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i. Introduction. Let a, ..., a, be non-zero algebraic numbers with
degrees at most d and let the heights of ay, ..., a, ., and @, be at most A’
and 4 (= 2} respectively. It was proved in [1] that, for some effectively
computable number ¢ > 0 depending only on %, d and 4/, the inequalities

0 < b logay+...+byloga,| < O-legdleR

have no solution in rational integers b,,..., b, with é;bsolute values at
most B (= 2). In the present paper we shall establish the following gen-
eralization:

THEOREM 1. There is on effectively computable number O, depending
only on n, d and A', such that, for any 8 with 0 < 6 < 3}, the inequalities

1) 0 < |blogay +...+bloga,] < (8/B")00e4 9B

have no solution in rational integers by, ..., b, ; and b ( = 0) with absolute
valies at most B and B’ respectively.

It is clear that, on taking § ==1/B and assuming that B’ < B one
obtains the result of [1]. Furthermore one sees at once that the case
b, = --1 of Theorem 1 furnishes the following corollary:

THEOREM 2. If, for some & > 0, there exwist mtwnal integers by, ...y by
with absolute values at most B such thai

0 < b loga1+...+bnhilogan_~1~—logaﬂf < 7B, _
then B < Glog.A. for some effectwaly computable number ¢ dependmg only
on n, d, A" and e.

Theorem 2 improves upon the analogons result implied by [1] to the
extent of the elimination of a factor loglog A from the bound for B, and
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the strengthened conclugion is plainly best possible, Moreover, it leads
to similar improvements in applications; in particular, in the light of the
work of [2], it shows that the inequality

la—p/q| > cg™"

is valid for any algebraic number o with degree » > 3 and all rationals
2lg (> 0), where ¢, » are positive effectively computable numbers de-
pending only on a, and » < n. A special case of Theorem 2 involving certain
Testrictions on «, was proved recently by Feldman [3] using rather differ-
ent adaptations in the basic theory of linear forms in logarithms; and
the resuit gufficed to establish the theorem on rational approximations
to algebraic numbers just guoted. The removal of the subsidiary condi-
tions simplifies the subsequent application and, it is hoped, will be helpful
in connexion with further researches in this field (}),

2. Main theory. We suppose that a,, ..., a, are defined as in §1 and
we signify by ¢, ¢y, ¢,, ... numbers, greater than 1, which can be apecified
explicitly in terms of », d and A" only. We suppose further that 0 < § < 3
and that there exist rational integers b,, ..., 4,_, and b, (% 0) with abso-
Iute values at most B and B’ regpectively such that (1) holds for some
number ¢ > ¢ depending only on #, d and 4". We proceed to prove that,
if ¢ is sufficiently large, then there exist further rational integers by, ...
voy by_y and by, (5= 0) with absolute values at most o, B and ¢, B’ respec-
tively, and an algebraic number a;, in the field gencrated by the o's over
the rationals with height at most ¢, 4" such that (1) remains valid with
biy ...y by and a, replaced by by, ..., b, and o), respectively. An inductive
argument will then complete the proof of Theorem 1.

The work involves only minor modifications in the discussion of 13

In Particular, the definitions given there remain unaltered except that,
having, as before, signified by % an integer exceeding a sufficiently large
namber ¢ as above, we put’

b= L_+1 = [log(B 0§71,
Lo=Ly=... =Ly = [BY00g 0] I, o= [F),
where
M = max {4, 0pr(613/( )} .
In other words, the notation of [1] is unchmigcad. exoapl 'fbr the replace-

~ ment of 4 and B in the old definitions of L and & by M and B’ 08~ res-
Pectively. Tt is then readily verified that all $he lemmag enuneiatod in [1]

(}) Added i‘n proof. R. Tijdeman has reccnily used Theovem 1 to solve an
old prol?lem of Wintner; see his paper On inlegers with many small prime fuctors to
appear in Compositio Math. : ' '
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remain valid pl'ovidéd that 4 (which, in fact, occurs in the statements
only of Lemmas 5, 6 and 7} is replaced by M throughout. For the proof
of Lemma 5 we require now the observation that since

B Ay~ By A << (B -+ B'log M) < Tililog M (06~ + B 1~1)

and, furthermore, the last expression in parenthesis is at most 2B 06!
< e, we have

8By By Ay )| << €™ A (Weog AL 5 m);
the required estimate M®™ for U then follows since
Az;m,) < &M (2> 0).

