
present we h&ve no hope of obtaining & sharp inaqumlity for ¢ (x).

Let p* = m be the smallest integer m = p° Wlth flm} 5= 0. As stated
in the introduction we then have

(@) < 5 [—“"—]

m
thus henceforth we can agsume f(n) = 0 for n < 10900,
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- Next we show that we can assume
) L. 2
F(@)#0 P 11

pxll?

Aggame (9) does not hold. Denote by A(z) the number of integers
not exceeding o all Whose prime factors are not exceeding #'°. Tt is easy
to see that

@

Alz) = —.
(10) (0) > 45
(10} follows either by a simple sieve proecss and computation, or we can
refer to the results of de Bruijn and Buchgtab. If (9) does not hold we
obtain from (10) that the number of integers » < # for which f(n) = 0
is greater than

th €T @ &
11 — R — —_— .
(1) 10 Z P Z 7~ 1000
J{p)+=0 qﬂ>101000
pal3 a1

(11} immediately implies (8). Thus we can assume that (8) holds.
Let now m be the largest integer not exceeding z'/* for which

1 1
(12} — K
p 12
Hm)wo
p<<m
By (9 such an m existy and we can of course agsume

1 1
Hp)£0 P
p=m

Now we prove the following

Levma 1. For every m»'™ <t < m and every ¢
14 : tye)<til——r
(14) a1t 0) < ¢ 155,

The point of Lemma 1 is that ¢ = 0 is permitted. :

First of all we sefifle the case ¢ = 0. Olearly f(n) = 0 unless n =
0{modp), f(p) # 0 or n = 0(modg®), ¢" > 102, o> 1. Thus the number
.of integers = < ¢ for which f(fn,) == 0 ig at leagt

t t"

15 . — - —_

(15) | ¢ E E Q“>2
f(p)aan a1

by (12). (15) implies G (%, ¢) < /2 for ¢ == 0.
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Now we egtimabe G(t, 0). f(n) 5 0 if » iz divisible by precisely one
prime p < ¢ with f(p) # 0 and ¢+t n for ¢* > 104 ¢ > 1. The number
of these integers not exceeding ¢ is clearly greater than

TR ] P PO ol R

< pgt 725101000
0 f(p)s&o
fip)= A a1

Now by (13) and the results of Rosser~-Schoenfeld [4]

(47) 21>1"1§— > %>;_0’

<< 99/100
o IR <pam

and by (12)
1 1V 1 1 i
- — — £ —- [
(18) 2 2(2 p) 2 12 o288’
- p<q<i

{p)#o J’(ZJ) #ﬂ
Hay#0

hence from (16), (17) and (18)

pt £ <gst g>101000
Hip)#0
b a=t

t i t 3t 1

~ 55 588 10  2logt ~ 100
which completes the proof of Lemma 1.

Now we prove our Theorem. Let ¢ < £ be an integer for which f(n) = ¢,
¢ # 0. We are going to estimate the number of these integers as follows:
Pubt n=u{e{®, (u{, v®) =1, all prime factors of u, are <m and all
prime factors of o,, are > m. We shall show that there are “many” integers
n < @ for which f(n) £ ¢ and this will give an upper bound for the number
of the integers » <« for which f(n) = ¢. First we prove the following

LEMMA 2. The number A(m, w) of iniegers n < w for whick

% &
’l&g:) <m and Tr;l: < ’D,(,?) < W

is greater than /105

Lemmns 2 will follow easily from Brun’s method. Liet us denote by
A, (m, ) the numbeér of integers » < # for which

(19) maa/iou it u,‘,’:). < T80
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and by N(t, %) (< m < ') the number of integers not exceeding # of
the form- :

i, (fu, np) =1.

psEn
Tt is well known and eagy to see from Brun’s or Selberg’s sigve that
@
won> 52 ] S
&2 j ( ) 100tlogm

Now clearly

Al(m:lw) = —N(tp -’L')
m297T(300 < g 298/500
- @ 1 N &
100logm e 7 10°T

?,,,97/doo<¢,~,,12981390

To complete our proof we show

. @
|4y {m, 2y —~A{m, 2} < 5
The condition o8 < @/m® is vacnous (assuming (19)) since otherwise
WMol > 2. I oM < zfm then
x @ ®
ml,’lﬁﬂ < (lolﬂl}ﬂ)lleD < 106 ?

&
Q&g)ﬁgﬂs,) < E m298}300 _

which proves Lemma 2.
Congider now all the 4 (m, z) integers » <

(”%?),HP) =1,

nEW

# of the form-

(1} @ ) &
(20) t't)m y t-.{m, W‘ < Q)gn) <Z ""‘“m“'.

These numbers are clearly all distinct and by Lemma 2 their number
is greater than #/10% Suppose now that
(21 | f) = e.

(21) of course implies

&
(22) ) =e—flel), 1<t PR
ki3

(20) and (22) iraplies

m99/190< ’U(n) - m.
m

icm
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Thus by Lemma 1 the number of the solutions of (22) is less than

@ 1 1
ol 100 )’

hence for at leagt 4 (m, £)/100 integers << f{#) % ¢ or by Lemma 2

Alm, x) ®

which proves Theorem 6.

The methods used in this paper carry over without any change for
complex valued additive functions (since the real part of a complex valued
additive function is a real valued one) and for some of these results for
general multiplicative functions. '

Tn a subsequent paper we will investigate the effect on & (z) of the
condition f(p) == 0 and f{p) # f(g) (p, ¢ primes) and we also plan to
investigate general multiplicative funchions.

=
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