In the proof of the subsequent lemmas one has naturally to keep in mind
that there is a new expression on the right of (1); since, however, by
hypothesis, § < %, we have

(B'18C> B'0)d = ¢,

whence (/B )78 4 < YO if W = A, and clearly ¢™°B = M~ if M > A,
Thus, from (1), we obtain
llog o, —logah < M~YO+

and the arguments leading to Lemmas 6, 7 and 8 plainly hold if the number
on the right of the last inequality is substituted for O~l8418E thay ig,
if M and VCh are substituted for 4 and log Blog( respectively (%).

Ag in [1], we take g = p, where ¢ is a prime between L, and 2L,
exclugive, and we deduce from Lemma & that

P | T o' P
4y = ay' ... &ntay

where «, is an element of the field I generated by ay,..., o, over the
rationals and ji, ..., J,y are integers with 0<0j, < p. On assuming, as
we may without logs of generality, that a; = —1, taking logarithms and
subgtituting for loga, in (1) we obtain

0 < [blogay+ ... +byloga,| < MV,
where b1, ..., b, are rational integers as defined in [1]; in particular
by, = pb,. Thus by, ..., b,_; and b, have absolute values at most 6uk'* B

(?) Note that a factor ¢ has been omitted from the exponent of ¢ in the deno-
minator for @ specified on pagsé 126 of [1] and that A should be replaced by I in the
exponents of the a’s. '
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and 252 R’ respectively. Further, as in [1], we see that the height of a;
is at most (2442 A2V, whence, since 2D /p < % when p > &*?, it follows
that by,...,b, and «, have the properties asgerted at the beginning.

3. Proof of Theorem 1. The proof is eompleted by induction. There
is plainly no loss of generality in asswming that B’ > ¢f; to begin with. we
agsume that also 4 = ), whence

log Alog {87 B') > log (e, A¥}log (e} 6~ B').

Then all the hypotheses recorded in § 2 hold with by, ..., b, and ¢, in
place of by, ..., b, and a, respectively; the new values of 4, B, B’ arc
e, A2, ¢, B, 0, B', and 8 isreplaced by d/e¢,. We suppoge furthor, as we may,
that d is taken, at the outset, as the degree of I so that the walues of
¢y, ¢, remain unaltered in the inductive discussion.

. 'We now repeat the previous argument and obtain for each s = 1,2, ...
a set of integers b¥, ..., b, and B with absolute values at most ¢fB
and ¢fB’ respectively, and an element ol in K with height at most
ittt 48 qneh that (1) holds with 5™, ..., 5 and of in place
of b,,..., b, and a, respectively. The algorithm terminates for some
s < 2loglog A when the height of o is at most ¢; and ¥, ..., b then
have abgolute values at most

H = (log A)*max(B, B').

But the number on the right of (1) 18 at most H"/U; for if Bz B’ then
either H < B* or H < (log A)*3, and the assertion is obvious if B < B
Thus one concludes from. the result of [1] that the inequality is untenable
if ¢ is sufficiently large, and the theorem follows.
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Since Siegel succeeded in dealing with Waring’s problem in algebraic
number fields, there have appeared many works ander almogt the same
title {see [8], [9], [12], (8] and [1]}. T should like to nse this opportunity
to add some corrections and justification for my former regults. The
result presented at the United States—Japan seminar at Tokyo in 197L
is not the best. Nevertheless, we seem to be able to place our hope in its
further developments, because the resulb is based on some remarkable
new research due to Mitsui (see [71). My concern is mainly the treatment
of Fourier analysis. ‘

1. Preliminaries and basic domains. In the first place, we shall sum-
marize the main results obtained so far. Let K be an algebraic number
field of degree m, let K® (1 <1< ry) be r, real conjugate fields, and leb
K, K (p 41 < m < ry+7) be 7, pairs of complex eonjugate fields,
30 that n = r,+2r,. Let b be the different of K, and 4 the diseriminant
of K. We can choose @, , @g, ..., @, &3 an integral basis of K and. g, 02y -+
.ey.0, 28 8 bagis of b7, satisfying _

' 1 (r=2),
0 {r = 8)-
We denote by o the integral domain of all algebraic integers in K. We
denote by P (1) the set of (2, ..., #,) satistying
oA, AT

trace (g, 0,) =~

‘where
;‘l =z G)lzl']" ‘e + wnzm,s

the indices I and m being over the set of numbers cited above. On the

other hand,

1F(m)



